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Abstract. For the studied average monthly values of the levels of the air pollutant PM10 in Silistra in the period 01.2015 –
12.2019, two modern methods for decomposition were used - X-13ARIMA-SEATS and STL. The trend-cycle and seasonal 
component of the series were estimated in a total of 24 different ways – 8 models with the X-13ARIMA-SEATS approach 
with two seasonal adjustment options each – X11 and SEATS and 8 with the STL method. A comparative analysis was made 
between them, both in terms of estimating the components of the decomposition and in terms of the quality of approximation 
of the predicted values for the first six months of 2020 to the actually observed ones. In 23 out of 24 assessments of the trend-
cycle component, a decreasing trend is observed, followed by a slightly increasing trend in the last year and several months 
of the period 2015–2019. The STL method yielded better forecast results for the first six months of 2020, using the default 
settings in the corresponding functions of R programming language. The estimated trend-cycle component by STL method is 
significantly smoother than that by method X-13ARIMA-SEATS. 

INTRODUCTION

It is well known that the ambient air contamination by fine particulate matter (PM) is very serious problem 
([1]-[10]). Nowadays this pollutant cause more and more respiratory problems, asthma, lung cancer and 
premature death. According to the European Commission surveys every year poor air quality causes the 
premature death of more people than the road accidents. All this make the scientific research for examination of 
the air contaminations in Bulgaria very important recently. That is why nowadays many studies in this area 
appeared in the scientific literature ([1]-[17]). 

This paper is one continuation of our investigations of PM10 pollution for Bulgarian Danube region ([1]-[5], 
[8]-[13]) especially for the city of this region – Silistra ([5]).  

Silistra Municipality is located in the north-eastern part the Republic of Bulgaria. To the north, the Danube 
River marks the border with Romania. The climate of the Silistra region is characterized by a moderate 
continental character and falls within the Danube climatic subregion. Characteristic of this area is the hot 
summer, the early onset of spring and the severe cold in winter. The absolute minimum temperature reached is -
320C, and the maximum  is 40.40C. The average annual air temperature is 11.60C. The stable retention of air 
temperature above 100C begins in the first ten days of April and lasts until the end of October - about 200 days 
per year. Recently the contamination of air with particulate matter in Silistra is going up, as in the whole territory 
of transborder Danube region Bulgaria - Romania ([1], [8], [9]). 

PM10 levels for Silistra mark an increase during the autumn-winter period compared to the levels during the 
spring-summer period. Also the specific meteorological conditions during the winter seasons reduce the 
possibility of dissipation of atmospheric pollutants ([5], [10]). Thus the biggest peak of PM10 levels for the 
autumn-winter period is usually observed in January months. It is usually in January that the number of days 
with exceedance of the limit values of the PM10 levels is maximum observed compared with the other months in 
the year ([5], [10]).

There are several research papers for PM10 measurements modelling and forecasting for some regions in 
Bulgaria ([1]-[3], [6], [7], [11], [14]-[16]). In these publications different statistical methods for PM10 data 
modelling and studying are used such as ARIMA, SARIMA, GARCH and etc. In this paper we examine the 
application of two modern approaches to the decomposition of time series as a product of the trend-cycle and 
seasonal component - X-13ARIMA-SEATS and STL method. The different options of the two approaches are 
compared, and the total number of considered models is 24. The quality of approximation of the forecast values 
for the first six months of 2020, obtained with each of the models to the actually observed average monthly 
levels of the PM10 air pollutant in Silistra in 2020, was studied. 
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To examine the PM10 pollution in the city of Silistra, Bulgaria we use official data from the monitoring 
stations in the city [18].  

1. DATA DESCRIPTION 

We consider 60 average monthly values of PM10, measured by Bulgarian Ministry of Environment and 
Water in the five years period 2015–2019 (the training data set), shown on Figures 1 and 2. The average monthly 
levels of PM10 in the first six months of 2020 are used as a test data.  

FIGURE 1. Average monthly values of PM10 levels for the period 01.2015–12.2019

FIGURE 2.  Seasonal plot of the data 

The data obviously have a trend and a seasonal pattern. From Figure 1 it can be seen that the series has a 
decreasing tendency and together with it a decrease of the seasonal wave is noticed. Figure 2 shows the seasonal 
plot of the data. Here, too, it can be seen that in the last two years there has been a significant decrease in the 
amplitude of the seasonal wave.  

