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Abstract
A fence is a particular partial order on a (finite) set, close to the linear order. In this 
paper, we calculate the rank of the semigroup FI

n
 of all order-preserving partial 

injections on an n-element fence. In particular, we provide a minimal generating set 
for FI

n
 . In the present paper, n is odd since this problem for even n was already 

solved by I. Dimitrova and J. Koppitz.

Keywords  Partial injections · Finite transformation semigroup · Fence · Rank · 
Generators

1  Introduction

Let n ∈ ℕ and denote by PTn the semigroup (under composition) of all partial 
transformations on the set n ∶= {1,… , n} of the first n natural numbers. The set 
In of all partial injections on n forms an inverse subsemigroup of PTn . For more 
information about the symmetric inverse semigroup In , we refer the reader to O. 
Ganyushkin and V. Mazorchuk’s book [8].

Let ⪯ be any partial order on n . Let � ∈ PTn . Then � is called order-preserv-
ing on n with respect to ⪯ if a ⪯ b ⇒ a� ⪯ b� , for all a, b ∈ dom � . If � ∈ In is 
order-preserving then it is a partial injective endomorphism on the digraph (n,⪯) . 
Clearly, the set IEnd(n,⪯) of all partial injective endomorphisms on (n,⪯) forms 
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a submonoid of In , which, in general, need not be inverse. A regular element � in 
IEnd(n,⪯) is characterized by the following property:

Such regular elements in IEnd(n,⪯) are called partial automorphisms on (n,⪯) . 
The set PAut(n,⪯) of all partial automorphisms on (n,⪯) forms an inverse subsemi-
group of IEnd(n,⪯).

A very important particular and natural case occurs when the considered lin-
ear order is induced by the usual order ≤ on the natural numbers. The monoid 
PIOn of all partial order-preserving injections on (n,≤) has been extensively 
studied. Basic information about the monoid PIOn can be found in [6]. In [14], 
the author considers generating sets of the semigroup of all partial injective 
decreasing maps of (n,≤) , a submonoid of PIOn . The maximal subsemigroups 
of the ideals of some semigroups of partial injections on (n,≤) were determined 
by I. Dimitrova and J. Koppitz [3]. In [1], F. Al-Kharousi et al. consider distance-
preserving injections on (n,≤) . They study the algebraic structure of such semi-
groups, in particular, Green’s relations.

A non-linear order, close to a linear order in some sense, is the so-called zig-
zag order. The pair (n,⪯) is called a zig-zag poset or fence if

The definition of the partial order ⪯ is self-explanatory. Observe that every element 
in a fence is either minimal or maximal.

If the domain of an � ∈ PTn is n , i.e. dom � = n , then � is called a (full) trans-
formation on n . The set Tn of all full transformations on n forms a submonoid of 
PTn . The monoid TFn of all order-preserving transformations within Tn (with 
respect to ⪯ ), i.e. of all endomorphisms on (n,⪯) , was first investigated by J.D. 
Currie and T.I. Visentin in [2] and by A. Rutkowski [12]. In [2], by using gen-
erating functions, J.D. Currie and T.I. Visentin calculate the cardinality of TFn 
for the case that n is even. On the other hand, an exact formula for the number of 
endomorphisms on (n,⪯) for even as well as odd n was given in [12]. Recently, 
in [7], V.H. Fernandes and the present authors determine the rank of TFn . Recall 
that the rank of a semigroup S, denoted by rank S , is the minimal size of a gener-
ating set of S,

In particular, a concrete generating set of TFn of minimal size is given in [7]. 
Moreover, V.H. Fernandes et  al. characterize the transformations on n preserving 
the fence. It is worth mentioning that several other properties of monoids of order-
preserving transformations of a fence were also studied. In [11, 13], R. Srithus et al. 
discussed the regular elements of these monoids. Coregular elements (i.e. elements 
� with the property � = �3 ) of these monoids were determined in [10]. Some rela-
tive ranks of the monoid of all partial transformations preserving an infinite zig-zag 
order were determined in [5].

a ⪯ b ⇔ a� ⪯ b�, for all a, b ∈ dom �.

1 ≺2 ≻ ⋯ ≺ n − 1 ≻ n or 1 ≻ 2 ≺ ⋯ ≻ n − 1 ≺ n if n is odd

and 1 ≺2 ≻ ⋯ ≻ n − 1 ≺ n or 1 ≻ 2 ≺ ⋯ ≺ n − 1 ≻ n if n is even.

rank S ∶= min{|A| ∶ A ⊆ S, A generates S}.
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In this paper, we will denote the semigroup of all partial automorphisms on (n,⪯) 
by FIn , i.e. PAut(n,⪯) = FIn . This inverse semigroup was first studied by I. Dim-
itrova and J. Koppitz in [4]. They described Green’s relations on FIn . In fact, they 
described only the J-relation since the smaller Green’s relations are clear because we 
have an inverse subsemigroup of In . Moreover, I. Dimitrova and J. Koppitz show that 
FIn is generated by the set

Recall that the rank of a (partial) transformation � (in symbols: rank � ) is the size 
of the range of � (in symbols: im � ), i.e. rank � = | im �| . For the case that n is even, 
it is proved that rankFIn = n + 1 and a concrete generating set of FIn with n + 1 
elements is given in [4]. We will summarize the results of [4] in the next section. On 
the other hand, the rank of FIn is still an open problem, whenever n is odd. We will 
solve it in the present paper. We will determine the rank of FIn and give a concrete 
generating set of FIn with minimal size in the case that n is odd.

Without loss of generality, let 1 ≺ 2 ≻ 3 ≺ ⋯ ≻ n . Such fences are also called up-
fences. The fence 1 ≻ 2 ≺ 3 ≻ ⋯ ≺ n would be called down-fence. We avoid both nota-
tions up-fence and down-fence. In fact, in order to check a fence is an up-fence or down-
fence, we need that 1 and 2 are comparable with respect to ⪯ . Recall that x, y ∈ n are 
comparable with respect to ⪯ if x ≺ y or x = y or x ≻ y . Otherwise, x and y are called 
incomparable. But the restriction that 1 and 2 belong to the fence and are comparable 
is an unnecessary restriction for the concept fence since instead of n one could choose 
another n-element set or one could define ⪯ on n such that 1 and 2 are incomparable.

But if the fence (n,⪯) is defined as above (which is the most natural way) then we 
observe that any x, y ∈ n are comparable if and only if x ∈ {y − 1, y, y + 1} . For gen-
eral background on Semigroup Theory and standard notation, we refer the reader to 
Howie’s book [9].

2 � The even case

In [4, Theorem 3.15], the authors state that FIn = ⟨Jn⟩ . In particular, to verify it, the 
authors show that two series of partial transformations can be generated by Jn . In [4, 
Corollary 3.4], the authors prove that

for all m, p, k ∈ ℕ with m + p + 2k ≤ n . The second series can be obtained by join-
ing Corollary 3.6 and Lemma 3.7 (in [4]). For this let

for any p ∈ ℕ . Then

Jn ∶= {� ∈ FIn ∶ rank � ≥ n − 2}.

�
1 ⋯ m − 2 m ⋯ m + p m + p + 2k + 2 ⋯ n

1 ⋯ m − 2 m + 2k ⋯ m + p + 2k m + p + 2k + 2 ⋯ n

�
∈ ⟨Jn⟩

�p ∶=

{
0 if p is even

1 otherwise,
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for m, p, k ∈ ℕ with m + p + 2k − �p ≤ n . Clearly, for all U ⊆ n , the partial identity 
mapping id U ∶= id n|U , i.e. the identity mapping id n on n restricted to U, is a par-
tial automorphism on (n,⪯) . It is easy to verify that id U ∈ ⟨Jn⟩.

For any partial transformation � of the both previous series, x and x� have 
the same parity, for all x in the domain of � . Let � ∈ FIn be such that there is at 
least one x ∈ dom � such that x and x� have different parity. Then there are 
�1,… , �k, �k+1,… , �l ∈ Jn (for some k, l ∈ ℕ ) such that �−1

1
,… , �−1

k
, �−1

k+1
,… , �−1

l
 

∈ Jn , where x and x(�1 … �k��k+1 … �l) have the same parity for all x ∈ dom (�1 … 
�k��k+1 … �l) and rank � = rank (�1 … �k� �k+1 … �l) [4, Proposition 3.9].

