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Abstract. This article aims to model and study the effect of the strength, time and duration of the restrictive measures for the 

spread of an infectious disease. The inconveniences, economic losses and gaps in education are the price that society pays to 

prevent the spread of the virus. It is important that restrictive measures cover the shortest possible time interval, at the most 

appropriate time, in order to have minimal negative consequences for society, and at the same time to be effective against the 

spread of the virus. We consider as a basis the SIS compartmental model for the spread of a virus and apply numerical 

experiments assuming that, unlike the classic model, the transmission rate α is a monotonically decreasing function of time. 

Numerical experiments show that earlier introduction, greater stringency and a shorter period of adaptation to restrictive 

measures until they enter into force would lead to a smaller proportion of infected people, a shorter period of implementation 

of measures and small economic losses. 

 

INTRODUCTION 

Infectious diseases have posed a threat throughout human history. Despite the rapid development of medicine 

and technology, they continue to be a serious problem today. The civilized way of life weakens the immune system 

of the human body, and frequent trips outside the local communities create a precondition for the spread of viruses. 

After the first outbreak of a new infection, it was soon spread to all parts of the world. Medicine does not always 

manage to find a solution to the problem immediately, without side effects on health. Often, to deal with another 

virus, it is enough to introduce measures to limit its spread, plus means to increase the body's natural resistance. 

Such is, for example, the strategy used during each winter period for another influenza virus strain. Enhanced 

hygiene measures through the use of various disinfectants in public places, limiting close contact with infected 

people are logical and time-proven techniques. Extraordinary flu holidays for students, absence from work for 3-

5 days for people who have shown symptoms are approved and accepted by society. They bring inconvenience, 

but do not drastically change everyday life for a long period of time, do not lead to large losses. Naturally, 

hypothetically, if every member of our society isolates itself, viruses will not be able to spread so easily. But it 

will also no longer be a society. The solution is probably to maintain a reasonable balance in restrictive measures 

for the spread of a virus, which also depends on the likelihood of cure with natural or medicinal remedies. A 14-

day quarantine period for transcontinental travelers could also be established as a practice.  

This article aims to model and study the effect of the strength, time and duration of the restrictive measures for 

the spread of an infectious disease. The inconveniences, economic losses and gaps in education are the price that 

society pays to prevent the spread of the virus. It is important that restrictive measures cover the shortest possible 

time interval, at the most appropriate time, in order to have minimal negative consequences for society, and at the 

same time to be effective against the spread of the virus. 

 

1. METHODS AND MODELS 

Compartmental models are widely used among epidemiologists to simulate disease dynamics. The origin of 

such models is the early 20th century ([1]). Depending on the disease, the compartments can be susceptible (S), 

exposed (E), infectious (I), or recovered (R). Some infections, for example, those from the common cold, influenza 

and the recent one COVID-19, do not confer any long-lasting immunity. Such infections do not give immunity 

upon recovery from infection, and surviving individuals become susceptible to the disease again. The notation SIS 

is used to describe a disease with no immunity against reinfection, to indicate that the passage of individuals is 

from the susceptible class to the infective class and then back to the susceptible class. Another commonly used 

model is SIR (Susceptible – Infectious - Recovered), which suggests that re-infection with the disease is not 

possible, i.e. the patient dies or recovers, developing immunity against future infection.  
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Although the new world-famous virus COVID-19 appeared only at the end of 2019, there are already 

publications using the SIS and SIR models to simulate its spread ([2] – [8]). Recently, cases of people with 

established re-infection with COVID-19 have been reported in the media for only a few months after successfully 

recovering from the initial infection. Therefore, in this article we will use the SIS distribution model as a basis. 

Let ( )I t  denote the proportion of infected persons at the time t. Then ( )I t  satisfies the differential equation 

(see [6]) 

( )
(1 )

dI t
I I I

dt
    .                                (1) 

Here   and   are the disease transmission rate and the recovery rate. 

In the classical SIS model,   and   are assumed to be positive constants. However, after the introduction of 

measures to limit the spread of the virus (MLSV), the value of   should decrease, not suddenly, but gradually 

until the MLSV are observed by all members of the population. In the next Section, we apply numerical 

experiments assuming that the transmission rate   is a monotonically decreasing function of time.  

Assume that, during an initial period [0, t0), no MLSV have been introduced and the value of the transmission 

rate is 
0 . Then at the time t0 the official implementation of the measures begins and from time t1 the measures 

are applied by all, which reduces the value of the transmission rate to 
1  (Fig. 1). 

 
FIGURE 1. The transmission rate ( )t   before and after the introduction of the MLSV measures 

Polynomials are a flexible tool for interpolating functions ([9]). In the interval [t0, t1) the transmission rate   

can be modelled as a function of time ( )t   with a polynomial ( )nP t , for which the following conditions are 

met 
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They would guarantee a continuous first derivative for ( )t  in the interval [0, t*], where t* is the moment in which 

the measures are stopped. We will assume that t* is determined by the condition "reaching a given proportion I* 

of infected", I* is a constant, 
0* (0, ( ))I I t . 

The simplest polynomial that would satisfy (2) is of degree three, 3 2
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The economic losses suffered from the imposed restrictions in the interval [t0, t*] depend on the severity of 

the measures, i.e. on the difference 
0 ( )t   and on the duration of their application - 

0*t t .  

In his article ([6]), Kahale’ assumes that 
0 1t t  and uses the model  

0 1 0( )( * )L c t t     

for the total economic losses, giving a maximally simple, linear and directly proportional dependence. In this 

case L can also be written as 

0

*

0 1( )

t

t

L c dt   . 

