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Abstract
In this paper, we study the widely considered endomorphisms and weak endomor-
phisms of a finite undirected path from monoid generators perspective. Our main aim
is to determine the ranks of the monoids wEndPn and EndPn of all weak endomor-
phisms and all endomorphisms of the undirected path Pn with n vertices. We also
consider strong and strong weak endomorphisms of Pn .
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1 Introduction and Preliminaries

In the same way that automorphisms of graphs allow to establish natural connections
betweengraph theory andgroup theory, endomorphismsof graphs do the samebetween
graph theory and semigroup theory. For this reason, it is not surprising that monoids
of endomorphisms of graphs have been attracting the attention of several authors over
the last decades. In fact, from combinatorial properties to more algebraic concepts

Communicated by Kar Ping Shum.

I. Dimitrova: This work was developed within the FCT Project UID/MAT/00297/2013 of CMA.
V.H. Fernandes: This work was developed within the FCT Project UID/MAT/00297/2013 of CMA and of
Departamento de Matemática da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa.
J. Koppitz: This work was developed within the FCT Project UID/MAT/00297/2013 of CMA.
T.M. Quinteiro: This work was developed within the FCT Project UID/MAT/00297/2013 of CMA and of
Instituto Superior de Engenharia de Lisboa.

B J. Koppitz
koppitz@math.bas.bg

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-019-00762-4&domain=pdf
http://orcid.org/0000-0002-1687-4656


1624 I. Dimitrova et al.

have been extensively studied. Regularity, in the sense of semigroup theory, is one
of the most studied notions. Regular semigroups constitute a very important class in
semigroup theory. A general solution to the problem, posed in 1988 by Márki [29], of
which graphs have a regular monoid of endomorphisms seems to be very difficult to
obtain. Nevertheless, for some special classes of graphs, various authors studied and
solved this question (for instance, see [7–9,16–18,20,21,25–28,31,32]).

In this paper, we focus our attention on a very important invariant of a semigroup
or a monoid, which has been the subject of intensive research in semigroup theory.
We are referring to the rank, i.e., to the least number of generators of a semigroup or
a monoid S, denoted by rank(S).

Let� be a finite set with at least 2 elements. It is well known that the full symmetric
group of � has rank 2 (as a semigroup, monoid or group). Furthermore, the monoid
of all transformations and the monoid of all partial transformations of � have ranks
3 and 4, respectively. The survey [10] presents these results and similar ones for
other classes of transformationmonoids, in particular, formonoids of order-preserving
transformations and for some of their extensions. More recently, for instance, the
papers [1–3,6,11–15,23,33,34] are dedicated to the computation of the ranks of certain
(classes of transformation) semigroups or monoids.

Now, letG = (V , E) be a simple graph (i.e., undirected, without loops and without
multiple edges). Let α be a full transformation of V . We say that α is:

• an endomorphism of G if {u, v} ∈ E implies {uα, vα} ∈ E , for all u, v ∈ V ;
• a weak endomorphism of G if {u, v} ∈ E and uα �= vα imply {uα, vα} ∈ E , for
all u, v ∈ V ;

• a strong endomorphism of G if {u, v} ∈ E if and only if {uα, vα} ∈ E , for all
u, v ∈ V ;

• a strong weak endomorphism of G if {u, v} ∈ E and uα �= vα if and only if
{uα, vα} ∈ E , for all u, v ∈ V ;

• an automorphism of G if α is a bijective strong endomorphism (i.e., α is bijec-
tive and α and α−1 are both endomorphisms). For finite graphs, any bijective
endomorphism is an automorphism.

Denote by:

• EndG the set of all endomorphisms of G;
• wEndG the set of all weak endomorphisms of G;
• sEndG the set of all strong endomorphisms of G;
• swEndG the set of all strong weak endomorphisms of G;
• AutG the set of all automorphisms of G.

Clearly, EndG, wEndG, sEndG, swEndG and AutG are monoids under composi-
tion of maps. Moreover, AutG is also a group. It is also clear that AutG ⊆ sEndG ⊆
EndG, [respectively, swEndG] ⊆ wEndG
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• AutG

• wEndG

•EndG•swEndG

• sEndG

(these inclusions may not be strict).
Let Pn be the undirected path with n vertices. The number of endomorphisms of Pn

has been determined byArworn [4] (see also the paper [30] byMichels andKnauer). In
addition, several other combinatorial and algebraic properties of Pn were also studied
in these two papers and, for instance, in [5,19].

Let N be the set of all natural numbers greater than zero and let

Pn = ({1, . . . , n}, {{i, i + 1} | i = 1, . . . , n − 1}) ,

for each n ∈ N. The paper deals with sets {Sin | n ∈ N}, i ∈ {1, . . . , 5} with
S1n = wEndPn , S2n = swEndPn , S3n = EndPn , S4n = sEndPn and S5n = AutPn .
It is the aim of the present paper to determine, for each i ∈ {1, . . . , 5}, an effectively
computable function Fi on N such that rank(Sin) = Fi (n) for each n ∈ N. The main
results are

• rank(wEndPn) = n + ∑� n−3
3 �

j=1 � n−3 j−1
2 �,

• rank(swEndPn) = � n
2 � + 1,

• rank(EndPn) = 1 + � n−1
2 � + ∑� n−3

3 �
j=1 � n−3 j−1

2 �,
• rank(sEndPn) = 1 for n �= 3, rank(sEndP3) = 3,
• rank(AutPn) = 1,

for each n ∈ N, n ≥ 2.
Notice that P1 = ({1},∅). Thus, for n = 1, all this monoids naturally have rank

equal to zero. Thereof, in what follows, we consider n ∈ N \ {1}.
For general background on semigroup theory and standard notation, we refer the

reader to Howie’s book [22]. On the other hand, regarding algebraic graph theory, our
main reference is Knauer’s book [24].

2 Basic Properties and Ranks of swEndPn, sEndPn and AutPn

For integer numbers a and b, let [a, b] be the set of all integers x such that a ≤ x and
x ≤ b. Let Tn be the set of all full transformations of the set [1, n].
Proposition 2.1 For each n ∈ N \ {1}, there hold the statements:
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1. wEndPn is the set of all α ∈ Tn such that (i + 1)α ∈ {iα − 1, iα, iα + 1} for each
i ∈ [1, n − 1].

2. EndPn is the set of all α ∈ Tn such that (i + 1)α ∈ {iα − 1, iα + 1} for each
i ∈ [1, n − 1].

Proposition 2.2 For each n ∈ N \ {1}, there holds the statement: If α ∈ wEndPn and
u, v ∈ [1, n] then [u, v]α = [a, b] for some a, b ∈ [1, n].
Proof Let α ∈ wEndPn and u, v ∈ [1, n]. If [u, v] = ∅, then the statement holds
because [u, v]α = ∅, too. Now, let [u, v] �= ∅. We define sets Ik with k ∈ [u, v],
recursively: Iu = uα, Ik+1 = Ik ∪ {(k + 1)α} for k ∈ [u, v − 1]. Then, Iu = [au, bu]
with au = bu = uα and from Ik = [ak, bk] (induction hypothesis) it follows that
Ik+1 = [ak+1, bk+1] for k ∈ [u, v − 1] as a consequence of Proposition 2.1, 1.:
– If (k + 1)α < ak , then Ik+1 = [ak+1, bk+1] with ak+1 = ak − 1 and bk+1 = bk .
– If (k + 1)α ∈ [ak, bk], then Ik+1 = [ak+1, bk+1] with ak+1 = ak and bk+1 = bk .
– If bk < (k + 1)α, then Ik+1 = [ak+1, bk+1] with ak+1 = ak and bk+1 = bk + 1.

Finally, [u, v]α = [a, b] with a = av and b = bv . �
Next, we consider strong endomorphisms.

Theorem 2.3 AutPn = {(1···n1···n
)
,
(1···n
n···1

)} (a cyclic group of order two, for each n ∈
N \ {1}).
Proof Let α ∈ AutPn . Let i = 1α. Then 2α ∈ {i − 1, i + 1}. Since α is a permutation
of [1, n], if 2α = i + 1 then 3α = i + 2, . . . , (n − i + 1)α = n and so n − i + 1 = n
(otherwise (n − i + 2)α = n − 1 = (n − i)α, which is a contradiction), i.e., i = 1,
whence α = (1···n

1···n
)
. On the other hand, if 2α = i − 1 then 3α = i − 2, . . . , iα = 1

and so i = n (otherwise (i + 1)α = 2 = (i − 1)α, which is a contradiction), whence
α = (1···n

n···1
)
. �

Theorem 2.4 rank(AutPn) = 1 for each n ∈ N \ {1}.
Proof As an outcome of Theorem 2.3, we have that AutPn is generated by the trans-
formation

(1···n
n···1

)
. Therefore, rank(AutPn) = 1. �

Define N (u) = {v ∈ V | {u, v} ∈ E} (the neighbors of u), for all u ∈ V , and a
binary relation RG on V by (u, v) ∈ RG if and only if N (u) = N (v), for all u, v ∈ V .