Using the previous facts, I. Dimitrova and J. Koppitz verify that for all � ∈ FIn , 
there are �1,�2 ∈ ⟨Jn⟩ such that �−1

1
,�−1

2
∈ ⟨Jn⟩ , dom 𝛼 ⊆ im𝜔1 , im 𝛼 ⊆ dom𝜔2 , 

and x(�1��2) = x for all x ∈ dom (�1��2) [4, Corollary 3.14]. This shows that 
�1��2 = id dom (�1��2)

∈ ⟨Jn⟩ . Consequently, FIn = ⟨Jn⟩.
If n is odd then using the GAP software, one can observe that FIn is not gener-

ated by the set {� ∈ FIn ∶ rank � ≥ n − 1} . If n is even then id n is the only auto-
morphism on (n,⪯) . This fact simplifies the situation and one can show that FIn is 
generated by partial transformations with rank ≥ n − 1 . It is easy to see that the only 
partial transformation in FIn with rank > n − 1 is the automorphism id n̄ . Let

In [4, Theorem 4.2], the authors show that Gn = { id n, �1, �2} ∪ {�i ∶ i ∈ {4,… , n} 
is even} ∪ {�i ∶ i ∈ {1,… , n − 3} is odd} generates Jn . Thus, FIn = ⟨Gn⟩ . On the 
other hand, also using GAP software, one can observe that FIn has no (set theoreti-
cal) least generating set, whenever n is odd. Since if n is even, there is a generating 
set of FIn consisting entirely of partial transformations with rank ≥ n − 1 ; it is not 
hard to see that there is a least generating set of FIn . In fact, in [4, Proposition 4.3], 
I. Dimitrova and J. Koppitz explain that all the members of Gn must be contained in 
any generating set of FIn . For more details about the proofs, we refer the reader to 
[4].

�
1 ⋯ m − 2 m ⋯ m + p m + p + 2k + 2 − �p ⋯ n

1 ⋯ m − 2 m + p + 2k − �p ⋯ m + 2k − �p m + p + 2k + 2 − �p ⋯ n

�
∈ ⟨Jn⟩

�1 =

(
1 2 3 ⋯ n

n 1 ⋯ n − 2

)
,

�2 =

(
1 ⋯ n − 2 n − 1 n

3 ⋯ n 1

)
,

�i =

(
1 ⋯ i − 1 i i + 1 ⋯ n

i − 1 ⋯ 1 i + 1 ⋯ n

)
and �2

i
for even i ∈ {4,… , n}, and

�i =

(
1 ⋯ i − 1 i i + 1 ⋯ n

1 ⋯ i − 1 n ⋯ i + 1

)
and �2

i
for odd i ∈ {1,… , n − 3}.
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3 � Main result

Let us fix now an odd natural number n. Note that FI1 consists of the identity 
mapping on {1} and the empty transformation ∅ . Since neither of these partial 
transformations generates the other, the rank of FI1 is 2. We suppose now that 
n ≥ 3 . There are exactly two automorphisms in FIn , besides id n ∈ FIn , there is 
the reflection

I. Dimitrova and J. Koppitz proved FIm = ⟨Jm⟩ for all natural numbers m, which 
comprises several pages in [4]. For the case that n is odd, one can shorten the proof. 
Therefore, and for the sake of completeness, we will give a new proof for the par-
ticular case that n is odd. For this, we define a series of partial transformations of Jn . 
Let

�i =

(
1 ⋯ i − 1 i i + 1 ⋯ n

1 ⋯ i − 1 n ⋯ i + 1

)
   for even i ∈ {2,… , n − 1},

�i = id n�{i}   for odd i ∈ n,

�odd
2

=

(
1 2 3 4 ⋯ n

2 4 ⋯ n

)
, �odd

n−1
=

(
1 2 3 ⋯ n − 1 n

n − 1 1 ⋯ n − 3

)
,

�even
2

=

(
1 2 3 4 ⋯ n

1 4 ⋯ n

)
, and �even

n−1
=

(
1 ⋯ n − 3 n − 2 n − 1 n

3 ⋯ n − 1 1

)
.

In the case n ≥ 5 , we define

�i,j =

(
1 ⋯ i − 1 i i + 1 ⋯ j − 1 j j + 1 ⋯ n

1 ⋯ i − 1 j − 1 ⋯ i + 1 j + 1 ⋯ n

)
 for 2 ≤ i < j ≤ n − 1 , where i 

and j have the same parity,

�1,j =

(
1 2 ⋯ j − 1 j j + 1 ⋯ n

j − 1 ⋯ 2 j + 1 ⋯ n

)
 and

�j,n =

(
1 ⋯ j − 1 j j + 1 ⋯ n − 1 n

1 ⋯ j − 1 n − 1 ⋯ j + 1

)
 for odd j ∈ {3,… , n − 2} , and

�1,n =

(
1 2 ⋯ n − 1 n

n − 1 ⋯ 2

)
.

In the case n ≥ 7 , we define

�odd
i

=

(
1 2 3 ⋯ i i + 1 i + 2 ⋯ n

i 1 ⋯ i − 2 i + 2 ⋯ n

)
 and

�even
i

=

(
1 ⋯ i − 2 i − 1 i i + 1 i + 2 ⋯ n

3 ⋯ i 1 i + 2 ⋯ n

)
 for even i ∈ {4,… , n − 3}.

Note that �even
i

�odd
i

= id n�{i−1,i+1} for each even i ∈ {2,… , n − 1} , �i�i = id n�{i} 
for each i ∈ n , and �i,j�i,j = id n�{i,j} for all i < j ∈ n having the same parity. Fur-
ther, let Parn be the set of all � ∈ FIn such that x and x� have different parity for 
some x ∈ dom � . First, we observe that each � ∈ Parn is generated by elements of 
FIn∖Parn and { id n} ∪ {𝛽odd

i
, 𝛽even

i
∶ i ∈ {2, 4,… , n − 1}} ⊆ Jn.

Lemma 1  Let � ∈ Parn . Then there are �̃ ∈ FIn�Parn and 
l1,… , lp, r1 … , rp ∈ { id n} ∪ {�odd

i
, �even

i
∶ i ∈ {2, 4,… , n − 1}} with 

� = l1 ⋯ lp�̃r1 ⋯ rp.

�n ∶=

(
1 2 ⋯ n − 1 n

n n − 1 ⋯ 2 1

)
.
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Proof  Let x ∈ dom � such that x and x� have different parity. If x is odd 
then x� is even,   where x� − 1, x� + 1 ∉ im � . Let � ∶= id n��

even
x�

 . Since 
by the construction of �even

x�
 , it holds x� = x��even

x�
= 1 and �even

x�
 does not 

change the parity of every y ∈ dom �even
x�

�{x�} , one gets immediately that 
|{w ∈ dom 𝛿 ∶ w and w𝛿 have different parity}| > |{w ∈ dom 𝛽 ∶ w and w𝛽 have different parity}| . 
Furthermore, ��odd

x�
= ��even

x�
�odd
x�

= � id n�{x�−1,x�+1} = � since 
im 𝛿 ⊆ n�{x𝛿 − 1, x𝛿 + 1}.

If x is even then x� is odd and x − 1, x + 1 ∉ dom � . In this case, let 
� ∶= �odd

x
� id n . Likewise, by the construction of �odd

x
 , it holds 1� = 1�odd

x
� = x� and 

�odd
x

 does not change the parity of every y ∈ dom �odd
x

�{1} , one gets immediately 
|{w ∈ dom 𝛿 ∶ w and w𝛿 have different parity}| > |{w ∈ dom 𝛽 ∶ w and w𝛽 have

different parity}| . Furthermore, �even
x

� = �even
x

�odd
x

� = id n�{x−1,x+1}� = � since 
dom 𝛿 ⊆ n�{x − 1, x + 1}.

Now, we can consider � instead of � . Since the domain of � is finite, we obtain succes-
sively after p steps l1,… , lp, r1 … , rp ∈ { id n} ∪ {�odd

i
, �even

i
∶ i ∈ {2, 4,… , n − 1}} 

and �̃ ∈ FIn�Parn such that � = l1 ⋯ lp�̃r1 ⋯ rp . 	�  ◻

The following fact will be used frequently without further reference. If U is a 
convex subset of the domain of a � ∈ FIn then U� = {x� ∶ x ∈ U} is also a con-
vex set. Next, we show that any � ∈ FIn�Jn with a convex domain can be gener-
ated by elements of Jn and a transformation � ∈ FIn with rank 𝛽 > rank 𝛿.

Lemma 2  Let � ∈ FIn�Jn . If dom � is a convex set then there are � ∈ FIn with 
rank � = rank � + 1 and � ∈ Jn such that � = ��.