A commonly used approach (see [19,20]) to study and explore the historical changes over time of data 
containing seasonality is to perform decomposition, allowing to separate the so-called trend-cycle and seasonal 
components. For data where the amplitude of the seasonal wave is proportional to the levels of the measured 
values, a multiplicative decomposition is recommended of the form  

t t t tY T S R ,      (1) 

where tT , tS  and tR  are the trend-cycle, the seasonal and the remainder components, respectively. The 
decomposition (1) can be written in the equivalent form 

log log log logt t t tY T S R ,

which is an additive decomposition of the series log tY . The series  

. /s adj
t t t t tY Y S T R ,                   (2) 
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the so-called seasonally adjusted data, contain only the trend-cycle and the remainder components. They are 
often used to model and forecast the trend-cycle component of the original data tY .

2. MULTIPLICATIVE DECOMPOSITION OF THE DATA 

In the classical decomposition method, dating back to the 1920s, the trend-cycle component is first estimated 
by smoothing using moving averages, and then the seasonal component is estimated by averaging for each 
season of the detrended values for that season ([19]). For example, with monthly data, the seasonal index for 
January is the average of all the detrended January values in the data. Thus, the method assumes that the seasonal 
component repeats from year to year.  

In recent years, new, improved decomposition procedures have been developed and applied ([19], [20]).  
The seasonal package in R programming language ([21]) provides an easy-to-use and full-featured R-

interface to X-13ARIMA-SEATS, the newest seasonal adjustment software developed by the United States 
Census Bureau. The procedure handles monthly, quarterly or bi-annual time series; the additive or multiplicative 
decomposition; trading day variation, holiday effects and the effects of known predictors. The algorithm firstly 
models the data with so-called regARIMA models – regression models with ARIMA (autoregressive integrated 
moving average) errors. If no regressors are used, the regARIMA model reduces to an ARIMA model. There are 
built-in regressors for estimating various flow and stock trading day effects, holiday effects, certain kinds of 
disruptions in the series or sudden changes in level, whose effects need to be temporarily removed from the data 
before extracting the seasonal and trend-cycle components. It is also possible to incorporate user-defined 
regression variables into the model fitted. The choice of the ARIMA model for the errors can be made 
automatically by the algorithm or set by the user. The use of a regARIMA model with or without regressors aims 
to extend the series with forecasts (and backcasts) in order to improve the seasonal adjustments of the most 
recent (and the earlies) data. The user can choose between two seasonal adjustment options: X11 and SEATS. 
X11 uses an iterative approach based on smoothing by moving averages to estimate the components of a time 
series. SEATS (Signal Extraction in ARIMA Time Series) estimates and forecasts the components of a time 
series using signal extraction techniques applied to ARIMA models. A demo website ([22]) supports interactive 
modelling of custom data. 

The STL (Seasonal and Trend decomposition using Loess) method, developed in 1990 (see [23]), is another, 
often used, modern method for decomposition. Key to the STL approach is Loess–LOcal regrESSion smoothing. 
It is a versatile and robust method, which can be used for any type of seasonality (see [19]). The trend-cycle and 
seasonal components are allowed to change over time and the rate of change can be controlled by the user. The 
stl function in R has two main parameters to be chosen – the trend-cycle window (t.window) and the seasonal 
window (s.window). Both should be odd numbers and refer to the number of consecutive years to be used in 
smoothing. The mstl function, forecast package, provides an automated STL decomposition choosing t.window
automatically. The default value for s.window is 13. The stlf function uses mstl to decompose the series, then it 
calculates the seasonally adjusted values (2), for which it can automatically choose an ARIMA model to 
compute point and interval forecasts and finally “reseasonalises” the predictions, using the estimated by mstl
seasonal component for the last year (sub period). 

2.1. Decomposition By X-13ARIMA-SEATS Method

The function seas is the core function of the seasonal package. The function view of the seasonalview
package provides a graphical user interface to the seasonal package, identical to that of the site [22].  

First, we run the seas command using the default options - automatic regARIMA model selection, automatic 
data transformation selection (Logarithmic, Square root or No transformation), outlier detection, testing both 
seasonal adjustment methods – X11 and SEATS separately. As a result we get the model 
ARIMA(1,0,0)(1,0,0)12, with one additive outlier at 05.2019 (the observed value is only 7.13 g/m3) and 
Logarithmic transformation of the original data. The function summary gives the values of the AICc (Corrected 
Akaike’s Information Criterion) and BIC (Schwarz’s Bayesian Information Criterion),