Theorem 2.5 sEndPn = AutPn, for each n ∈ N \ {1, 3}.
Proof For n ∈ N\{1, 3}, it is easy to check that the relation RPn is the identity. Hence,
the assertion is as an immediate consequence of [24, Proposition 1.7.15]. �

Observe that sEndP3 = {(123123

)
,
(123
321

)
,
(123
121

)
,
(123
212

)
,
(123
232

)
,
(123
323

)}, whence AutP3 �

sEndP3.

Theorem 2.6 rank(sEndPn) = 1 for each n ∈ N \ {1, 3}, rank(sEndP3) = 3.
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Proof The first part of the statement is deduced from Theorems 2.4 and 2.5. By the
observation above and some routine calculations, we have that sEndP3 can be gen-
erated by {(123321

)
,
(123
121

)
,
(123
232

)}. It is also easy to check that this set of generators have
minimal cardinality. Whence, rank(sEndP3) = 3. �

For strong weak endomorphisms of Pn , we have:

Theorem 2.7 swEndPn = {(1···n1···n
)
,
(1···n
n···1

)
,
(1···n
1···1

)
, . . . ,

(1···n
n···n

)} (the automorphisms
together with the constants), for each n ∈ N \ {1, 3}.
Proof The equality is obvious for n = 2. Then, suppose that n ≥ 4 and let α ∈
swEndPn \ AutPn .

Let i, j ∈ [1, n] be such that i < j and iα = jα (notice that, as α ∈ swEndPn \
AutPn , such a pair of integers always exists). Let k be the largest integer such that
0 ≤ k ≤ i − 1 and [i − k, i]α = {iα}. If k < i − 1 then i − k − 1 ≥ 1 and
(i − k − 1)α = iα ± 1 = jα ± 1, whence {(i − k − 1)α, jα} is an edge of Pn and so
{i − k − 1, j} is also an edge of Pn , which is a contradiction since i − k − 1 < j − 1.
Hence, k = i − 1 and so [1, i]α = {iα}. A similar reasoning also allow us to deduce
that [ j, n]α = {iα}.

Now, take the largest integer i such that there exist an integer j such that 1 ≤ i <

j ≤ n and iα = jα. Then, we have [1, i]α = {iα} = [ j, n]α.
If i > 1 then we get 1 ≤ i − 1 < i and (i − 1)α = iα, whence [1, i − 1]α =

{iα} = [i, n]α and so α is a constant transformation.
Thus, suppose that i = 1. If j > 2 then, given the choice of i , we must have

2α = 1α ± 1 = nα ± 1, whence {2α, nα} is an edge of Pn and so {2, n} is also an
edge of Pn , which is a contradiction since n ≥ 4. Therefore, j = 2 and so α is also a
constant transformation, as required. �
Theorem 2.8 rank(swEndPn) = � n

2 � + 1, for each n ∈ N \ {1}.
Proof Westart bynoting that swEndP3 = {(123123

)
,
(123
321

)
,
(123
121

)
,
(123
212

)
,
(123
232

)
,
(123
323

)
,
(123
111

)
,

(123
222

)
,
(123
333

)}.
It is a routinematter to show that swEndP3 is generated by

{(123
321

)
,
(123
212

)
,
(123
111

)}
, and

swEndPn is generated by
{(1···n

n···1
)
,
(1···n
1···1

)
, . . . ,

( 1 ··· n
� n
2 �···� n

2 �
)}
, for n �= 3. Furthermore, it

is easy to deduce that these sets of generators have minimal cardinality. �

2.1 Regularity

Recall that an element s of a semigroup S is called regular if there exists x ∈ S such
that s = sxs. A semigroup is said to be regular if all its elements are regular.

Since AutG is a group, for any graph G, then it is, trivially, a regular monoid. By
the above properties and observations, it is clear that sEndPn and swEndPn are also
regular monoids. Regarding EndPn and wEndPn , we have:

Proposition 2.9 Let α ∈ wEndPn [respectively, α ∈ EndPn]. Then α is regular in
wEndPn [respectively, in EndPn] if and only if there exists a subinterval I of [1, n]
such that Iα = Im(α) and |I | = | Im(α)|.
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Proof First, we suppose that α is regular in wEndPn [respectively, in EndPn]. Then,
there exists β ∈ wEndPn [respectively, β ∈ EndPn] such that α = αβα. Let
I = Im(αβ). Then, by Proposition 2.2, I is a subinterval of [1, n]. Moreover,
Iα = (Im(αβ))α = Im(αβα) = Im(α). On the other hand, since α and αβ

are R-related, then α and αβ are J -related, whence | Im(α)| = | Im(αβ)| and so
|I | = | Im(α)|.

Conversely, admit that there exists a subinterval I of [1, n] such that Iα = Im(α)

and |I | = | Im(α)|. If |I | = 1 then α is a constant transformation (this case does not
occur if α ∈ EndPn), whence α is an idempotent and so α is a regular element (of
wEndPn). Thus, suppose that |I | ≥ 2. Then I = [i, j], for some 1 ≤ i < j ≤ n, and
the restriction of the transformation α to I is injective. Hence, we have iα < · · · < jα
or iα > · · · > jα (by a reasoning similar to the proof of Theorem 2.3). Let β be the
transformation of [1, n] defined as follows:

1. The restriction ofβ to Im(α) is the inverse of the restriction ofα to I , i.e.,β|Im(α) =(
iα · · · jα
i · · · j

)

.

2. Suppose iα < · · · < jα and let Im(α)− = [1, iα −1] and Im(α)+ = [ jα +1, n].

(a) If iα is odd (and iα ≥ 3) then β|Im(α)− =
(
1 2 · · · iα − 2 iα − 1
i i + 1 · · · i i + 1

)

.

(b) If iα is even then β|Im(α)− =
(

1 2 · · · iα − 2 iα − 1
i + 1 i · · · i i + 1

)

.

(c) If n − jα is odd then β|Im(α)+ =
(
jα + 1 jα + 2 · · · n − 1 n
j − 1 j · · · j j − 1

)

.

(d) Ifn− jα is even (andn− jα ≥ 2) thenβ|Im(α)+=
(
jα+1 jα+2 · · · n−1 n
j−1 j · · · j−1 j

)

.

3. Suppose iα > · · · > jα and let Im(α)− = [1, jα −1] and Im(α)+ = [iα +1, n].

(a) If jα is odd (and jα ≥ 3) then β|Im(α)− =
(
1 2 · · · jα − 2 jα − 1
j j − 1 · · · j j − 1

)

.

(b) If jα is even then β|Im(α)− =
(

1 2 · · · jα − 2 jα − 1
j − 1 j · · · j j − 1

)

.

(c) If n − iα is odd then β|Im(α)+ =
(
iα + 1 iα + 2 · · · n − 1 n
i + 1 i · · · i i + 1

)

.

(d) Ifn−iα is even (andn−iα≥2) thenβ|Im(α)+=
(
iα + 1 iα + 2 · · · n − 1 n
i + 1 i · · · i + 1 i

)

.

It is clear that β ∈ EndPn (and so β ∈ wEndPn) and α = αβα. Hence, α is regular,
as required. �

It is a routine matter to check that EndPn is regular for n ≤ 5, and that wEndPn is
regular for n ≤ 3. On the other hand, by Proposition 2.9, it is clear that

(
1 2 3 4 5 6 · · · n
1 2 3 2 3 4 · · · n − 2

)
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is not a regular element of EndPn for n ≥ 6, and

(
1 2 3 4 · · · n
1 2 2 3 · · · n − 1

)

is not a regular element of wEndPn for n ≥ 4. Thus, we have:

Corollary 2.10 The monoid wEndPn [respectively, EndPn] is regular if and only if
n ≤ 3 [respectively, n ≤ 5].

2.2 Cardinality

It is clear that |AutP1| = |sEndP1| = |swEndP1| = |EndP1| = |wEndP1| = 1;
|AutPn| = |sEndPn| = 2, for n = 2 and n ≥ 4; |swEndPn| = n + 2, for n = 2 and
n ≥ 4; |AutP3| = 2, |sEndP3| = 6 and |swEndP3| = 9.