At a time-dependent transmission rate   then we will have 

 
1

0 0 0 1

* * *

0 0 3 1( ) ( )

tt t t

t t t t

L c t dt c dt P t dt dt   
 

     
  

    .    (4) 

After performing transformations in (4), using equations (3) for the coefficients of the polynomial 
3 ( )P t , the 

following representation is reached: 

0 1

0 1( ) *
2

t t
L c t 

 
   

 
.     (5) 

Alternatively, we can choose the function  

0 1 0 0 1

1 0

( ) ( ) ( )
( ) cos

2 ( ) 2

t t
t

t t

   
 

   
  

 
,    (6) 

to model the values of the transmission rate   in the interval [t0, t1).  It also satisfies the conditions (2). The values 

of the polynomial 
3 ( )P t  and the function given by (6) are close to each other, because the polynomials of the third 

degree give a good approximation of the trigonometric functions. For values of the parameters 
0 2.2 /13  

0.1692, 
1 0.7 /13  0.0538, 

0 10t  , 
1 17t    the largest difference in absolute value between the two functions 

is 0.00115.  

For the economic losses at   given by (6) the representation (5) would also be obtained. In general, such a 

value for L would be obtained whenever the following condition is met 

1

0

0 1

1 0

( )
( ) ( )

2

t

t

t dt t t
 




  . 

The same economic losses (5) would occur if for instance in the period [t0, t1) the transmission rate   is 

equal to the average 0 1

2

 
 or is modelled by the straight line connected the points 

0 0( , )t   and 
1 1( , )t  . 

2. NUMERICAL RESULTS 

In the general case, when α and γ are not constants, the differential equation (1) is unsolvable in quadratures. 

The solution must be found numerically. Matlab's ode113 solver was used, implementing a multi-step Adams-

Bashforth-Moulton PECE method with a variable order of accuracy. All numerical experiments were performed 

at an initial proportion of infected I(0) = 0.001, a recovery rate γ = 1/13 and reaching a proportion of I* = 0.0001 

to drop the restrictive measures. For the transmission rate at the beginning 0  we assume value 0 2.2 /13    

0.1692, and for the constant c – c = 1. Similar parameters are considered in [6]. 

All results regarding the economic losses L and the moment t∗ of termination of the constraints depend on the 

changes of the moment t0 at which the constraints are introduced, the adaptation time 
1 0t t , as well as on the 

value of the transmission rate α1 after the moment t1 in which the time for adaptation with the introduced MLSV 

measures ends. 
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Fig. 2 shows the proportion ( )I t  of infected persons over time, modelled with the differential equation (1). 

After reaching the proportion I* the measures are dropped. This happens at different times t∗, assuming t0 = 10, 

1 0t t  = 7 (i.e. t1 = 17) and different severity of the adopted MLSV measures, determined by three values for α1, 

respectively α1 = 0.2/13≈0.0154, α1 = 0.5/13≈0.0385 and α1 = 0.7/13≈0.0538. It can be seen from the graphs that 

the weaker measures (larger values for α1) lead to a later moment of time t∗ reaching the proportion I* and dropping 

the restrictive measures. 

Delaying the time of implementation of the measures by 10 days in Fig. 3, assuming t0 = 20, shifts the time of 

completion of the measures t∗ by more than 10 days at all three selected values for α1. Therefore, the earlier the 

measures are introduced, the shorter the interval t∗- t0 in which they are applied and the less inconveniences and 

economic losses for society. It is clear from both figures that stricter measures introduced at an earlier stage can 

drastically reduce the duration of their implementation. 

   
FIGURE 2. The proportion ( )I t  of infected persons,  FIGURE 3. The proportion ( )I t  of infected persons, 

assuming t0 = 10 and 7 days for adaptation   assuming t0 = 20 and 7 days for adaptation 

 

Increasing the time to adapt to the measures by 7 days in Figures 4 and 5 leads to higher values of the proportion 

of infected ( )I t  and delayed (by more than 7 days) end t∗ of the MLSV measures. 

 

  
FIGURE 4. The proportion ( )I t  of infected persons,  FIGURE 5. The proportion ( )I t  of infected persons, 

assuming t0 = 10 and 14 days for adaptation   assuming t0 = 20 and 14 days for adaptation 

 

Graphs of economic losses are presented in Fig. 6 and 7. Figure 6 assumes that t0 = 15 and 
1 0t t  = 7. The 

economic losses at three different values for α1 are shown. Here again it is seen that with stricter measures (smaller 

values for α1) the interval [t0, t∗] of application of the measures is shorter and the economic losses are smaller. 

The graphs in Fig. 7 are at a fixed value for α1, α1 = 0.5/13≈0.0385 and 
1 0t t  = 7. They show a linear 

dependence of economic losses L from the moment t0 the measures are introduced. Three different values for t0 are 

considered: 10th, 15th and 20th day. The shortest interval [t0, t∗] and the least economic losses are observed at the 

value t0 = 10, representing the earliest introduction of the MLSV measures. 
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FIGURE 6. The total economic losses L,  FIGURE 7. The total economic losses L, 

assuming t0 = 15 and 7 days for adaptation  assuming α1 = 0.5/13 and 7 days for adaptation 

 

3. CONCLUSIONS 

We consider as a basis the SIS compartmental model for the spread of a virus and apply numerical experiments 

assuming that, unlike the classic model, the transmission rate α is a monotonically decreasing function of time. 

Several possible representations of α as a function of time are discussed. A model of the total economic losses in 

production due to the restrictive measures taken for the spread of the virus is derived.  

Numerical experiments show that earlier introduction, greater stringency and a shorter period of adaptation to 

restrictive measures until they enter into force would lead to a smaller proportion of infected people, a shorter 

period of implementation of measures and small economic losses. 
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