2( 2)( 3)AICc AIC
3

k k
N k

 , AIC log 2( 2)SSEN k
N

, BIC log ( 2) log( )SSEN k N
N

where N = 60 is the number of observations used for estimation, k is the number of predictors in the model and 
SSE is the sum of squared errors of the one-step-ahead predictions of the chosen ARIMA model on the training 
data set. The results are given in the first row of Table 1. The forecasted values  for the first six months of 
2020 are shown in the first row of Table 2. Given the actual observed values in 2020 (the test data set), shown in 
the last row of Table 2 we can calculate one of the most commonly used criteria for the quality of the predictions 
- RMSE, MAE and MAPE, 
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2RMSE ( )tmean e  , MAE tmean e , MAPE tmean p , 100 /t t tp e Y , t te Y . (3)

The obtained Test RMSE, Test MAE and Test MAPE are given in the last three columns in row 1 of Table 1. 
The two possible adjustment methods – X11 and SEATS produce different decompositions of the form (1). If in 
(3) we substitute = t tT S , the predicted by the decomposition values for tY  on the training data set, we will 
obtain the Training RMSE, MAE and MAPE for each of the two methods separately, also shown in row 1 of 
Table 1. Row 2 of Table 1 contains the corresponding results for the same model but choosing the option “no 
outlier detection.” 

TABLE 1. The results with different ARIMA models and options

No Model Adjustment 
method 

AICc BIC Train. 
RMSE 

Train. 
MAE 

Train. 
MAPE 

Test 
RMSE 

Test 
MAE 

Test 
MAPE 

1 (1,0,0)(1,0,0)12
X11 410.2 419.5 

5.5295 3.3439 14.0836 
8.0530 6.7299 44.9944 

SEATS 2.6554 1.5565 7.6948 

2
(1,0,0)(1,0,0)12 X11 423.7 431.3 

5.2509 3.1721 12.2148 
6.1898 5.1043 28.9704 

no outlier detection SEATS 2.2549 1.5157 6.1364 

3 (1,0,0) X11 426.4 434.1 
5.1555 3.2455 14.0334 

9.2483 7.7221 55.1096 
SEATS 3.6109 2.4313 10.9428 

4 (1,0,0)(0,0,1)12
X11 424.8 434.2 

5.0935 3.2408 14.0808 
9.2435 8.0962 55.2230 

SEATS 3.3996 2.2935 10.4848 

5 (2,0,0)(1,0,0)12
X11 437.9 445.5 

5.2108 3.1609 12.2322 
6.2388 5.4687 31.3832 

SEATS 2.5132 1.6577 6.6258 

6 (1,0,1)(1,0,0)12
X11 438.1 445.6 

5.2403 3.1671 12.2147 
6.1927 5.2578 29.8216 

SEATS 2.6708 1.7483 6.9950 

7 (0,0,2)(0,1,1)12
X11 324.5 332.5 

4.6143 3.0601 11.9626 
5.0568 3.1003 11.9623 

SEATS 2.8069 1.8302 6.9860 

8
(0,0,2)(0,1,1)12 X11 339.6 346.2 

5.1024 3.2514 12.4985 
5.4046 4.0646 16.8854 

no outlier detection SEATS 2.2142 1.3464 4.9735 

TABLE 2. The actual and the forecasted values
Model No Jan.20 Feb.20 Mar.20 Apr.20 May.20 Jun.20 

1 23.00 28.18 25.31 23.05 22.85 22.72 
2 22.52 27.76 24.76 22.45 14.75 22.16 
3 25.80 28.04 26.30 25.17 26.81 24.55 
4 24.81 31.02 26.41 24.86 26.20 23.63 
5 23.26 28.58 25.57 23.10 15.33 22.23 
6 22.73 28.16 25.18 22.74 14.95 21.97 
7 23.61 26.42 21.18 14.38 8.89 14.27 
8 21.97 28.29 23.59 17.19 8.94 17.15 

Actual 33.53 25.64 21.26 21.74 9.35 14.27 

The trend-cycle component for this automatically chosen by the procedure model ARIMA(1,0,0)(1,0,0)12,
with or without outlier detection, obtained by each of the two possible methods X11 and SEATS is shown on 
Figure 3. Each of the four lines of Figure 3 has a declining trend until the second half of 2018, followed by an 
upward trend in recent years and several months. The lines corresponding to the SEATS option are smoother 
than those obtained by the X11 method. Figure 4 shows the corresponding 4 lines depicting the seasonal 
component in the decomposition (1). Here, each of the four lines shows a fading seasonal component. With the 
X11 method, we have approximately the same form of seasonal wave over the years, as opposed to choosing the 
SEATS option. Rows 3 to 6 inclusive in Table 1 show the corresponding results when manually entering in the 
seas command each of the 4 other ARIMA models suggested by the procedure as the next 4 best models chosen 
by the BIC criterion. These models are shown as options in the graphical user interface via command view or 

060019-4



when using the function fivebestmdl. The values of the criteria corresponding to these four models are analogous 
to those of the first two rows of Table 1.  