A formula for |EndPn| was given by Arworn [4] in 2009. Regarding |wEndPn|, we
give a formula below.

First, we recursively define a family a(r , i), with 1 ≤ r ≤ n−2 and 1 ≤ i ≤ n−1,
of integers:

• a(1, 1) = a(1, 2) = 1;
• a(1, p) = 0, for 3 ≤ p ≤ n − 1;
• For 2 ≤ k ≤ n − 2,

a(k, 1) = a(k − 1, 1) + a(k − 1, 2), and
a(k, p) = a(k−1, p−1)+a(k−1, p)+a(k−1, p+1), for 2 ≤ p ≤ n−2;

• a(k, n − 1) = 0, for 2 ≤ k ≤ n − 3;
• a(n − 2, n − 1) = 1.

Next, let b(r) = 2
∑n−1

i=1 a(r , i), for 1 ≤ r ≤ n − 2.
Then, we have:

Theorem 2.11 |wEndPn| = 3n−2(3n − 2) −
n−2∑

r=1

3n−r−2b(r) for each n ∈ N \ {1},
|wEndP1| = 1.

Proof Let α ∈ wEndPn . We will mainly use the fact that (i + 1)α ∈ {iα, iα + 1} if
iα = 1, (i +1)α ∈ {iα −1, iα, iα +1} if iα ∈ [2, n−1], and (i +1)α ∈ {iα, iα −1}
if iα = n, for i ∈ [1, n − 1]. For i ∈ [1, n − 1], let c(i) be the number of possibilities
for α|[1,i+1]. Observe that c(n − 1) = |wEndPn|.

First, we calculate c(1). If 1α ∈ [2, n − 1] then we have three possibilities for
2α. On the other hand, if 1α ∈ {1, n} then we only have two possibilities for 2α.
This shows that c(1) = 3(n − 2) + 2 · 2 = 3n − 2. Now, let i ∈ [1, n − 2] and
suppose that c(i) is known. We will show that c(i + 1) = 3c(i) − b(i), where b(i)
denotes the number of possibilities for (i + 1)α ∈ {1, n}. In fact, if (i + 1)α ∈
[2, n − 1] then we have three possibilities for (i + 2)α and, on the other hand, if
(i + 1)α ∈ {1, n} then we have only two possibilities for (i + 2)α. This shows that
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c(i + 1) = 3(c(i) − b(i)) + 2b(i) = 3c(i) − b(i). In this setting, we deduce that
c(n−1) = 3n−2(3n−2)−∑n−2

r=1 3
n−r−2b(r), by performing successive replacements.

It remains to calculate b(r), for r ∈ [1, n − 2].
For k, p ∈ [1, n−1], let a(k, p) denote the number of possibilities for (k+1)α = 1

and 1α = p. We will prove that a(k, p) can be defined as above. Clearly, a(1, 1) =
a(1, 2) = 1 and a(1, p) = 0, for p ∈ [3, n − 1]. Now, let k ∈ [2, n − 2] and suppose
that a(k − 1, p) is known, for p ∈ [2, n − 2]. If 1α = 1 then 2α ∈ {1, 2} and a(k, 1)
is the number of all possibilities for kα = 1, whenever 1α = 1 or 1α = 2, i.e.,
a(k, 1) = a(k−1, 1)+a(k−1, 2). If 1α ∈ [2, n−2] then 2α ∈ {1α −1, 1α, 1α +1}
and a(k, p) is the number of possibilities that kα = 1, whenever 1α = p−1 or 1α = p
or 1α = p+1, i.e., a(k, p) = a(k−1, p−1)+a(k−1, p)+a(k−1, p+1). Clearly,
a(k, n − 1) = 0, whenever k < n − 2. Notice that 1α = n − 1 and (n − 1)α = 1
implies rα = n − 1 − r + 1, for 1 ≤ r ≤ n − 1. Hence, there is only one possibility
for 1α = n − 1 and (n − 1)α = 1, i.e., a(n − 2, n − 1) = 1. Moreover, it is clear that
kα �= 1, whenever 1α = n and k < n.

Hence, for a(r , i) as defined above, we have that
∑n−1

i=1 a(r , i) is the number of
possibilities for (r +1)α = 1. Dually,

∑n−1
i=1 a(r , i) is also the number of possibilities

for (r + 1)α = n. Therefore, b(r) = 2
∑n−1

i=1 a(r , i), as required. �

The table below gives us an idea of the size of wEndPn .

n |wEndPn |
1 1
2 4
3 17
4 68
5 259
6 950
7 3387
8 11814
9 40503
10 136946
11 457795
12 1515926
13 4979777
14 16246924
15 52694573
16 170028792

The formula given by Theorem 2.11 allows us to calculate the cardinal of wEndPn ,
even for larger n. For instance,we have |wEndP100| = 1511688983575150470936107
7940682197429012095346416.
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3 The Ranks of EndPn and wEndPn

Let

τ =
(
1 2 · · · n − 1 n
n n − 1 · · · 2 1

)

,

αi =
(

1 2 · · · i − 1 i i + 1 i + 2 · · · n − 1 n
i + 1 i · · · 3 2 1 2 · · · n − i − 1 n − i

)

,

for i = 1, . . . , n − 2, and

β j,i=
(
1 2 · · · i i + 1 · · · i + j i + j + 1 i + j + 2 · · · i + 2 j i + 2 j + 1 i + 2 j + 2 · · · n

1 2 · · · i i + 1 · · · i + j i + j + 1 i + j · · · i + 2 i + 1 i + 2 · · · n − 2 j

)

,

for j = 1, . . . , � n−3
3 � and i = 1, . . . , n − 3 j − 2. Let

A′ = {τ } ∪ {αi | i = 1, . . . , n − 2}
∪

{

β j,i | j = 1, . . . ,

⌊
n − 3

3

⌋

, i = 1, . . . , n − 3 j − 2

}

.

Also, let

A′′ = {τ } ∪ {αi | i = 1, . . . , n − 2} .

Lemma 3.1 Let α ∈ EndPn. Then, {α′ ∈ EndPn | Ker(α′) = Ker(α)} ⊆ 〈A′′, α〉.

Proof Let us suppose that

α =
(
X1 X2 · · · Xk

i1 i2 · · · ik

)

,

with Im(α) = {i1 < i2 < · · · < ik} and Xt = itα−1, for t = 1, . . . , k, for some
1 < k ≤ n. Since Im(α) is a subinterval of [1, n], by Proposition 2.2, then we have
it = i1 + t − 1, for t = 2, . . . , k.

Since xαi = x − i , for all x ∈ [i + 1, n], we obtain

ααi =
(

X1 X2 · · · Xk

i1 − i i2 − i · · · ik − i

)

∈ 〈A′′, α〉,

with Im(ααi ) = {i1 − i < i2 − i < · · · < ik − i}, for i = 1, 2, . . . , i1 − 1. Next,
consider the transformation

ταiτ =
(

1 2 · · · n − i − 1 n − i n − i + 1 · · · n
1 + i 2 + i · · · n − 1 n n − 1 · · · n − i

)

∈ 〈A′′〉,
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1632 I. Dimitrova et al.

for i = 1, 2, . . . , n − 2. As x(ταiτ) = x + i , for all x ∈ [1, n − i], we also get

αταiτ =
(

X1 X2 · · · Xk

i1 + i i2 + i · · · ik + i

)

∈ 〈A′′, α〉,

with Im(αταiτ) = {i1 + i < i2 + i < · · · < ik + i}, for i = 1, 2, . . . , n − ik .
Thus, so far we proved that α′ ∈ 〈A′′, α〉, for all

α′ =
(
X1 X2 · · · Xk

j1 j2 · · · jk

)

∈ EndPn

such that Im(α) = { j1 < j2 < · · · < jk} (and Xt = jtα−1, for t = 1, . . . , k).
Now, take

α′ =
(
X1 X2 · · · Xk

j1 j2 · · · jk

)

∈ EndPn

such that Ker(α′) = Ker(α) (with Xt = jtα−1, for t = 1, . . . , k).
Suppose there exists p ∈ [1, k − 1] such that | jp − jp+1| > 1. Let X− =⋃ {
X j | j ≤ p

}
. Then, as p < k, we have X−

� [1, n] and so there exists x ∈ X−
such that x + 1 ∈ [1, n] \ X− or x − 1 ∈ [1, n] \ X−. Let us admit, without loss
of generality, that x + 1 ∈ [1, n] \ X−. Let j ∈ [1, p] be such that x ∈ X j . Since
α ∈ EndPn is such that Xt = itα−1 and it = i1 + t − 1, for t = 1, . . . , k, we can
conclude that x + 1 ∈ X j−1 ∪ X j+1 (with X j−1 = ∅, if j = 1). As x + 1 /∈ X−, it
follows that x+1 ∈ X j+1 and j+1 > p. Therefore j = p and so, by Proposition 2.1,
we have 1 < | jp − jp+1| = |xα′ − (x + 1)α′| = 1, which is a contradiction.