Proof  Suppose that dom � is a convex set. Since both inter-
vals dom � and im � have length less than or equal n − 3 , there are 
x,w ∈ n̄ such that w − 1,w,w + 1 ∈ {0, 1,… , n, n + 1}� dom � and 
x − 1, x, x + 1 ∈ {0, 1,… , n, n + 1}� im � . We define a transformation � by

Clearly, � ∈ FIn with rank � = rank � + 1 and � = id n�{w}� . 	� ◻

Lemma 3  Suppose � ∈ FIn�Parn , and dom � is not a convex set. Then there exists 
�̂ ∈ FIn�Parn with rank � = rank �̂  , such that ⟨Jn, �̂⟩ and the following conditions 
hold:

(a)	 There exists a convex interval �I = {�z,�z + 1,… ,�x − 1} ⊂ dom �𝛿  such that 
w ∉ dom �̂  for all w < �z  , and x̂ ∉ dom �̂  . Moreover, for all a ∈ dom �̂  with 
a > �x , b ∈ Î  , it holds a�𝛿 > b�𝛿 .

(b)	 If |�I| > 2 then (�x − 2)�𝛿 < (�x − 1)�𝛿 .
(c)	 ẑ�̂ ∈ {1, 2}.

r� ∶= r� for all r ∈ dom � and w� ∶= x.
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Proof  First, we will show that for a given � ∈ FIn�Parn there exist 
� ∈ FIn�Parn with rank � = rank � , such that ⟨Jn, �̂⟩ and a convex interval 
�I = {�z,�z + 1,… ,�x − 1} ⊂ dom 𝛿 that satisfies a).

Let {r1,… , rs} be a convex subset of dom � with r1 < ⋯ < rs and 
r1 − 1, rs + 1 ∈ {0, 1,… , n + 1}� dom � such that a𝛿 > ri𝛿 for all 
a ∈ dom ��{r1,… , rs} and i ∈ {1,… , s} . If there is no w ∈ dom � with 
w < r1 then let � ∶= � . Otherwise, there exists w0 ∈ dom � with w0 < r1 . Let 
{z, z + 1,… , x − 1} ⊂ dom 𝛿 be a convex interval with z < z + 1 < ⋯ < x − 1 such 
that w ∉ dom � for all w < z , and x ∉ dom �.

–	 Let rs be odd and put �0 ∶= �n . Note that �n�n−rs�n�n�n−rs�n� = � . Denote by 
� = �n�n−rs�n� , i.e. �n�n−rs�n� = � . Observe that if rs ≠ n , we have 

whence rank � = rank � . This shows (also for rs = n ) that a𝜎 < b𝜎 for 
a ≤ rs − r1 + 1 and b ∈ dom ��{1,… , rs − r1 + 1} . We put z̃ ∶= 1 and 
x̃ ∶= rs − r1 + 2.

–	 Let r1 be odd and let rs be even. Note that �r1−1�n�n�r1−1� = � . Denote by 
� = �n�r1−1� , i.e. �r1−1�n� = � . Observe that 

whence rank � = rank � . This shows that a𝜎 < b𝜎 for a ≤ rs − r1 + 1 and 
b ∈ dom ��{1,… , rs − r1 + 1} . We put z̃ ∶= 1 and x̃ ∶= rs − r1 + 2.

–	 Let r1 and rs be even. Let p ∶= max{z�,… , (x − 1)�} be odd and recall that 
�0 ∶= �n . Note that � = ��n�n−p�n�n�n−p�n . Denote by � = ��n�n−p�n , i.e. 
� = ��n�n−p�n . Observe that if p ≠ n we have 

whence rank � = rank � . This shows (also for p = n ) that a𝜎 < b𝜎 for 
a ∈ {z,… , x − 1} and b ∈ dom ��{z,… , x − 1} , where dom � = dom � . We put 
z̃ ∶= z and x̃ ∶= x.

–	 Let r1 , rs , and p be even. Then 1 ∉ im � . Note that � = ��1,p+1�1,p+1 . Denote by 
� = ��1,p+1 , i.e. ��1,p+1 = � . Recall that 

whence rank � = rank � . This shows that a𝜎 < b𝜎 for a ∈ {z,… , x − 1} and 
b ∈ dom ��{z,… , x − 1} , where dom � = dom � . We put z̃ ∶= z and x̃ ∶= x.

Now, we will construct a transformation � ∈ FIn�Parn such that � ∈ ⟨Jn, �̂⟩ , 
rank � = rank � , and there is a convex interval �I = {�z,�z + 1,… ,�x − 1} ⊂ dom 𝜈 

� =

(
1 2 ⋯ rs rs + 1 rs + 2 ⋯ n − 1 n

rs rs − 1 ⋯ 1 rs + 2 ⋯ n − 1 n

)
�,

� =

(
1 ⋯ n − r1 + 1 n − r1 + 2 n − r1 + 3 ⋯ n

r1 ⋯ n r1 − 2 1

)
�,

� = �

(
1 ⋯ p p + 1 p + 2 ⋯ n + 1 n

p 1 p + 2 ⋯ n + 1 n

)
,

��1,p+1 = �

(
1 2 ⋯ p p + 1 p + 2 ⋯ n

p ⋯ 2 p + 2 ⋯ n

)
,
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that satisfies a) and b) additionally. If �x − 1 > �z  and (�x − 2)𝜎 < (�x − 1)𝜎 then let 
� ∶= � . Suppose that x̃ − 2 ∈ dom � with (�x − 2)𝜎 > (�x − 1)𝜎.

–	 If z̃  is odd, we define � ∶= ��n�n−z̃��n = �

(
1 … z̃� z̃� + 1 z̃� + 2 … n

z̃� … 1 z̃� + 2 … n

)
 , 

whence rank � = rank � . Moreover, since it holds � = (��n�n−z̃��n)�n�n−z̃��n , we 
get � = ��n�n−z̃��n . Further, we have (�x − 2)𝜈 < (�x − 1)𝜈 , where dom � = dom �, 
and we put ẑ ∶= z̃  and x̂ ∶= x̃.

–	 If z̃  is even and x̃ − 1 is odd, we define 

whence rank � = rank � . Moreover, since it holds 
� = �n�n−x̃+1�n(�n�n−x̃+1�n�) , we get � = �n�n−x̃+1�n� . Further, we have 
(�x − (�z + 1) − 2)𝜈 = (�x −�z − 1)𝜈 < (�x −�z)𝜈 = (�x − (�z + 1) − 1)𝜈 , where 
im � = im �, and we put ẑ ∶= 1 and x̂ ∶= x̃ − z̃ + 1.

–	 If z̃  and x̃ − 1 are even, we define 

 Recall that �z̃−1,̃x� =

(
1 ⋯ z̃ − 2 z̃ − 1 z̃ ⋯ x̃ − 1 x̃ x̃ + 1 ⋯ n

1 ⋯ z̃ − 2 x̃ − 1 ⋯ z̃ x̃ + 1 ⋯ n

)
� if 

z̃ ≥ 4 and �1,̃x� =

(
1 2 ⋯ x̃ − 1 x̃ x̃ + 1 ⋯ n

x̃ − 1 ⋯ 2 x̃ + 1 ⋯ n

)
�, whence 

rank � = rank � . This shows that (�x − 2)𝜈 < (�x − 1)𝜈 and we put ẑ ∶= z̃  and 
x̂ ∶= x̃.

If ẑ� ∈ {1, 2} then �̂ ∶= � is the required transformation. Otherwise, let

Then ẑ�̂ ∈ {1, 2} as required. 	�  ◻

We note that the empty set is convex. So, the empty transformation ∅ is a product 
of two transformations with rank ≥ 1 . Now, we can prove the following proposition, 
which is a particular case of Theorem 3.15 in [4] for n is odd.

Proposition 1  FIn is generated by Jn.

Proof  Recall that � ∈ ⟨Jn⟩ for all � ∈ FIn with rank 𝛽 > n − 3 . By induction, we 
assume that � ∈ ⟨Jn⟩ for all � ∈ FIn with rank 𝛽 > n − r for some r ∈ {3,… , n} 
and we will show that � ∈ ⟨Jn⟩ for all � ∈ FIn with rank � = n − r . Let now 
� ∈ FIn with rank � = n − r . By Lemma 3.1, we can restrict ourselves to the case 
� ∈ FIn�Parn . Let dom � be a convex set. By Lemma 3.2, there are � ∈ FIn 
with rank � = rank � + 1 and � ∈ Jn such that � = �� . Since � ∈ ⟨Jn⟩ by the induc-
tive assumption, we obtain � = �� ∈ ⟨Jn⟩ . Thus, we can assume further dom � is 
not a convex set. Then by Lemma 3.3, we can restrict ourselves to the case that the 

� ∶= �n�n−x̃+1�n� =

(
1 … x̃ − 1 x̃ x̃ + 1 … n

x̃ − 1 … 1 x̃ + 1 … n

)
�,

� ∶= �z̃−1,̃x�.