Command auto.arima in forecast package returns best ARIMA model according to either AIC, AICc or BIC 
value. Using this function on the original data tY  with the option lambda=0 (indicating the logarithmic 
transformation of the data), we obtain the model ARIMA(0,0,2)(0,1,1)12. Then in the function seas we manually 
input this model with the option arima.model=”(0,0,2)(0,1,1)”. Rows 7 and 8 of Table 1 contain the 
corresponding results by X11 and SEATS adjustment methods, with or without outlier detection.  

FIGURE 3.  The trend-cycle component for the model ARIMA(1,0,0)(1,0,0)12

FIGURE 4.  The seasonal component for the model ARIMA(1,0,0)(1,0,0)12

Row 7 contains the minimum values in Table 1 of AICc, BIC, Test RMSE, Test MAE and Training RMSE, 
Training MAE, Training MAPE for the X11 method. Row 8 contains the minimum values of Training RMSE, 
Training MAE and Training MAPE for the SEATS method. 

FIGURE 5.  The trend-cycle component for the model ARIMA(0,0,2)(0,1,1)12
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The actual test data and the predictions for the first six months of 2020 by all 8 models are given in Table 2. 
The predictions in the Table that are closest to the respective actual values are colored green. Model 7 has 3 
green values, followed by Model 2, Model 3 and Model 8 with 1 green value each.  

Figure 5 shows the trend-cycle component by Models 7 and 8, with X11 and SEATS options each. The blue 
and black lines, corresponding to Model 7 show decreasing tendency until the nearly end of 2017 then we see a 
sharp decline and rising trend since the beginning of 2018. The red and green lines corresponding to Model 8 
(the same model but without outlier detection), X11 and SEATS options, show, like Figure 3, a declining trend 
until the second half of 2018, followed by an increasing trend over the remaining year and several months. The 
four corresponding lines in Figure 6 representing the seasonal component are almost identical. Here, too, we see 
a decrease in the amplitude of the seasonal wave, retaining almost the same shape over the years. In both Figures 
5 and 6, the green line corresponding to SEATS method, no outlier detection is that which differs more sharply 
from the other three lines. But exactly for Model 8, SEATS adjustment method, the product = t tT S  is closest to 
the observed values tY , with minimum values of Training RMSE, Training MAE and Training MAPE in Table 
1.

FIGURE 6.  The seasonal component for the model ARIMA(0,0,2)(0,1,1)12

2.2. Decomposition by STL Method

The results in Table 3 are obtained by the functions mstl and stlf in R at different preset values for the 
parameter s.window. Smaller values allow greater flexibility of the seasonal component, which is averaged over 
a smaller number of consecutive years. At higher values for s.window, greater uniformity of the seasonal wave in 
the different sub periods is achieved. This can be seen in Figure 7, which shows the seasonal component 
evaluated at four different values of s.window – 3, 5, 9 and 13 (the default value). 

At s.window = periodic the estimated seasonal wave is the same for all sub periods. Figure 8 shows the trend-
cycle components corresponding to the seasonal components of Figure 7. We see that when the seasonal 
component is more flexible, more closely following the data, the corresponding trend component has a smoother 
line and vice versa. Such a pattern can also be seen in Figures 3 and 4.  

TABLE 3. The results with different values for the parameter s.window
Model 

No s.window ARIMA AICc BIC Train. 
RMSE 

Train. 
MAE 

Train. 
MAPE 

Test
RMSE 

Test
MAE 

Test
MAPE 

9 3 (1,1,0) -108.84 -104.90 2.3471 1.5720 6.5332 6.1946 4.2795 18.2701 

10 5 (0,1,1) -12.79 -8.85 5.5239 3.7412 14.0859 5.1585 3.3770 13.7939 

11 7 (1,1,1) -3.47 2.32 6.0218 3.9885 15.1064 4.5114 2.9827 12.3816 

12 9 (1,1,1) 2.06 7.86 6.4205 4.2770 16.0824 4.2574 2.8128 12.0020 

13 11 (1,1,1) 5.23 11.02 6.5788 4.4201 16.5588 4.1307 2.7783 12.2172 

14 13 (0,1,1) 7.03 10.97 6.6879 4.5103 16.8789 4.1016 2.7100 12.0955 

15 15 (0,1,1) 8.07 12.01 6.7541 4.5643 17.0723 4.0735 2.6966 12.1617 
16 periodic (0,1,1) 10.53 14.47 6.8204 4.6541 17.4595 3.9824 2.6617 12.3418 