Thus, | jt − jt+1| = 1, for all t ∈ [1, k − 1]. This provides j1 < j2 < · · · < jk
or jk < jk−1 < · · · < j1. If j1 < j2 < · · · < jk then, as proved above, we have
α′ ∈ 〈

A′′, α
〉
. On the other hand, suppose that jk < jk−1 < · · · < j1 and consider

α′τ =
(

X1 X2 · · · Xk

j1τ j2τ · · · jkτ

)

∈ EndPn .

Then, as τ is a permutation of [1, n], we obtain Ker(α′τ) = Ker(α′) = Ker(α).
Furthermore, we also have Im(α′τ) = { j1τ < j2τ < · · · < jkτ }. Hence, again as
proved above, we have α′τ ∈ 〈A′′, α〉. Since α′ = (α′τ)τ , it follows that α′ ∈ 〈A′′, α〉.

Thus, we proved that {α′ ∈ EndPn | Ker(α′) = Ker(α)} ⊆ 〈A′′, α〉, as required. �
Let α ∈ wEndPn . We say that i ∈ [2, n − 1] is an inversion of α if (i − 1)α =

(i + 1)α �= iα. Denote by Inv(α) the set of all inversions of α and by inv(α) the
number of elements of Inv(α). Notice that, if α ∈ EndPn then i ∈ [2, n − 1] is an
inversion of α if and only if (i − 1)α = (i + 1)α.

For elements of EndPn , we have:

Lemma 3.2 Let α, β ∈ EndPn. ThenKer(α) = Ker(β) if and only if Inv(α) = Inv(β).
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Proof Clearly, Ker(α) = Ker(β) implies Inv(α) = Inv(β). Conversely, admit that
Inv(α) = Inv(β). If Inv(α) = Inv(β) = ∅ thenα, β ∈ {1, τ } and soKer(α) = Ker(β).
Otherwise, let Inv(α) = {i1 < · · · < ik}, for some k ∈ [1, n − 2], and define i0 = 1
and ik+1 = n. For any x ∈ [1, n], let p(x) ∈ [0, k] and r(x) ∈ [0, i p(x)+1 − i p(x) − 1]
be such that x = i p(x) + r(x). Since |xα − (x + 1)α| = |xβ − (x + 1)β| = 1, for all
x ∈ [1, n − 1], and Inv(α) = Inv(β), there exist aα, aβ ∈ {1, 2} such that

xα = 1α +
p(x)−1∑

j=0

(−1) j+aα (i j+1 − i j ) + (−1)p(x)+aαr(x)

and

xβ = 1β +
p(x)−1∑

j=0

(−1) j+aβ (i j+1 − i j ) + (−1)p(x)+aβ r(x).

Therefore, (x, y) ∈ Ker(α) if and only if xα = yα if and only if

1α +
p(x)−1∑

j=0

(−1) j+aα (i j+1 − i j ) + (−1)p(x)+aαr(x)

= 1α +
p(y)−1∑

j=0

(−1) j+aα (i j+1 − i j ) + (−1)p(y)+aαr(y)

if andonly if (bymultiplicationwith (−1)|aα−aβ | and additionof 1β−(1α)(−1)|aα−aβ |)

1β +
p(x)−1∑

j=0

(−1) j+aβ (i j+1 − i j ) + (−1)p(x)+aβ r(x)

= 1β +
p(y)−1∑

j=0

(−1) j+aβ (i j+1 − i j ) + (−1)p(y)+aβ r(y)

if and only if xβ = yβ if and only if (x, y) ∈ Ker(β). Thus, Ker(α) = Ker(β), as
required. �
Lemma 3.3 Let α, β ∈ EndPn be such that Inv(α) = Inv(β). Then α ∈ 〈A′′〉 if and
only if β ∈ 〈A′′〉. Moreover, α ∈ 〈A′〉 if and only if β ∈ 〈A′〉.
Proof Let α, β ∈ EndPn be such that Inv(α) = Inv(β). By Lemma 3.2, we have
Ker(α) = Ker(β). Using Lemma 3.1, we deduce β ∈ 〈A′′, α〉 and α ∈ 〈A′′, β〉.
Therefore, α ∈ 〈A′′〉 if and only if β ∈ 〈A′′〉. Moreover, if β ∈ 〈A′〉 then α ∈
〈A′′, β〉 ⊆ 〈A′〉 and so α ∈ 〈A′〉. The same reasoning can be applied if α ∈ 〈A′〉. �
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Now, we can prove:

Lemma 3.4 EndPn = 〈A′〉.
Proof Let α ∈ EndPn . We will proceed by induction on inv(α).

If inv(α) = 0 then α = τ ∈ A′ or α = 1 = τ 2 ∈ 〈A′〉.
If inv(α) = 1 then Inv(α) = Inv(αi ), for some i ∈ [1, n − 2], and so α ∈ 〈

A′〉, by
Lemma 3.3.

Now, let r ≥ 1 and suppose, by induction hypothesis, that α ∈ 〈A′〉, for all α ∈
EndPn with inv(α) ≤ r .

Let α ∈ EndPn be such that inv(α) = r + 1. By (the proof of) Lemma 3.1, we can
assume, without loss of generality, that 1 ∈ Im(α). Let Inv(α) = {i1 < i2 < · · · <

ir+1} and define i0 = 1 and ir+2 = n. Let b = max Im(α). Notice that b ≥ 2 and,
as Im(α) = [1, b] (by Proposition 2.2) and inv(α) = r + 1 ≥ 2, we get b ≤ n − 2.
Clearly, we have 1α−1, bα−1 ⊆ {i� | � ∈ [0, r + 2]}.

We will consider three cases: (1) there exists k ∈ [1, r + 1] such that ikα = 1; (2)
there exists k ∈ [1, r + 1] such that ikα = b; (3) 1α = 1 and nα = b (or 1α = b and
nα = 1) and xα /∈ {1, b}, for all x ∈ [2, n − 1].
Case 1 Suppose that there exists k ∈ [1, r + 1] such that ikα = 1. Let a = max{xα |
ik ≤ x ≤ n} and define a transformation β of [1, n] by

xβ =
{
xα + a − 1, x < ik
a + 1 − xα, x ≥ ik .

Then β ∈ EndPn . In fact, since α ∈ EndPn , we have |xβ − (x + 1)β| = 1, for
all x ∈ [1, n − 1] \ {ik − 1}. Moreover, from (ik − 1)β = (ik − 1)α + a − 1 =
ikα ± 1 + a − 1 = 1 ± 1 + a − 1 = a ± 1 and ikβ = a + 1 − ikα = a + 1 − 1 = a
(since ikα = 1), it follows that |(ik − 1)β − ikβ| = 1.

Next, we show that Inv(β) = Inv(α) \ {ik}. Clearly, if x ∈ [1, ik − 2] ∪ [ik + 1, n]
then x ∈ Inv(β) if and only if x ∈ Inv(α). Also

ik − 1 ∈ Inv(β) ⇔ (ik − 2)β = (ik)β
⇔ (ik − 2)α + a − 1 = a + 1 − ikα
⇔ (ik − 2)α = 1 = ikα
⇔ ik − 1 ∈ Inv(α).

On the other hand, since ikα = 1, we have (ik − 1)α = (ik + 1)α = 2. Then

(ik − 1)β = (ik − 1)α + a − 1 = 2 + a − 1 = a + 1,

ikβ = a + 1 − ikα = a + 1 − 1 = a

and

(ik + 1)β = a + 1 − (ik + 1)α = a + 1 − 2 = a − 1,

whence ik /∈ Inv(β). Therefore, inv(β) = r and so, by induction, we have β ∈ 〈A′〉.
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Finally, within this case, we prove that Inv(α) = Inv(βαa−1). Let i ∈ Inv(α) ∩
[1, ik − 2]. Then

(i − 1)βαa−1 = (i + 1)βαa−1 ⇔ ((i − 1)α + a−1)αa−1=((i + 1)α + a − 1)αa−1
⇔ (i − 1)α = (i + 1)α

(by the definition of αa−1 restricted to [a, n]). Let i ∈ Inv(α) ∩ [ik + 1, n]. Then

(i − 1)βαa−1=(i + 1)βαa−1 ⇔ (a + 1 − (i − 1)α)αa−1=(a + 1 − (i + 1)α)αa−1
⇔ (i − 1)α=(i + 1)α

(by the definition of αa−1 restricted to [1, a]). Moreover, we have

(ik − 2)βαa−1 = (ik)βαa−1 ⇔ ((ik − 2)α + a − 1)αa−1 = (a + 1 − (ik)α)αa−1.