�̂ ∶= �

(
3 4 ⋯ n

1 2 ⋯ n − 2

)⌊
ẑ�−1

2

⌋

.
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domain of � contains the interval {z,… , x − 1} such that w ∉ dom � for all w < z , 
x ∉ dom � , and z� ∈ {1, 2} . We put now

Since x ∉ dom � and v𝛿 > (x − 1)𝛿 for all v ∈ dom ��{z,… , x − 1} , it holds that 
a + 1 ∉ im �.

Case 1: x + 1 ∈ dom �.
If (x + 1)� = a + 2 then we define a partial transformation �1 by v�1 = v� for 

v ∈ dom � and x�1 = a + 1 . Clearly, �1 ∈ FIn with rank 𝛽1 > n − r . We have 
� = �x�x�1 ∈ ⟨Jn⟩ .                                             (∗)

Now we show that there is �∗ ∈ FIn with v�∗ = v� for v ∈ {z,… , x − 1} 
and (x + 1)�∗ = a + 2 such that � ∈ ⟨Jn, �∗⟩ . Then rank �∗ ≥ rank � = n − r . If 
rank �∗ = n − r then �∗ ∈ ⟨Jn⟩ by (∗) . Hence, � ∈ ⟨Jn, �∗⟩ = ⟨Jn⟩.

Case 1.1: Suppose that a + 2 ∈ dom � . Then there is y ∈ dom � with y� = a + 2 
since v� ≤ a for all v ∈ dom � with v < x , we conclude that y > x + 1 (the case 
y = x + 1 has been already considered in (∗) ). Note that (x − 1)� = a and y� = a + 2 
have the same parity. Hence, x and y + 1 have the same parity, a principle fact for the 
further considerations.

(1) If y + 1 ∉ dom � then we put �2 ∶= �x,y+1 , whenever y < n , and �2 ∶= �x , 
whenever y = n . Clearly, �2 ∈ Jn . Then � = �2�2� , where v�2� = v� for 
v ∈ {z,… , x − 1} and (x + 1)�2� = a + 2 . So, �∗ ∶= �2� is as required.

(2) If y + 1 ∈ dom � then (y + 1)� = a + 3 and y − 1 ∉ dom � since a + 1 ∉ im �.
(2.1) If y − 1 is even then � = �y−1�y−1� , where v�y−1� = v� for v ∈ {z,… , x − 1} 

and n�y−1� = a + 2 . By (1), there is �
�

∈ Jn with �
�

�
�

�y−1� = �y−1� and 
�∗ ∶= �

�

�y−1� is as required.
(2.2) If y − 1 is odd and there is an odd m > y + 1 with m ∉ dom � then 

we have � = �y−1,m�y−1,m� , where v�y−1,m� = v� for v ∈ {z,… , x − 1} , 
(m − 1)�y−1,m� = a + 2 , and m ∉ dom (�y−1,m�) . Then by (1), there is � �

∈ Jn with 
�

�

�
�

�y−1,m� = �y−1,m� and �∗ ∶= �
�

�y−1,m� is as required.
(2.3) If y − 1 is odd and each m ∈ n� dom � with m > y + 1 is even. Since 

x + 1 ∈ dom � , there is an even i > a + 2 with i ∉ im � and (i + 1) ∉ im � such that 
i + 2 = (x + 1)� since x + 1 is even, (x + 1)𝛿 > y𝛿 = a + 2 , and v ∈ dom � for all 
odd v > y . Hence, there is u ∈ dom � with u, u + 1 ∉ dom � , where u is even.

If u > x then we have � = �u�u� , where v�u� = v� for 
v ∈ dom � ∩ {z,… , u − 1} and (n + u − y + 1)�u� = y� = a + 2 , where 
(n + u − (y − 1) + 1)�u = y − 1 ∉ dom � , i.e. ((n + u − y + 1) + 1) ∉ dom (�u�) . By 
(1), there is � �

∈ Jn with � �

�
�

�u� = �u� and �∗ ∶= �
�

�u� is as required.
If u < x then 1, 2 ∉ dom � . We have �2�n�n�2� = � , where v�n�2� = (v + 2)� 

for v ∈ {1,… , n − 2} with v + 2 ∈ dom � . Then (y − 2)�n�2� = a + 2 , 
y − 3 ∉ dom �n�2� , and n ∉ dom (�n�2�) . As in (2.2), we can conclude that there is 
�

�

∈ Jn such that �∗ ∶= �
�

�y−1,n�n�2� is as required.
Case 1.2: Suppose that a + 2 ∉ dom �.
(1) If (x + 1)� + 1 ∉ im � then we � = ��a+1,(x+1)�+1�a+1,(x+1)�+1 , where 

���a+1,(x+1)�+1 = v� for v ∈ {z,… , x − 1} and (x + 1)��a+1,(x+1)�+1 = a + 2 . This 
shows that �∗ ∶= ��a+1,(x+1)�+1 is as required.

a ∶= (x − 1)�.
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(2) Suppose now that (x + 1)� + 1 ∈ im � , i.e. (x + 1)� − 1 ∉ im � . If (x + 1)� 
is even then a + 2 is even and we put �3 ∶= �a+2 . If (x + 1)� is odd then we put 
�3 ∶= �(x+1)�−1 . Clearly, �3 ∈ Jn , � = ��3�3 , where v��3 = v� for v ∈ {z,… , x − 1} , 
and a + 2 ∉ im ��3 . Since (x + 1)� − 1 ∉ im � , we can calculate that 
(x + 1)��3 + 1 ∉ im ��3 . By Case 1.2, (1), we have that �∗ ∶= ��3�a+1,(x+1)��3+1 is 
as required.

Case 2: x + 1 ∉ dom �.
(1) If a + 2 ∉ im � , we define a partial transformation �4 by v�4 = v� for 

v ∈ dom � and x�4 = a + 1 . It is easy to verify that �4 ∈ FIn with rank 𝛽4 > n − r . 
Then we have � = �x�x�4 ∈ ⟨Jn⟩.

(2) Suppose a + 2 ∈ im � , i.e. there is y ∈ dom � with y� = a + 2.
(2.1) If y + 1 ∉ dom � then we obtain � = �x,y+1�x,y+1� , where v�x,y+1� = v� 

for v ∈ {z,… , x − 1} , and (x + 1)�x,y+1� = a + 2 . Then by Case 1, we obtain that 
�x,y+1� ∈ ⟨Jn⟩ , i.e. � = �x,y+1�x,y+1� ∈ ⟨Jn⟩.

(2.2) If y + 1 ∈ dom � then y − 1 ∉ dom � and we take i ∈ {0, 1} such that 
x + i is even. Since x + i ∉ dom � , we have � = �x+i�x+i� , where v�x+i� = v� for 
v ∈ {z,… , x − 1} . In particular, we have (n − y + x + i + 1)�x+i� = a + 2 and 
n − y + x + i + 2 ∉ dom (�x+i�) . By Case 1 (if x + 1 ∈ dom (�x+i�) ) and by Case 2, 
(2.1) (if x + 1 ∉ dom (�x+i�) ), respectively, we can conclude that � ∈ ⟨Jn⟩ . 	�  ◻

Now, we construct a generating set of FIn of minimal size. By Proposition 1 and 
since no element in Jn can be generated by elements which do not belong to Jn , we 
have to find a generating set of Jn of minimal size. For this, we define

and

whenever n ≥ 5.

Lemma 4  Let � ∈ Jn ∩ Parn . Then there is exactly one x ∈ dom � such that x and 
x� have different parity. In particular, it holds x� ∈ {1, n} or x ∈ {1, n}.

Proof  Since � ∈ Parn , there is an x ∈ dom � such that x and x� have differ-
ent parity. Assume that x is even and x� ∉ {1, n} . Then x − 1, x + 1 ∉ dom � and 
x� − 1, x� + 1 ∉ im � . Since x� − 1, x� + 1 ∈ {2,… , n − 1} , we have n−1

2
− 2 even 

elements in im � . Hence, since rank � ≥ n − 2 , there is only one y ∈ dom � such that 
y and y� have different parity, namely x. So, we have n+1

2
− 2 odd elements and n−1

2
 

even elements in the domain of � . Since x� − 1, x� + 1 ∈ {2,… , n − 1} , we have 
n−1

2
− 2 even elements in the image. So, � maps the n−1

2
 even elements to n−1

2
− 2 even 

elements and one odd element, i.e. to n−1
2

− 1 elements, a contradiction.