After calculating the seasonally adjusted values (2), command stlf with the option method=”arima”
automatically finds a non-seasonal ARIMA model with a minimum value for the AICc criterion. The choice of 
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model for each row in Table 3, the values of AICc and BIC criteria are given in columns 3 to 5. The forecasted 
values, obtained with the selected model and multiplied by the respective estimated seasonal component for the 
last year are given in Table 4. Based on them and the actual observed values in the first six months of 2020, by 
formulas (3) are calculated Test RMSE, Test MAE and Test MAPE, also shown in Table 3. It can be seen that 
the worst predictions were obtained for s.window = 3, and the lowest values for Test RMSE and Test MAE 
correspond to s.window = periodic.

FIGURE 7.  The seasonal component by STL decomposition method

FIGURE 8.  The trend-cycle component by STL decomposition method

For s.window = 9, 11, 13, 15 and periodic, close to each other predicted values, values for Test RMSE, Test 
MAE and Test MAPE and values for AICc and BIC criteria were obtained. Therefore, in order to obtain good 
prognostic results for future PM10 levels in Silistra, the default value s.window = 13 would be appropriately 
chosen.

TABLE 4. The actual and the forecasted values
Model No Jan.20 Feb.20 Mar.20 Apr.20 May.20 Jun.20 

9 19.81 25.53 24.83 17.96 10.05 18.08 
10 23.15 26.28 21.76 14.69 10.08 15.23 
11 25.48 26.61 21.59 14.28 10.17 14.54 
12 26.76 26.53 21.55 13.91 10.23 14.05 
13 27.52 26.51 21.60 13.72 10.29 13.79 
14 27.95 26.27 21.44 13.49 10.25 13.55 
15 28.20 26.25 21.45 13.42 10.27 13.46 
16 28.92 26.27 21.54 13.29 10.34 13.26 

Actual 33.53 25.64 21.26 21.74 9.35 14.27 

A comparison between Tables 1 and 3 with respect to Test RMSE, Test MAE and Test MAPE shows that the 
STL method combined with a non-seasonal ARIMA prediction model gives more accurate forecasts. Only for 

060019-7



model ARIMA(0,0,2)(0,1,1)12 (Models 7 and 8 ) in Table 1 the values of Test RMSE, Test MAE and Test 
MAPE are close to those in Table 3, unlike the other five automatically generated models of the procedure X-
13ARIMA-SEATS.  

The values in columns Training RMSE, Training MAE and Training MAPE of Table 3 are filled in 
analogously to those in Table 1 - putting in formulas (3) = T St t . Figures 7 and 8 show some similarity of the 
decomposition at higher s.window values with that using the X11 method, no outlier detection in Figures 3 - 6. 
There is also an analogy between the lines of Figures 7 and 8, corresponding to s.window=3 with the 
decomposition by SEATS, no outlier detection of Figures 3 to 6. This observation is also confirmed when 
comparing the values of Training RMSE, Training MAE and Training MAPE in Tables 1 and 3. The values at 
s.window = 5 in Table 3 are similar to those for the X11 method in Table 1. The others, at s.window = 7, 9, 11,
13, 15 and periodic are higher, but by the STL decomposition the line of the trend-cycle component is
significantly smoother than that by the X11 adjustment method of the procedure X-13ARIMA-SEATS, which is
more strongly influenced by the changes in the observed values of PM10 air pollutant.

CONCLUSIONS

For the studied average monthly values of the levels of the air pollutant PM10 in Silistra in the period 
01.2015–12.2019, two modern methods for decomposition of type (1) were used - X-13ARIMA-SEATS and 
STL. The trend-cycle and seasonal component of the series were estimated in a total of 24 different ways – 8 
models with the X-13ARIMA-SEATS approach with two seasonal adjustment options each – X11 and SEATS 
and 8 with the STL method. A comparative analysis was made between them, both in terms of estimating the 
components of the decomposition and in terms of the quality of approximation of the predicted values for the 
first six months of 2020 to the actually observed ones. In 23 out of 24 assessments of the trend-cycle component, 
a decreasing trend is observed, followed by a slightly increasing trend in the last year and several months of the 
period 2015–2019. The STL method yielded better forecast results for the first six months of 2020, using the 
default settings in the corresponding functions of R programming language. The estimated trend-cycle 
component by STL method is significantly smoother than that by method X-13ARIMA-SEATS. 
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