Thereby, if ik − 1 ∈ Inv(α) then (ik − 2)α = ikα = 1, whence (ik − 2)α + a − 1 =
a = a + 1 − ikα and so (ik − 2)βαa−1 = ikβαa−1, i.e., ik − 1 ∈ Inv(βαa−1).
Conversely, if ik − 1 /∈ Inv(α) then (ik − 2)α �= ikα and, as (ik − 1)α = 2, we have
(ik −2)α = 3, fromwhich follows (ik −2)βαa−1 = (a+2)αa−1 = 3 �= 1 = ikβαa−1
and so ik − 1 /∈ Inv(βαa−1). It remains to show that ik ∈ Inv(βαa−1). In fact, since
a ∈ Inv(αa−1) and (ik − 1)α = 2 = (ik + 1)α, we obtain

(ik − 1)βαa−1 = ((ik − 1)α + a − 1)αa−1 = (a + 1)αa−1 = (a − 1)αa−1

= (a + 1 − (ik + 1)α)αa−1 = (ik + 1)βαa−1.

Thus, we have Inv(α) = Inv(βαa−1). Since β ∈ 〈A′〉, then βαa−1 ∈ 〈A′〉 and so, by
Lemma 3.3, we have α ∈ 〈A′〉.
Case 2 Suppose now that there exists k ∈ [1, r + 1] such that ikα = b. Recall
that Im(α) = [1, b]. Consider the transformation αταn−b ∈ EndPn . Since τ is a
permutation of [1, n] and αn−b is injective in [n − b + 1, n] = Im(α)τ = Im(ατ),
then Ker(αταn−b) = Ker(α), i.e., Inv(αταn−b) = Inv(α), by Lemma 3.2. Hence,
α ∈ 〈A′〉 if and only if αταn−b ∈ 〈A′〉, by Lemma 3.3. Observe also that ik ∈ bα−1 =
1(αταn−b)

−1 and so, in particular, we also have ik(αταn−b) = 1, i.e.,αταn−b satisfies
the condition of case 1. Therefore, αταn−b ∈ 〈A′〉 and so we have α ∈ 〈A′〉.
Case 3 Next, we suppose that {1, b}α−1 = {1, n}. Without loss of generality, let
1α = 1 and nα = b (if 1α = b and nα = 1 then 1τα = 1, nτα = b and, by
Lemma 3.3, α ∈ 〈A′〉 if and only if τα ∈ 〈A′〉).

First, let us admit that r = 1, i.e., Inv(α) = {i1, i2}. Let j = i2 − i1 and i = 2i1 −
i2−1.As 1α = 1 and nα = b, then i1α = i1 and i2α = i1−(i2−i1) = 2i1−i2 = i+1.
In addition, from b − i2α = n − i2, we obtain

b = n + i2α − i2 = n + (2i1 − i2) − i2 = n + 2i1 − 2i2 = n − 2 j .
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As 2 ≤ i2α < i1α ≤ b − 1, we have b = n − 2 j ≥ i1α + 1 = i1 + 1, whence
i1 ≤ n − 2 j − 1, and i1α − i2α ≤ b − 3. Thus,

i = 2i1 − i2 − 1 ≤ n − 2 j − 1 + (i1 − i2) − 1 = n − 3 j − 2

and

j=i2−i1=i1α−i2α ≤ b − 3 = n − 2 j − 3 ⇒ 3 j ≤ n − 3 ⇒ j ≤
⌊
n − 3

3

⌋

.

Therefore, wemay consider β j,i ∈ A′ and, clearly, we have α = β j,i . Hence α ∈ 〈A′〉.
Now, suppose that r > 1. Define c = max{i1α, . . . , irα} and let k ∈ [1, r ] be

such that ikα = c. Since ir+1α < b = nα, we have ir+1α < irα ≤ c. Also,
define d = min{ik+1α, . . . , ir+1α} and let � ∈ [k + 1, r + 1] be such that i�α = d.
Furthermore, we define a transformation γ of [1, n] by

xγ =
⎧
⎨

⎩

xα, x < ik
2c − xα, ik ≤ x ≤ i�
xα + 2c − 2d, x > i�.

Then γ ∈ EndPn . In fact, since α ∈ EndPn , we have |xγ − (x + 1)γ | = 1, for all
x ∈ [1, n − 1] \ {ik − 1, i�}. Moreover, from (ik − 1)γ = (ik − 1)α = ikα − 1 =
c − 1 (notice that, if (ik − 1)α = ikα + 1 = (ik + 1)α then, as 1α = 1, it would
exist t ∈ [1, k − 1] such that itα > c, which contradicts the definition of ik) and
ikγ = 2c − ikα = c, it follows that |(ik − 1)γ − ikγ | = 1. On the other hand,
since we must have (i� + 1)α = i�α + 1, from i�γ = 2c − i�α = 2c − d and
(i� + 1)γ = (i� + 1)α + 2c − 2d = i�α + 1+ 2c − 2d = 2c − d + 1, it follows that
|i�γ − (i� + 1)γ | = 1.

Next, we show that Inv(γ ) = Inv(α) \ {ik, i�}.
Clearly, if x ∈ [1, ik − 2] ∪ [ik + 1, i� − 1] ∪ [i� + 2, n] then x ∈ Inv(γ ) if and

only if x ∈ Inv(α). Also

ik − 1 ∈ Inv(γ ) ⇔ (ik − 2)γ = ikγ
⇔ (ik − 2)α = 2c − ikα
⇔ (ik − 2)α = c = ikα
⇔ ik − 1 ∈ Inv(α).

On the other hand, since ikα = c and (ik − 1)α = (ik + 1)α = c − 1, we have

(ik − 1)γ = (ik − 1)α = c − 1, ikγ = 2c − ikα = c

and

(ik + 1)γ = 2c − (ik + 1)α = 2c − (c − 1) = c + 1,
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whence ik /∈ Inv(γ ). Moreover,

i� + 1 ∈ Inv(γ ) ⇔ i�γ = (i� + 2)γ
⇔ 2c − i�α = (i� + 2)α + 2c − 2d
⇔ 2c − d = (i� + 2)α + 2c − 2d
⇔ (i� + 2)α = d = i�α
⇔ i� + 1 ∈ Inv(α).

On the other hand, since i�α = d and (i� − 1)α = (i� + 1)α = d + 1, we have

(i� − 1)γ=2c − (i� − 1)α=2c − (d + 1) = 2c − d − 1, i�γ = 2c − i�α = 2c − d

and

(i� + 1)γ = (i� + 1)α + 2c − 2d = d + 1 + 2c − 2d = 2c − d + 1,

whence i� /∈ Inv(γ ).
Therefore, inv(γ ) = r − 1 and so, by induction, we have γ ∈ 〈A′〉.
Finally, we prove that Inv(α) = Inv(γβc−d,d−1).
Let i ∈ Inv(α) ∩ [1, ik − 2]. Then

(i − 1)γβc−d,d−1 = (i + 1)γβc−d,d−1 ⇔ (i − 1)αβc−d,d−1 = (i + 1)αβc−d,d−1
⇔ (i − 1)α = (i + 1)α

(by the definition of βc−d,d−1 restricted to [1, c]).
Let i ∈ Inv(α) ∩ [ik + 1, i� − 1]. Then

(i − 1)γβc−d,d−1 = (i + 1)γβc−d,d−1

⇔ (2c − (i − 1)α)βc−d,d−1 = (2c − (i + 1)α)βc−d,d−1

⇔ (c + (c − (i − 1)α))βc−d,d−1 = (c + (c − (i + 1)α))βc−d,d−1

⇔ (i − 1)α = (i + 1)α

(by the definition of βc−d,d−1 restricted to [c, 2c − d]).
Let i ∈ Inv(α) ∩ [i� + 2, n]. Then

(i − 1)γβc−d,d−1 = (i + 1)γβc−d,d−1
⇔ ((i − 1)α + 2c − 2d)βc−d,d−1 = ((i + 1)α + 2c − 2d)βc−d,d−1
⇔ (2c − d + ((i − 1)α − d))βc−d,d−1 = (2c − d + ((i + 1)α − d))βc−d,d−1
⇔ (i − 1)α = (i + 1)α

(by the definition of βc−d,d−1 restricted to [2c − d, n]).
Moreover, if ik −1 ∈ Inv(α) then (ik −2)α = ikα = c. Thus, (ik −2)γβc−d,d−1 =

(ik−2)αβc−d,d−1 = cβc−d,d−1 = (2c−ikα)βc−d,d−1 = ikγβc−d,d−1 and so ik−1 ∈
Inv(γβc−d,d−1). Conversely, if ik − 1 /∈ Inv(α) then (ik − 2)α �= ikα = c and, as
(ik −1)α = ikα −1 = c−1, we have (ik −2)α = c−2. Hence (ik −2)γβc−d,d−1 =
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(ik−2)αβc−d,d−1 = (c−2)βc−d,d−1 = c−2 �= c = cβc−d,d−1 = (2c−c)βc−d,d−1 =
(2c − ikα)βc−d,d−1 = ikγβc−d,d−1 and so ik − 1 /∈ Inv(γβc−d,d−1).