G3 ∶= {�3, �1, �2, �
odd
2

, �even
2

}

Gn ∶= {𝛾n} ∪ {𝛼i ∶ i ∈ {1, 3,… ,
n+1

2
} is odd}∪

{𝛼i ∶ i ∈ {2, 4,… , n − 3} is even}∪

{𝛽odd
i

, 𝛽even
i

∶ i ∈ {2,… ,
n+1

2
} is even}∪

{𝛼i,j ∶ i, j ∈ nare odd with 4 ≤ j − i < n − 1, i ≤ n − j + 1},
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If x is odd then x� is even and by the dual argumentations we obtain that 
x ∈ {1, n} . 	�  ◻

Lemma 5  Let � ∈ Jn . Then � ∈ ⟨Gn⟩.

Proof  If rank � = n then � = �n ∈ Gn or � = id n = �n�n ∈ ⟨Gn⟩.
Let now rank � = n − 1 . Then there is i ∈ n� dom �.
Case 1: Let i be even. Then we have 8 types for �:
1 . 1 ) 

𝛿 =

�
1 ⋯ i − 1 i i + 1 ⋯ n

1 ⋯ i − 1 n ⋯ i + 1

�
=

�
𝛼i ∈ Gn if i < n − 1

𝛼n−1 = 𝛾n𝛼
2
2
𝛾n ∈ ⟨Gn⟩ if i = n − 1;

1.2) � =

�
1 ⋯ i − 1 i i + 1 ⋯ n

1 ⋯ i − 1 i + 1 ⋯ n

�
= �2

i
∈ ⟨Gn⟩;

1.3) � =

�
1 ⋯ i − 1 i i + 1 ⋯ n

i − 1 ⋯ 1 i + 1 ⋯ n

�
= �n�n−i+1�n ∈ ⟨Gn⟩;

1.4) � =

�
1 ⋯ i − 1 i i + 1 ⋯ n

i − 1 ⋯ 1 n ⋯ i + 1

�
= �i�n�n−i+1�n ∈ ⟨Gn⟩;

1.5) � =

�
1 ⋯ i − 1 i i + 1 ⋯ n

n ⋯ n − i + 2 1 ⋯ n − i

�
= �i�n ∈ ⟨Gn⟩;

1.6) � =

�
1 ⋯ i − 1 i i + 1 ⋯ n

n ⋯ n − i + 2 n − i ⋯ 1

�
= �2

i
�n ∈ ⟨Gn⟩;

1.7) � =

�
1 ⋯ i − 1 i i + 1 ⋯ n

n − i + 2 ⋯ n n − i ⋯ 1

�
= �n�n−i+1 ∈ ⟨Gn⟩;

1.8) � =

�
1 ⋯ i − 1 i i + 1 ⋯ n

n − i + 2 ⋯ n 1 ⋯ n − i

�
= (�n�n−i+1)(�n�i�n) ∈ ⟨Gn⟩ (a 

composition of cases 1.7 and 1.3).

Case 2: Let i be odd. Then �i =
(
1 … i − 1 i i + 1 … n

1 … i − 1 i + 1 … n

)
∈ Gn for i ≤ n+1

2
 . 

Let i > n+1

2
 . Then n − i + 1 = 2(

n+1

2
) − i < 2(

n+1

2
) −

n+1

2
=

n+1

2
 , i.e. �n−i+1 ∈ Gn . So, 

we have �i = �n�n−i+1�n ∈ ⟨Gn⟩ . Further, there is one more type for � ∈ Jn:

So, we have shown that � ∈ ⟨Gn⟩ , whenever rank � ≥ n − 1 . It remains to show that 
� ∈ ⟨Gn⟩ , whenever rank � = n − 2.

Let i be even. Then we have �odd
i

=

(
1 2 3 … i i + 1 i + 2 … n

i 1 … i − 2 i + 2 … n

)
∈ Gn 

and �even
i

=

(
1 … i − 2 i − 1 i i + 1 i + 2 … n

3 … i 1 i + 2 … n

)
∈ Gn for i ≤ n+1

2
 is even. Let 

i >
n+1

2
 be even. Then n − i + 1 = 2(

n+1

2
) − i < 2(

n+1

2
) −

n+1

2
=

n+1

2
 , i.e. 

�even
n−i+1

, �odd
n−i+1

∈ Gn . So, we have �odd
i

= �2�
odd
n−i+1

�n ∈ ⟨Gn⟩ and 
�even
i

= �n�
even
n−i+1

�2 ∈ ⟨Gn⟩.
Let now i, j ∈ n� dom � with i < j.
Suppose that i and j have the same parity with 4 ≤ j − i < n − 1 . Then

� =

�
1 … i − 1 i i + 1 … n

n … n − i + 2 n − i … 1

�
= �i�n ∈ ⟨Gn⟩.
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for i ≤ n − j + 1 . Let i > n − j + 1 . Then n − j + 1 < i = n − (n − i + 1) + 1 , i.e. 
�n−j+1,n−i+1 ∈ Gn , and we have �i,j = �n�n−j+1,n−i+1�n ∈ ⟨Gn⟩.

After these preliminary remarks, we discuss all possible types of �.
Case 3: Let i = 1 and j = 2 . Then we have 4 types for �:

3.1) � =

�
1 2 3 … n

3 … n

�
= �1�

2
2
∈ ⟨Gn⟩;

3.2) � =

�
1 2 3 … n

n … 3

�
= �1�2 ∈ ⟨Gn⟩;

3.3) � =

�
1 2 3 … n

1 … n − 2

�
= �1�2�n ∈ ⟨Gn⟩;

3.4) � =

�
1 2 3 … n

n − 2 … 1

�
= �1�

2
2
�n ∈ ⟨Gn⟩.

Case 4: Let i = 1 and j = n . Then we have two types for �:

� =

�
1 2 … n − 1 n

… 2 … n − 1

�
= �1�n ∈ ⟨Gn⟩ and 

� =

�
1 2 … n − 1 n

… n − 1 … 2

�
= �1�n�n ∈ ⟨Gn⟩.

Case 5: Let i = 1 and let j ≥ 4 be even. Then we have 8 types for � , which are the 
compositions of �1 and the eight types in Case 1:

5.1) � =

�
1 2 … j − 1 j j + 1 … n

n − 1 … n − j + 2 1 … n − j

�
= �1�j�n ∈ ⟨Gn⟩;

5.2) � =

�
1 2 … j − 1 j j + 1 … n

n − j + 3 … n 1 … n − j

�
= �

1
(�

n
�
n−j+1)(�n�j�n) ∈ ⟨G

n
⟩;

5.3) � =

�
1 2 … j − 1 j j + 1 … n

n − j + 3 … n n − j … 1

�
= �1�n�n−j+1 ∈ ⟨Gn⟩;

5.4) � =

�
1 2 … j − 1 j j + 1 … n

n − 1 … n − j + 2 n − j … 1

�
= �1�

2
j
�n ∈ ⟨Gn⟩;

5.5) � =

�
1 2 … j − 1 j j + 1 … n

j − 2 … 1 n … j + 1

�
= �1�n�n−j+1�n�j ∈ ⟨Gn⟩;

5.6) � =

�
1 2 … j − 1 j j + 1 … n

j − 2 … 1 j + 1 … n

�
= �1�n�n−j+1�n ∈ ⟨Gn⟩;

5.7) � =

�
1 2 … j − 1 j j + 1 … n

2 … j − 1 j + 1 … n

�
= �1�

2
j
∈ ⟨Gn⟩;

5.8) � =

�
1 2 … j − 1 j j + 1 … n

2 … j − 1 n … j + 1

�
= �1�j ∈ ⟨Gn⟩.

Case 6: Let i = 1 and j = 3 . Then we have 6 types for �:

6.1) � =

�
1 2 3 4 … n

2 4 … n

�
= �1�3 ∈ ⟨Gn⟩;

6.2) � =

�
1 2 3 4 … n

n − 1 n − 3 … 1

�
= �1�3�n ∈ ⟨Gn⟩;

6.3) � =

(
1 2 3 4 … n

1 4 … n

)
= �even

2
∈ Gn;

6.4) � =

�
1 2 3 4 … n

n n − 3 … 1

�
= �even

2
�n ∈ ⟨Gn⟩;

�i,j =

(
1 … i − 1 i i + 1 … j − 1 j j + 1 … n

1 … i − 1 j − 1 … i + 1 j + 1 … n

)
∈ Gn
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6.5) � =

�
1 2 3 4 ⋯ n

1 n − 1 ⋯ 3

�
= �even

2
�2 ∈ ⟨Gn⟩;

6.6) � =

�
1 2 3 4 ⋯ n

n 2 ⋯ n − 2

�
= �even

2
�2�n ∈ ⟨Gn⟩.

Case 7: Let i = 1 and let j > 4 be odd. Then we have 4 types for � ∶

7.1) � =

�
1 2 … j − 1 j j + 1 … n

n − 1 … n − j + 2 n − j … 1

�
= �1�j�n ∈ ⟨Gn⟩;

7.2) � =

�
1 2 … j − 1 j j + 1 … n

n − j + 2 … n − 1 n − j … 1

�
= �1,j�n ∈ ⟨Gn⟩;

7.3) � =

�
1 2 … j − 1 j j + 1 … n

2 … j − 1 j + 1 … n

�
= �1�j ∈ ⟨Gn⟩;

7.4) � =

�
1 2 … j − 1 j j + 1 … n

j − 1 … 2 j + 1 … n

�
= �1,j ∈ ⟨Gn⟩.

Case 8: Let i = n . Then we can show that � ∈ ⟨Gn⟩ dually as in the cases 3 until 7.
Case 9: Let i = 2 and j = 3 . Then we have 6 types for � ∶

9.1) � =

(
1 2 3 4 ⋯ n

2 4 ⋯ n

)
= �odd

2
∈ Gn;

9.2) � =

�
1 2 3 4 ⋯ n

n − 1 n − 3 ⋯ 1

�
= �odd

2
�n ∈ ⟨Gn⟩;

9.3) � =

�
1 2 3 4 ⋯ n

1 4 ⋯ n

�
= �2

2
�3 ∈ ⟨Gn⟩;

9.4) � =

�
1 2 3 4 ⋯ n

n n − 3 ⋯ 1

�
= �2

2
�3�n ∈ ⟨Gn⟩;

9.5) � =

�
1 2 3 4 ⋯ n

1 n − 1 ⋯ 3

�
= �2�3 ∈ ⟨Gn⟩;

9.6) � =

�
1 2 3 4 ⋯ n

n 2 ⋯ n − 2

�
= �2�3�n ∈ ⟨Gn⟩.

Case 10: Let i ≥ 4 be even and j = i + 1 , i.e.

In Case 8, we have argued that all transformations � in with rank � = n − 2 and 
n ∉ dom � are generated by Gn . So, we have

and

Case 11: Let i ≥ 3 be odd and let j = i + 1 . Then j is even and we can dually show 
that � ∈ ⟨Gn⟩ as in in the previous Case 10.

� =

(
1 ⋯ i − 1 i i + 1 i + 2 ⋯ n

1� ⋯ (i − 1)� (i + 2)� ⋯ n�

)
.

�
1 ⋯ i − 1 i i + 1 ⋯ i + 2 n

1� ⋯ (i − 1)� n� ⋯ (i + 2)�

�
∈ ⟨Gn⟩

� = �i

�
1 ⋯ i − 1 i i + 1 ⋯ i + 2 n

1� ⋯ (i − 1)� n� ⋯ (i + 2)�

�
∈ ⟨Gn⟩.
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Case 12: Let j be even and let i ≥ 2 with i + 1 < j . We observe that im � is deter-
mined by the order of the elements 1� , (i + 1)� , and n� . So, we have to consider 6 
cases and define a mapping �0 ∈ ⟨Gn⟩ as follows:

12a) If 1𝛿 < (i + 1)𝛿 < n𝛿 then let

12b) Let 1𝛿 < n𝛿 < (i + 1)𝛿 . Note that if i is odd then we have to have that j = n − 1 . 
We put

12c) If (i + 1)𝛿 < 1𝛿 < n𝛿 then let

12d) If n𝛿 < 1𝛿 < (i + 1)𝛿 then let

12e) Let (i + 1)𝛿 < n𝛿 < 1𝛿 . Note that if i is odd then we have to have that j = n − 1 . 
We put

12f) If n𝛿 < (i + 1)𝛿 < 1𝛿 then let

Now, we define transformations �1, �2 , and �3 in ⟨Gn⟩ as follows:

�1 ∶=

(
1 ⋯ i − 1 i i + 1 ⋯ n

i − 1 1 i + 1 ⋯ n

)
= �n�n−i+1�n if 

1� − (i − 1)� ≠ 1�0 − (i − 1)�0;

�2 ∶=

(
1 ⋯ i − 1 i i + 1 ⋯ j − 1 j j + 1 ⋯ n

1 i − 1 j − 1 ⋯ i + 1 j + 1 ⋯ n

)
= �i,j if 

i(i + 1)� − (j − 1)� ≠ (i + 1)�0 − (j − 1)�0;

�3 ∶=

(
1 ⋯ i − 1 i i + 1 ⋯ n

1 i − 1 n ⋯ i + 1

)
= �i if (i + 1)� − n� ≠ (i + 1)�0 − n�0 ; 

and �i ∶= id n , for i ∈ {1, 2, 3} , otherwise. Then � = �1�2�3�0 ∈ ⟨Gn⟩.

�0 ∶= �2
i
�2
j
=

(
1 ⋯ i − 1 i i + 1 ⋯ j − 1 j j + 1 ⋯ n

1 ⋯ i − 1 i + 1 ⋯ j − 1 j + 1 ⋯ n

)
;

�0 ∶=

⎧⎪⎨⎪⎩

�i�
2
j
=

�
1 ⋯ i − 1 i i + 1 ⋯ j − 1 j j + 1 ⋯ n

1 ⋯ i − 1 n ⋯ n + i − j + 2 n + i − j ⋯ i + 1

�
if i is even

�n�
odd
n−i

�n =

�
1 ⋯ i − 1 i i + 1 ⋯ n − 2 n − 1 n

1 ⋯ i − 1 i + 3 ⋯ n i + 1

�
if i is odd;

�0 ∶= �2
i
�n�n−j+1�n =

(
1 ⋯ i − 1 i i + 1 ⋯ j − 1 j j + 1 ⋯ n

j − 1 ⋯ j − i + 1 j − i − 1 ⋯ 1 j + 1 ⋯ n

)
;

�0 ∶= �2
i
�n�n−j+1 =

(
1 ⋯ i − 1 i i + 1 ⋯ j − 1 j j + 1 ⋯ n

n − j + 2 ⋯ n − j + i n − j + i + 2 ⋯ n n − j ⋯ 1

)
;

�0 ∶=

⎧⎪⎨⎪⎩

�2
j
�i�n =

�
1 ⋯ i − 1 i i + 1 ⋯ j − 1 j j + 1 ⋯ n

n ⋯ n − i + 2 1 ⋯ j − i − 1 j − i + 1 ⋯ n − i

�
if i is even

�n�
odd
n−i

=

�
1 ⋯ i − 1 i i + 1 ⋯ n − 2 n − 1 n

n ⋯ n − i + 2 j − i − 1 ⋯ 1 n − i

�
if i is odd;

�0 ∶= �2
i
�2
j
�n =

(
1 ⋯ i − 1 i i + 1 ⋯ j − 1 j j + 1 ⋯ n

n ⋯ n − i + 2 n − i ⋯ n − j + 2 n − j ⋯ 1

)
.
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Case 13: Let i be even and let j ≤ n − 1 with j − 1 > i . The we obtain dually as in 
Case 12 that � ∈ ⟨Gn⟩.