Analogously, if i� + 1 ∈ Inv(α) then i�α = (i� + 2)α = d, whence i�γβc−d,d−1 =
(2c − i�α)βc−d,d−1 = (2c − d)βc−d,d−1 = d = ((i� + 2)α + 2c − 2d)βc−d,d−1 =
(i� +2)γβc−d,d−1 and so i� +1 ∈ Inv(γβc−d,d−1). Conversely, if i� +1 /∈ Inv(α) then
d = i�α �= (i� +2)α. As (i� +1)α = i�α+1 = d+1, then (i� +2)α = d+2, whence
i�γβc−d,d−1 = d �= d+2 = (2c−d+2)βc−d,d−1 = ((i�+2)α+2c−2d)βc−d,d−1 =
(i� + 2)γβc−d,d−1 and so i� + 1 /∈ Inv(γβc−d,d−1).

It remains to show that ik, i� ∈ Inv(γβc−d,d−1). As c, 2c − d ∈ Inv(βc−d,d−1),
(ik − 1)α = c − 1 = (ik + 1)α and (i� − 1)α = d + 1 = (i� + 1)α, we have
(ik − 1)γβc−d,d−1 = (ik − 1)αβc−d,d−1 = (c − 1)βc−d,d−1 = c − 1 = (c +
1)βc−d,d−1 = (2c − (ik + 1)α)βc−d,d−1 = (ik + 1)γβc−d,d−1, as well as (i� −
1)γβc−d,d−1 = (2c − (i� − 1)α)βc−d,d−1 = (2c − d − 1)βc−d,d−1 = d + 1 =
(2c − d + 1)βc−d,d−1 = ((i� + 1)α + 2c − 2d)βc−d,d−1 = (i� + 1)γβc−d,d−1.

Thus, we showed that Inv(α) = Inv(γβc−d,d−1). Since γ ∈ 〈A′〉, then γβc−d,d−1 ∈
〈A′〉 and so, by Lemma 3.3, we have α ∈ 〈A′〉, as required. �

Now, let us consider

A = {τ } ∪
{

αi | i = 1, . . . ,

⌊
n − 1

2

⌋}

∪
{

β j,i | j = 1, . . . ,

⌊
n − 3

3

⌋

, i = 1, . . . ,

⌊
n − 3 j − 1

2

⌋}

.

The next two lemmas together with the previous one show that A is a generating
set of EndPn .

Lemma 3.5 {αi | i = 1, 2, . . . , n − 2} ⊆ 〈A〉.
Proof If i = 1, . . . , � n−1

2 � then αi ∈ A and so αi ∈ 〈A〉. On the other hand, we have

α⌊
n−1
2

⌋
+1

= τα⌊
n−1
2

⌋
−1

, . . . , αn−3 = τα2, αn−2 = τα1,

if n is odd, and

α⌊
n−1
2

⌋
+1

= τα⌊
n−1
2

⌋, . . . , αn−3 = τα2, αn−2 = τα1,

if n is even. Hence, we also have αi ∈ 〈A〉, for i = � n−1
2 �+ 1, . . . , n− 2, as required.

�
Lemma 3.6

{
β j,i | j = 1, . . . , � n−3

3 �, i = 1, . . . , n − 3 j − 2
} ⊆ 〈A〉.

Proof Let j = 1, . . . , � n−3
3 �. If i = 1, . . . , � n−3 j−1

2 � then β j,i ∈ A and so β j,i ∈ 〈A〉.
On the other hand, it is a routine matter to verify that
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Ker

(

β
j,

⌊
n−3 j−1

2

⌋
+1

)

= Ker

(

τβ
j,

⌊
n−3 j−1

2

⌋

)

,

Ker

(

β
j,

⌊
n−3 j−1

2

⌋
+2

)

= Ker

(

τβ
j,

⌊
n−3 j−1

2

⌋
−1

)

, . . . ,

Ker
(
β j,n−3 j−3

) = Ker
(
τβ j,2

)
, Ker

(
β j,n−3 j−2

) = Ker
(
τβ j,1

)
,

if n − 3 j − 2 is even, and

Ker

(

β
j,

⌊
n−3 j−1

2

⌋
+1

)

= Ker

(

τβ
j,

⌊
n−3 j−1

2

⌋
−1

)

,

Ker

(

β
j,

⌊
n−3 j−1

2

⌋
+2

)

= Ker

(

τβ
j,

⌊
n−3 j−1

2

⌋
−2

)

, . . . ,

Ker(β j,n−3 j−3) = Ker(τβ j,2), Ker(β j,n−3 j−2) = Ker(τβ j,1),

if n − 3 j − 2 is odd. Thus, in view of Lemmas 3.1 and 3.5, for i =
⌊
n−3 j−1

2

⌋
+

1, . . . , n − 3 j − 2, we conclude that also β j,i ∈ 〈A〉, as required. �

Proposition 3.7 The set A generates EndPn. Moreover, |A| = 1 + ⌊ n−1
2

⌋ +
∑

⌊
n−3
3

⌋

j=1

⌊
n−3 j−1

2

⌋
.

Proof The assertion is an immediate consequence of Lemmas 3.4, 3.5 and 3.6. �
Let

γi =
(
1 · · · i i + 1 i + 2 · · · n
1 · · · i i i + 1 · · · n − 1

)

,

for i = 1, . . . , � n
2 �. Let

B = A ∪
{
γi | i = 1, . . . ,

⌊n

2

⌋}
.

Let α ∈ wEndPn . We say that i ∈ [1, n − 1] is a repetition of α if (i)α = (i + 1)α.
Denote by rep(α) the number of repetitions of α. This notion will be used in our next
result. Observe that, clearly, α ∈ EndPn if and only if rep(α) = 0.

Proposition 3.8 The set B generates wEndPn.

Proof First, for i=� n
2 �+1, . . . , n−1, consider alsoγi=

(
1 · · · i i+1 i+2 · · · n
1 · · · i i i+1 · · · n−1

)

.

Then, it is easy to check that γn−i = τγiτγ1, for all i = 1, . . . , � n
2 �. Hence

γ1, . . . , γn−1 belong to the monoid generated by B.
Now, in order to show that any α ∈ wEndPn belongs to the monoid generated by

B, we proceed by induction on rep(α).
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Let α ∈ wEndPn be such that rep(α) = 0. Then, as observed above, α ∈ EndPn
and so, by Proposition 3.7, we may conclude that α belongs to the monoid generated
by B.

Let k ≥ 0 and, by induction hypothesis, admit that α belongs to the monoid gener-
ated by B, for all α ∈ wEndPn such that rep(α) = k (notice that, for such α to exist,
we must have k ≤ n − 1).

Let α ∈ wEndPn be such that rep(α) = k + 1 (by supposing that k ≤ n − 2). Let

i ∈ [1, n − 1] be a repetition of α and take β =
(

1 · · · i i + 1 · · · n − 1 n
1α · · · iα (i + 2)α · · · nα b

)

,

where b = nα − 1, if nα ≥ 2, or b = nα + 1, otherwise. It is clear that β ∈ wEndPn
and rep(β) = rep(α) − 1 = k, whence β belongs to the monoid generated by B, by
induction hypothesis. On the other hand, it is a routine matter to check that α = γiβ

and so we may conclude that α belongs to the monoid generated by B, as required. �
Observe that |B| = n + ∑� n−3

3 �
j=1 � n−3 j−1

2 �.
In order to compute the ranks of EndPn and wEndPn , we start by proving a series

of lemmas involving the notion of inversion.