Case 14: Let i, j ∈ {3,… , n − 2} be odd. We observe that im � is determined by 
the order of the elements 1� , (i + 1)� , and n� . One observation more is that j − i = 2 , 
whenever (i + 1)� is the least or greatest element of these three elements 1� , (i + 1)� , 
and n� . Moreover, only � restricted to {i + 1,… j − 1} can be orientation-reversing, 
namely in the case j − i ≥ 4 . Thus, we have 8 types of � ∶

14.1) � =

�
1 ⋯ i − 1 i i + 1 ⋯ j − 1 j j + 1 ⋯ n

1 ⋯ i − 1 i + 1 ⋯ j − 1 j + 1 ⋯ n

�
= �2

i,j
∈ ⟨Gn⟩

14.2) � =

(
1 ⋯ i − 1 i i + 1 ⋯ j − 1 j j + 1 ⋯ n

1 ⋯ i − 1 j − 1 ⋯ i + 1 j + 1 ⋯ n

)
= �i,j ∈ Gn;

14.3) � =

�
1 ⋯ i − 1 i i + 1 ⋯ j − 1 j j + 1 ⋯ n

n ⋯ n − i + 2 n − i ⋯ n − j + 2 n − j ⋯ 1

�
= �2

i,j
�n ∈ ⟨Gn⟩:

14.4) � =

�
1 ⋯ i − 1 i i + 1 ⋯ j − 1 j j + 1 ⋯ n

n ⋯ n − i + 2 n − j + 2 ⋯ n − i n − j ⋯ 1

�
= �i,j�n ∈ ⟨Gn⟩;

14.5) � =

(
1 ⋯ i − 1 i i + 1 j j + 1 ⋯ n

3 ⋯ i + 1 1 j + 1 ⋯ n

)
= �even

i+1
∈ Gn;

14.6) � =

�
1 ⋯ i − 1 i i + 1 j j + 1 ⋯ n

n ⋯ n − i + 2 1 n − j + 2 ⋯ 3

�
= �even

i+1
�2 ∈ ⟨Gn⟩;

14.7) � =

�
1 ⋯ i − 1 i i + 1 j j + 1 ⋯ n

1 ⋯ i − 1 n i + 1 ⋯ n − 2

�
= �even

i+1
�2�n ∈ ⟨Gn⟩;

14.8) � =

�
1 ⋯ i − 1 i i + 1 j j + 1 ⋯ n

n − 2 ⋯ n − j + 2 n n − j ⋯ 1

�
= �even

i+1
�n ∈ ⟨Gn⟩.

Now we have considered all possibilities for i and j. Consequently, � ∈ ⟨Gn⟩ , 
whenever rank � = n − 2 . 	�  ◻

Lemma 5 shows ⟨Jn⟩ = ⟨Gn⟩ . Thus, Proposition 1 provides that Gn is a generating 
set for FIn.

Corollary 1  FIn = ⟨Gn⟩.

The following example gives a minimal generating set for n = 5 . It should help to 
understand the generating transformations of FIn for any n.

Example 1  {�5, �1, �2, �3, �odd2
, �even

2
} is a generating set for FI5 where 

(
1 2 3 4 5

5 4 3 2 1

)
 

= �5 , 
(
1 2 3 4 5

2 3 4 5

)
= �1 , 

(
1 2 3 4 5

1 2 4 5

)
= �3 , 

(
1 2 3 4 5

1 5 4 3

)
= �2 , (

1 2 3 4 5

2 4 5

)
= �odd

2
 , and 

(
1 2 3 4 5

1 4 5

)
= �even

2
.

It remains to show that Gn is a generating set of minimal size. It is use-
ful to classify the partial injections in FIn with rank n − 1 . For 1 ≤ i ≤

n+1

2
 , 

let Ri ∶= {� ∈ FIn ∶ dom � = n�{i} or dom � = n�{n − i + 1}} . Clearly, ⋃
{Ri ∶ 1 ≤ i ≤

n+1

2
} = {� ∈ FIn ∶ rank � = n − 1} . Moreover, any generating set 

of FIn contains elements from each Ri , 1 ≤ i ≤
n+1

2
 , as the following lemma will 

show.
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Lemma 6  Let G ⊆ FIn with FIn = ⟨G⟩ . Then G ∩ Ri ≠ � for all 
i ∈ {1, 2,… ,

n+1

2
}.

Proof  Assume there is an i ∈ {1, 2,… ,
n+1

2
} with G ∩ Ri = � . Then �i ∉ G and there 

are g1,… , gs ∈ G�{ id n̄} such that �i = g1 ⋯ gs , where gkgk+1 ≠ id n̄ for 1 ≤ k < s . 
This implies rank g1 = n , i.e. g1 = �n , or g1 ∈ Ri . The latter one is not possible. But 
g1 = �n provides rank g2 = n , i.e. g2 = �n , and thus g1g2 = id n̄ , or g2 ∈ Ri . Both are 
not possible. 	�  ◻

Now, we are able to state the minimal size of a generating set of FIn . It will 
coincide with the size of Gn , which gives us the rank of FIn.

Proposition 2  Let G be a generating set for FIn . Then |G| ≥ 5 if n = 3 and 
|G| ≥ n−5

2
+
⌊
n+6

4

⌋⌊
n+7

4

⌋
 if n ≥ 5.

Proof  Since �n and id n = �n�n are the only transformations in FIn with rank n, we 
can conclude that we have at least one transformation with rank n in G, namely �n.

Lemma 6 provides that there are at least 
⌈
n

4

⌉
 transformations in G ∩

⋃
{Ri ∶ 1 ≤ i 

≤
n+1

2
 , i is odd} , where 

⌈
n

4

⌉
 = |||{m ∈ {1,… ,

n+1

2
} ∶ m is odd}

||| . Moreover, there is at 

least one element in G ∩ R2 , by Lemma 6. If n = 3 then we have at least 
⌈
n

4

⌉
+ 1 = 2 

elements in G with rank n − 1.
Suppose that n ≥ 5 . If n+1

2
 is even then there is at least one element in G ∩ Rn+1

2

 , by 

Lemma 6, too. If n = 5 then we have at least 
⌈
n

4

⌉
+ 1 =

⌈
n

4

⌉
+

n−3

2
 elements in G 

with rank n − 1 . If n = 7 then we have at least 
⌈
n

4

⌉
+ 1 + 1 =

⌈
n

4

⌉
+

n−3

2
 elements in 

G with rank n − 1.
Let now n ≥ 9 . As already mentioned, we have ||G ∩ R2

|| ≥ 1 and |||G ∩ Rn+1

2

||| ≥ 1 , 
whenever n+1

2
 is even. Let now i ∈ {4,… ,

n−1

2
} be even. By Lemma 6, we can con-

clude that ||G ∩ Ri
|| ≥ 1 . Assume that ||G ∩ Ri

|| = 1 . Then there is � ∈ FIn with 
G ∩ Ri = {�} . Note that any transformation in Rj ( j ∈ {1,… ,

n+1

2
} ) has a domain as 

well as an image of the form n̄�{i} or n̄�{n − i + 1} . Then we conclude that if 
�1, �2 ∈ FIn with rank (�1�2) ≥ n − 1 then 𝛽1, 𝛽2, 𝛽1𝛽2 ∈ Rj ∪ { id n̄, 𝛾n} for some 
j ∈ {1,… ,

n+1

2
} . Hence, any element in Ri is generated by id n̄, 𝛾n , and � . We have 

two cases:

–	 If im � = dom � then �3 = � and rank (𝛼𝛾n𝛼) < n − 1 . Thus 

–	 If im � ≠ dom � then im ��n = dom �, im � = dom �n�, (��n)
3 = ��n , and 

(�n�)
3 = �n� . Thus 

⟨ id n̄, 𝛾n, 𝛼⟩ ∪ {𝜃 ∈ FIn� rank 𝜃 ≥ n − 1} =

{ id n̄, 𝛾n, 𝛼, 𝛼
2, 𝛾n𝛼, 𝛾n𝛼

2, 𝛼𝛾n, 𝛼
2𝛾n, 𝛾n𝛼𝛾n, 𝛾n𝛼

2𝛾n}.
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This shows that ��⟨G⟩ ∩ Ri
�� = 8 . On the other hand, the elements in Ri have pairwise 

different image or different domain, or different image of 1 or different image of n. 
This mean that Ri contains 16 elements, namely

Thus, ⟨G⟩ ∩ Ri ⫋ Ri , a contradiction. If n+1

2
 is even then 

n−7

4
= |{m ∈ {4,… ,

n−1

2
} ∶ m is even}| , i.e. we have at least 1 + 1 + 2

(
n−7

4

)
=

n−3

2
 

elements in G ∩
⋃
{Ri ∶ 1 ≤ i ≤

n+1

2
 , i is even} . If n+1

2
 is odd then 

n−5

4
=
|||{m ∈ {4,… ,

n−1

2
} ∶ m is even}

||| , i.e. we have at least 1 + 2
(

n−5

4

)
=

n−3

2
 ele-

ments in G ∩
⋃
{Ri ∶ 1 ≤ i ≤ n+1

2
 , i is even} . Altogether, we have at least 

⌈
n

4

⌉
+

n−3

2
 

elements in G with rank n − 1 , whenever n ≥ 5.
Assume that ||G ∩ Parn

|| < 2
⌊
n+1

4

⌋
 , where 

⌊
n+1

4

⌋
= |

{
m ∈ {2,… ,

n+1

2
} ∶ m is 

even }| . Note, there exists exactly one x ∈ dom � with x and x� have different parity, 
whenever � ∈ Jn ∩ Parn , by Lemma  4. This provides that there is an even 
j ∈ {2,… ,

n+1

2
} such that j�, (n − j + 1)� ∉ {1, n} for all � ∈ G or 

1�, n� ∉ {j, n − j + 1} for all � ∈ G.
Suppose that 1�, n� ∉ {j, n − j + 1} for all � ∈ G . In particular, this implies 

that �odd
j

∉ G . Hence, there are g1,… , gs ∈ G�{ id n̄} such that �odd
j

= g1 ⋯ gs . 
Since 1�odd

j
 and 1 have different parity, we conclude that there is 

k ∈ {1,… , s} such that gk ∈ Parn . Without loss of generality, we can assume 
that gr ∉ Parn for k < r ≤ s . By Lemma 4, then there is an even m ∈ n such 
that 1gk = m or ngk = m . Since 1gk, ngk ∉ {j, n − j + 1} , we conclude that 
m ∉ {j, n − j + 1} . Note that im �odd

j
= n�{j − 1, j + 1} . If k = s then 

im �odd
j

= im (g1 ⋯ gs) = im gk = n�{m − 1,m + 1} ≠ n�{j − 1, j + 1} , a contra-
diction. If k < s then we put

If g = id n then we get a contradiction by the previous arguments. If g = �n then 
im �odd

j
= im (g1 ⋯ gkg) = {n − m, n − m + 2} ≠ n�{j − 1, j + 1} since 

m ≠ n − j + 1 , a contradiction. If rank g = n − 1 then im g = n�{j − 1} or 
im g = n�{j + 1} . First, we consider the case im g = n�{j − 1} . Since j − 1 is odd, 
we can conclude that g ∈ {�j−1, �n�j−1} . Suppose that g = �j−1 . Since rank (g1 ⋯ gkg) 
= rank gk = n − 2 , we have im gk ⊆ dom g . This implies j − 1 ∈ {m − 1,m + 1} . 
Because of j ≠ m , we have j − 1 = m + 1 . This provides m − 1 = j − 3 , i.e. 
j − 3 ∉ im gk = im (g1 ⋯ gk) = im (g1 ⋯ gk�j−1) = im (g1 ⋯ gkg) , a contradiction. 
Suppose that g = �n�j−1 . Clearly, dom g = n�{n − j + 2} . Then im gk ⊆ dom g pro-
vides n − j + 2 ∈ {m − 1,m + 1} . But n − j + 1 ≠ m gives n − j + 2 = m − 1 . Hence, 

⟨ id n̄, 𝛾n, 𝛼⟩ ∪ {𝜃 ∈ FIn� rank 𝜃 ≥ n − 1} =

{ id n̄, 𝛾n, 𝛼, 𝛼𝛾n𝛼, 𝛾n𝛼, 𝛾n𝛼𝛾n𝛼, 𝛼𝛾n, 𝛼𝛾n𝛼𝛾n, 𝛾n𝛼𝛾n, 𝛾n𝛼𝛾n𝛼𝛾n}.

Ri = {�i, �i�n, �
2
i
, �2

i
�n, �n�n−i+1�n, �i�n�n−i+1�n, �i�n�n−i+1, �n−i+1,

�n−i+1�n, �
2
n−i+1

, �2
n−i+1

�n}.

g ∶= gk+1 ⋯ gs.
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m + 1 = n − j + 4 and we obtain j − 3 = (n − j + 4)�n�j−1 . Thus 
j − 3 ∉ im (g1 ⋯ gkg) , a contradiction. Dually, we can treat the case 
im g = n�{j + 1} . If rank g = n − 2 then im g = n�{j − 1, j + 1} . Since both j − 1 
and j + 1 are odd, we can conclude that dom g = n�{j − 1, j + 1} or 
dom g = n�{n − j, n − j + 2} , since g = �j−1�j+1 or g = �n�j−1�j+1 . But because of 
m ≠ n − j + 1 and m ≠ j , we have m − 1 ≠ n − j and m − 1 ≠ j − 1 , respectively. 
This implies im gk = {m − 1,m + 1} ≠ dom g , a contradiction.

Suppose that j�, (n − j + 1)� ∉ {1, n} for all � ∈ G . Then we conclude dually 
that there are 𝛿1,… , 𝛿t ∈ G�{ id n̄} such that �even

j
= �1 ⋯ �t but 

dom (�1 ⋯ �t) ≠ dom �even
j

 , i.e. we obtain a contradiction, too.
Suppose that n ≥ 5 . By straightforward combinatorial calculations, one obtains 

that there are exactly 
⌊
n

4

⌋⌊
n+2

4

⌋
− 1 pairs (i,  j) of odd numbers i, j ∈ n with 

4 ≤ j − i < n − 1 and i ≤ n − j + 1 . Assume that there are less than 
⌊
n

4

⌋⌊
n+2

4

⌋
− 1 

elements in G∖Parn with rank n − 2 . Note that for odd numbers i, j ∈ n with 
4 ≤ j − i < n − 1 and i ≤ n − j + 1 , it holds 4 ≤ (n − i + 1) − (n − j + 1) < n − 1 but 
(n − j + 1) > n − (n − i + 1) + 1 , whenever i ≠ n − j + 1 . In particular, i = n − j + 1 
implies j = n − i + 1 . This justifies the existence of a pair (i,  j) of odd numbers 
i, j ∈ n with 4 ≤ j − i < n − 1 and i ≤ n − j + 1 such that dom � ≠ n�{i, j} and 
dom � ≠ n�{n − i + 1, n − j + 1} for all � ∈ G . In particular, �i,j ∉ G and there are 
h1,… , hu ∈ G�{ id n̄} such that �i,j = h1 ⋯ hu . Note that each � ∈ FIn with 
dom � = n�{�} for some odd � ∈ n is either order-preserving or order-reversing. 
Assume that rank hq ≥ n − 1 for all q ∈ {1,… , u} . Since �i,j is neither order-preserv-
ing nor order-reversing, there is an even v ∈ n with v ∉ dom (h1 ⋯ hu) , a contradic-
tion. This implies the existence of a k ∈ {1,… , u} with rank hk = n − 2 . Without 
loss of generality, we can assume that rank hq ≥ n − 1 for 1 ≤ q < k . In particular, an 
odd number is missing in dom hq , for q ∈ {1,… , k} . Let dom hk = {s, t} . Since 
hk ∈ G , we have {s, t} ≠ {i, j} as well as {s, t} ≠ {n − i + 1, n − j + 1} , i.e. 
{n − s + 1, n − t + 1} ≠ {i, j} . Clearly, dom hq ⊆ im hq−1 for 1 < q ≤ k . Therefore 
and since hq is order-preserving or order-reversing for 1 ≤ q < k , there is 
h ∈ { id n, �n} such that h1 ⋯ hk−1hk = hhk . Hence, dom (h1 ⋯ hk) = {s, t} or 
dom (h1 ⋯ hk) = {n − s + 1, n − t + 1} . Since rank (h1 ⋯ hk) = 2 = rank (h1 ⋯ hu) , 
we can conclude that dom �i,j = dom (h1 ⋯ hu) = dom (h1 ⋯ hk) ≠ {i, j} , a 
contradiction.

Altogether, we have shown that |G| ≥ 1 + 2 + 2
⌊
3+1

4

⌋
= 5 if n = 3 and 

|G| ≥ 1 +
⌈
n

4

⌉
+

n−3

2
+ 2

⌊
n+1

4

⌋
+
⌊
n

4

⌋⌊
n+2

4

⌋
− 1 , whenever n ≥ 5 . It is easy to verify 

that 
⌈
n

4

⌉
+ 2

⌊
n+1

4

⌋
= n −

⌊
n

4

⌋
 and n −

⌊
n

4

⌋
+
⌊
n

4

⌋⌊
n+2

4

⌋
=
⌊
n+6

4

⌋⌊
n+7

4

⌋
− 1 . Hence, 

|G| ≥
⌊
n+6

4

⌋⌊
n+7

4

⌋
− 1 +

n−3

2
=

n−5

2
+
⌊
n+6

4

⌋⌊
n+7

4

⌋
 , whenever n ≥ 5 . 	�  ◻

It is easy to calculate that 
||Gn

|| = 1 +
⌈
n

4

⌉
+

n−3

2
+ 2

⌊
n+1

4

⌋
+
⌊
n

4

⌋⌊
n+2

4

⌋
− 1 =

n−5

2
+
⌊
n+6

4

⌋⌊
n+7

4

⌋
 , whenever 

n ≥ 5 , and ||G3
|| = 5 . Together with the calculations for the even case in [4], we 

obtain the following ranks:
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Theorem 1  rankFIn =

⎧
⎪⎨⎪⎩

5 if n = 3

n + 1 if n is even
n−5

2
+
�
n+6

4

��
n+7

4

�
if n is odd.
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