Lemma 3.9 Let α, β ∈ wEndPn be such that αβ ∈ EndPn. Then, we have:

1. α ∈ EndPn;
2. Inv(α) ⊆ Inv(αβ);
3. {i ∈ [2, n − 1] | iα ∈ Inv(β)} ⊆ Inv(αβ).

Proof 1. If α ∈ wEndPn \ EndPn then iα = (i + 1)α, for some i ∈ [1, n − 1], and so
iαβ = (i + 1)αβ, whence αβ /∈ EndPn , which is a contradiction. Thus, α ∈ EndPn .

2. Let i ∈ Inv(α). Then i ∈ [2, n−1] and (i −1)α = (i +1)α. Hence (i −1)αβ =
(i + 1)αβ and so i ∈ Inv(αβ).

3. Let i ∈ [2, n − 1] be such that iα ∈ Inv(β). Then, 2 ≤ iα ≤ n − 1 and
(iα − 1)β = (iα + 1)β.

If (i − 1)α = (i + 1)α then (i − 1)αβ = (i + 1)αβ and so i ∈ Inv(αβ).
Let us suppose that (i − 1)α �= (i + 1)α. Then, either (i − 1)α = iα − 1 and

(i + 1)α = iα + 1 or (i − 1)α = iα + 1 and (i + 1)α = iα − 1, from which follows
that (i − 1)αβ = (iα ∓ 1)β = (iα ± 1)β = (i + 1)αβ and so i ∈ Inv(αβ), as
required. �
Lemma 3.10 Let α, β ∈ wEndPn. Let i ∈ Inv(αβ) be such that i /∈ Inv(α). Then
iα ∈ Inv(β).

Proof As i ∈ Inv(αβ), we have 2 ≤ i ≤ n − 1 and (i − 1)αβ = (i + 1)αβ �= iαβ. In
addition, as 2 ≤ i ≤ n−1 and i /∈ Inv(α), we have (i −1)α �= (i +1)α or (i −1)α =
(i + 1)α = iα. If (i − 1)α = (i + 1)α = iα then (i − 1)αβ = (i + 1)αβ = iαβ,
which is a contradiction. Hence (i − 1)α �= (i + 1)α. Moreover, if (i − 1)α = iα or
(i+1)α = iα then (i−1)αβ = iαβ or (i+1)αβ = iαβ, which also is a contradiction.
Thus, either (i − 1)α = iα − 1 and (i + 1)α = iα + 1 or (i − 1)α = iα + 1 and
(i + 1)α = iα − 1 (and, in both cases, we must have 2 ≤ iα ≤ n − 1), whence
(iα ∓ 1)β = (i − 1)αβ = (i + 1)αβ = (iα ± 1)β and so (iα − 1)β = (iα + 1)β.
Since (i + 1)αβ �= iαβ, we have (iα − 1)β = (iα + 1)β �= iαβ, i.e., iα ∈ Inv(β), as
required. �
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Lemma 3.11 Let α ∈ wEndPn and i ∈ [2, n − 1]. Then i ∈ Inv(α) if and only if
n − i + 1 ∈ Inv(τα).

Proof First, notice that 2 ≤ i ≤ n − 1 if and only if 2 ≤ n − i + 1 ≤ n − 1. Then

i ∈ Inv(α) ⇔ (i − 1)α = (i + 1)α �= iα
⇔ (n − i + 2)τα = (n − i)τα �= (n − i + 1)τα

⇔ ((n − i + 1) + 1)τα = ((n − i + 1) − 1)τα �= (n − i + 1)τα

⇔ n − i + 1 ∈ Inv(τα),

as required. �
The next lemma is clear.

Lemma 3.12 Let C be a generating set of EndPn or of wEndPn. Then τ ∈ C.

Recall that Inv(τ ) = ∅. Moreover, for α ∈ EndPn , we have Inv(α) = ∅ if and only
if α = 1 or α = τ .

Lemma 3.13 For each n ∈ N \ {1}, there holds the statement: If C is a generating set
of EndPn or of wEndPn then � n−1

2 � ≤ |{α ∈ C | inv(α) = 1}|.
Proof If n = 2 then |{α ∈ C | inv(α) = 1}| = 0 and so 0 = � 2−1

2 � ≤ |{α ∈ C |
inv(α) = 1}|. Thereof, let n ≥ 3. In order to obtain a contradiction, let us assume that
|{α ∈ C | inv(α) = 1}| < � n−1

2 � for ann ∈ N. As n ≥ 3,we have that
[
2, � n+1

2 �] �= ∅.
Then, there exists i ∈ [

2, � n+1
2 �] such that {i, n − i + 1} ∩ Inv(α) = ∅, for all α ∈ C .

As 1 ≤ i − 1 ≤ � n−1
2 �, we may consider the transformation αi−1 ∈ A.

Let ξ1, . . . , ξk ∈ C \ {1} be such that αi−1 = ξ1 · · · ξk and {ξ j , ξ j+1} �= {τ }, for
j = 1, . . . , k − 1. Notice that Inv(αi−1) = {i}, whence αi−1 /∈ C and so k ≥ 2.
Moreover, as αi−1 ∈ EndPn , by Lemma 3.9, we have ξ1 ∈ EndPn and Inv(ξ1) ⊆
Inv(ξ1 · · · ξk) = Inv(αi−1) = {i}. Then Inv(ξ1) = ∅, since ξ1 ∈ C , and so ξ1 = τ

(since ξ1 ∈ EndPn and ξ1 �= 1).
Applying Lemma 3.9 again, we obtain Inv(τξ2) = Inv(ξ1ξ2) ⊆ Inv(ξ1 · · · ξk) =

Inv(αi−1) = {i} and τξ2 ∈ EndPn . Hence, Inv(τξ2) = ∅ or Inv(τξ2) = {i}.
Suppose that Inv(τξ2) = ∅. Then τξ2 = 1 or τξ2 = τ , and so ξ2 = τ or

ξ2 = 1, which is not possible since {ξ1, ξ2} �= {τ } and ξ2 �= 1. Thus, we must
have Inv(τξ2) = {i} and so, by Lemma 3.11, it follows that Inv(ξ2) = {n − i + 1},
which is a contradiction, since ξ2 ∈ C .

Therefore, C must contain at least � n−1
2 � distinct transformations α with inv(α) =

1, as required. �

Lemma 3.14 Let n ∈ N, n ≥ 6, j ∈ [
1, � n−3

3 �] and i ∈
[
1, � n−3 j−1

2 �
]
. Then

2 ≤ i + 1 ≤ n − 2, 4 ≤ i + 2 j + 1 ≤ n − 2 and 5 ≤ i + 3 j + 1 ≤ n − 1.

Proof We have 2 ≤ i + 1 ≤ n−3 j−1
2 + 1 ≤ n−3−1

2 + 1 = n
2 − 1 < n− 1. On the other

hand, 4 ≤ i + 2 j + 1 ≤ i + j + j + 1 ≤ n−3 j−1
2 + n−3

3 + j + 1 = 5n−3 j−9
6 + 1 ≤

123



1642 I. Dimitrova et al.

5n−3−9
6 + 1 = 5n

6 − 1 < n − 1. Finally, 5 ≤ i + 3 j + 1 ≤ n−3 j−1
2 + 3 j + 1 =

n+3 j+1
2 ≤ n+3· n−3

3 +1
2 = n − 1, as required. �

Lemma 3.15 For each n ∈ N \ {1}, there holds the statement: If C is a generating set

of EndPn or of wEndPn then
∑� n−3

3 �
j=1 � n−3 j−1

2 � ≤ |{α ∈ C | inv(α) = 2}|.
Proof If n ∈ [2, 5] then 0 = |{α ∈ C | inv(α) = 2}|. Consider then n ≥ 6. Let

j ∈ [
1, � n−3

3 �] and i ∈
[
1, � n−3 j−1

2 �
]
. In order to obtain a contradiction, let us assume

that Inv(α) �= {i+ j+1, i+2 j+1} and Inv(α) �= {n−(i+ j+1)+1, n−(i+2 j+1)+1},
for all α ∈ C .

Let us consider the transformation β j,i ∈ EndPn . Observe that Inv(β j,i ) = {i+ j+
1, i +2 j +1}, whence β j,i /∈ C . Let ξ1, . . . , ξk ∈ C \ {1} be such that β j,i = ξ1 · · · ξk
and {ξ�, ξ�+1} �= {τ }, for � = 1, . . . , k − 1. Notice that k ≥ 2, since β j,i /∈ C . As
β j,i ∈ EndPn , by Lemma 3.9, we have ξ1 ∈ EndPn and Inv(ξ1) ⊆ Inv(ξ1 · · · ξk) =
Inv(β j,i ) = {i + j + 1, i + 2 j + 1}. Since ξ1 ∈ C , then inv(ξ1) = 0 or inv(ξ1) = 1.

If inv(ξ1) = 1 then Inv(ξ1) ∈ {{i + j + 1}, {i + 2 j + 1}}.
On the other hand, suppose that inv(ξ1) = 0. As ξ1 ∈ EndPn (and ξ1 �= 1), then we

must have ξ1 = τ . By Lemma 3.9, we get Inv(τξ2) = Inv(ξ1ξ2) ⊆ Inv(ξ1 · · · ξk) =
Inv(β j,i ) = {i + j + 1, i + 2 j + 1} and τξ2 ∈ EndPn . It follows that ξ2 ∈ EndPn
and, by Lemma 3.11, that Inv(ξ2) ⊆ {n − (i + j + 1) + 1, n − (i + 2 j + 1) + 1}.
As ξ2 ∈ C , we obtain inv(ξ2) = 0 or inv(ξ2) = 1. If inv(ξ2) = 0 then ξ2 = τ

(since ξ2 �= 1 and ξ2 ∈ EndPn) and so {ξ1, ξ2} = {τ }, which is a contradiction. Thus
Inv(ξ2) ∈ {{n − (i + j + 1) + 1}, {n − (i + 2 j + 1) + 1}}. Also, notice that, in this
case, k ≥ 3 (since k = 2 would imply ξ2 = τβ j,i and so inv(ξ2) = 2, which is a
contradiction).

Therefore, we have four cases to consider.
Case 1 Inv(ξ1) = {i + j + 1}. Then, as ξ1 ∈ EndPn , we must have (i + 2 j + 1)ξ1 =
(i + 1)ξ1. On the other hand, since i + 2 j + 1 ∈ Inv(β j,i ) = Inv(ξ1(ξ2 · · · ξk)) and
i +2 j +1 /∈ Inv(ξ1), by Lemma 3.10, we obtain (i +2 j +1)ξ1 ∈ Inv(ξ2 · · · ξk). Thus
(i + 1)ξ1 ∈ Inv(ξ2 · · · ξk). Now, as 2 ≤ i + 1 ≤ n − 2 (by Lemma 3.14), it follows by
Lemma 3.9 that i + 1 ∈ Inv(ξ1(ξ2 · · · ξk)) = Inv(β j,i ), which is a contradiction.
Case 2 Inv(ξ1) = {i + 2 j + 1}. Notice that 5 ≤ i + 3 j + 1 ≤ n − 1, by Lemma 3.14.
As ξ1 ∈ EndPn , in this case, we have (i +3 j +1)ξ1 = (i + j +1)ξ1. Since i + j +1 ∈
Inv(β j,i ) = Inv(ξ1(ξ2 · · · ξk)) and i + j + 1 /∈ Inv(ξ1), by Lemma 3.10, we obtain
(i+ j+1)ξ1 ∈ Inv(ξ2 · · · ξk), i.e., (i+3 j+1)ξ1 ∈ Inv(ξ2 · · · ξk). Hence, byLemma3.9,
we get i + 3 j + 1 ∈ Inv(ξ1(ξ2 · · · ξk)) = Inv(β j,i ), which is a contradiction.

Before considering the next case, we observe that Inv(τβ j,i ) = {n − (i + j + 1) +
1, n − (i + 2 j + 1) + 1}, by Lemma 3.11.
Case 3 ξ1 = τ and Inv(ξ2) = {n− (i + j +1)+1}. Since ξ2 ∈ EndPn , we deduce that
(n − (i + 1) + 1)ξ2 = (n − (i + 2 j + 1) + 1)ξ2. Moreover, as n − (i + 2 j + 1) + 1 ∈
Inv(τβ j,i ), n − (i + 2 j + 1) + 1 /∈ Inv(ξ2) and τβ j,i = ξ2ξ3 · · · ξk (notice that, in
this case, k ≥ 3), by Lemma 3.10, we have (n − (i + 2 j + 1) + 1)ξ2 ∈ Inv(ξ3 · · · ξk).
Thus, (n− (i + 1)+ 1)ξ2 ∈ Inv(ξ3 · · · ξk). From 2 ≤ i + 1 ≤ n− 2 (by Lemma 3.14),
we obtain 3 ≤ n − (i + 1) + 1 ≤ n − 1 and so, by Lemma 3.9, it follows that
n − (i + 1) + 1 ∈ Inv(ξ2(ξ3 · · · ξk)) = Inv(τβ j,i ), which is a contradiction.
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Case 4 ξ1 = τ and Inv(ξ2) = {n−(i+2 j+1)+1}. Once again since ξ2 ∈ EndPn , we
conclude that (n− (i + j +1)+1)ξ2 = (n− (i +3 j +1)+1)ξ2. On the other hand, as
n− (i + j +1)+1 ∈ Inv(τβ j,i ), n− (i + j +1)+1 /∈ Inv(ξ2) and τβ j,i = ξ2ξ3 · · · ξk
(k ≥ 3, also in this case), by Lemma 3.10, we have (n − (i + j + 1) + 1)ξ2 ∈
Inv(ξ3 · · · ξk) and so (n − (i + 3 j + 1) + 1)ξ2 ∈ Inv(ξ3 · · · ξk). By Lemma 3.14, we
have 5 ≤ i + 3 j + 1 ≤ n − 1, whence 2 ≤ n − (i + 3 j + 1) + 1 ≤ n − 4. Hence, by
Lemma 3.9, we obtain n − (i + 3 j + 1) + 1 ∈ Inv(ξ2(ξ3 · · · ξk)) = Inv(τβ j,i ), which
is a contradiction.

Since we obtained a contradiction in all possible cases, it follows that Inv(α) =
{i + j + 1, i + 2 j + 1} or Inv(α) = {n − (i + j + 1) + 1, n − (i + 2 j + 1) + 1},
for some α ∈ C . Therefore C has at least

∑� n−3
3 �

j=1 � n−3 j−1
2 � distinct transformations

α with inv(α) = 2, as required. �

Theorem 3.16 rank(EndPn) = 1 + � n−1
2 � + ∑� n−3

3 �
j=1 � n−3 j−1

2 � for each n ∈ N \ {1}.
Proof The assertion is an immediate consequence of Proposition 3.7 and Lem-
mas 3.12, 3.13 and 3.15. �

To calculate the rank of wEndPn , we still need the following lemma.

Lemma 3.17 For each n ∈ N \ {1}, there holds the statement: If C is a generating set
of wEndPn then � n

2 � ≤ |{α ∈ C ∩ (wEndPn \ EndPn) | inv(α) = 0}|.
Proof Let i ∈ [

1, � n
2 �] (as n �= 1 we have

[
1, � n

2 �] �= ∅). Let ξ1, . . . , ξk ∈ C \ {1} be
such that γi = ξ1 · · · ξk and {ξ j , ξ j+1} �= {τ }, for j = 1, . . . , k − 1. Then

Ker(ξ1) ⊆ Ker(γi ) = idn ∪ {(i, i + 1), (i + 1, i)},

whence ξ1 is a permutation of [1, n] or Ker(ξ1) = Ker(γi ) and so, as ξ1 �= 1, ξ1 = τ

or Ker(ξ1) = Ker(γi ).
Suppose that ξ1 = τ . Then k ≥ 2 and τγi = ξ2 · · · ξk . Hence

Ker(ξ2) ⊆ Ker(τγi ) = idn ∪ {(n − i, n − i + 1), (n − i + 1, n − i)}.

Since {ξ1, ξ2} �= {τ }, then ξ2 �= τ and so

Ker(ξ2) = Ker(τγi ) = idn ∪ {(n − i, n − i + 1), (n − i + 1, n − i)}.

Therefore, C possesses at least � n
2 � (distinct) transformations α such that

Ker(α) = idn ∪ {(i, i + 1), (i + 1, i)},

for some i ∈ [1, n − 1]. Clearly, α ∈ wEndPn \ EndPn and inv(α) = 0, for all
transformations α with this type of kernel. This completes the proof of the lemma. �

Recall that, for a semigroup (or a monoid) S and a set X ⊆ S, the relative rank of
S modulo X , denoted by rank(S : X), is the minimum cardinality of a set Y ⊆ S such
that S is generated by X ∪ Y .
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Theorem 3.18 For each n ∈ N \ {1}, rank(wEndPn) = n + ∑� n−3
3 �

j=1 � n−3 j−1
2 � and

rank(wEndPn : EndPn) = � n
2 �.

Proof The statement is the result of Proposition 3.8 together with Lemmas 3.12, 3.13,
3.15 and 3.17. �
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