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Abstract
In this paper, we study partial automorphisms and, more generally, injective partial
endomorphisms of a finite undirected path from Semigroup Theory perspective. Our
main objective is to give formulas for the ranks of themonoids IEnd(Pn) and PAut(Pn)
of all injective partial endomorphisms and of all partial automorphisms of the undi-
rected path Pn with n vertices. We also describe Green’s relations of PAut(Pn) and
IEnd(Pn) and calculate their cardinals.
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Introduction and preliminaries

Aswell as automorphismsof graphs allowone to establish natural connections between
Graph Theory andGroup Theory, endomorphisms of graphs allow similar connections
between Graph Theory and Semigroup Theory. Likewise, in particular, partial auto-
morphisms of graphs relate Graph Theory with Inverse Semigroup Theory. This has
led, over the last decades, many authors to become interested in the study of com-
binatorial and algebraic properties of monoids of endomorphisms of graphs. One of
the most studied algebraic notions is regularity, in the sense of Semigroup Theory. A
general solution to the problem, posed in 1987 by Knauer and Wilkeit, see [29], of
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which graphs have a regular monoid of endomorphisms has proved to be very diffi-
cult to obtain. Despite that, various authors studied and solved this question for some
special classes of graphs (see, for instance, [7–9,16–18,20,21,25–28,31,32]).

The rank of a monoid S, denoted by rank S, is the least number of generators of S.
In this paper, we focus our attention on this important notion of Semigroup Theory,
which has been, in recent years, the subject of intensive research.

Let � be a finite set with at least 3 elements. It is well known that the symmetric
group S (�) of � has rank 2 (as a semigroup, a monoid or a group). Furthermore,
the monoid of all transformations T (�) of �, the monoid of all partial transforma-
tions PT (�) of � and the symmetric inverse monoid I (�) of � have ranks 3, 4,
and 3, respectively. The survey [10] presents these results and similar ones for other
classes of transformationmonoids, in particular, formonoids of order-preserving trans-
formations and for some of their extensions. More recently, for instance, the papers
[1,2,5,11–15,23,33,34] are dedicated to the computation of the ranks of certain (classes
of transformation) semigroups or monoids.

Now, let G = (V , E) be a simple graph (i.e. an undirected graph without loops and
without multiple edges). Let α be a partial transformation of V . Denote by Dom α the
domain of α and by Im α the image of α. We say that α is:

– A partial endomorphism of G if {u, v} ∈ E implies {uα, vα} ∈ E , for all u, v ∈
Dom α;

– Apartial automorphism ofG ifα is an injectivemapping (i.e. a partial permutation)
and α and α−1 are both partial endomorphisms.

If α is a full mapping (i.e. α ∈ T (V )) then a partial endomorphism (respectively,
partial automorphism) is just called endomorphism (respectively, automorphism).

Notice that, for finite graphs, any bijective endomorphism is an automorphism.
Denote by:

– PEnd(G) the set of all partial endomorphisms of G;
– End(G) the set of all endomorphisms of G;
– IEnd(G) the set of all injective partial endomorphisms of G;
– PAut(G) the set of all partial automorphisms of G;
– Aut(G) the set of all automorphisms of G.

Clearly, PEnd(G), End(G), IEnd(G), PAut(G), and Aut(G) are monoids under
composition of maps with the identity mapping id as the identity element. Moreover,
Aut(G) is also a group and PAut(G) is an inverse semigroup: Aut(G) ⊆ S (V ) and
PAut(G) ⊆ I (V ). It is also clear that

Aut(G) ⊆ End(G) ⊆ PEnd(G)

and

Aut(G) ⊆ PAut(G) ⊆ IEnd(G) ⊆ PEnd(G)

(these inclusions may not be strict).
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LetN be the set of all positive integers and let n ∈ N. Let Pn be the undirected path
with n vertices. Notice that we may take

Pn = ({1, . . . , n}, {{i, i + 1} | i = 1, . . . , n − 1}) .

The number of endomorphisms of Pn has been determined by Arworn [3] (see also
the paper [30] by Michels and Knauer). In addition, several other combinatorial and
algebraic properties of Pn were also studied in these two papers and also, for instance,
in [4,19]. The authors in [6] studied several properties of the monoid End(Pn). In
particular, they characterized regular elements and determined the rank of End(Pn).

The main objective of the present paper is to determine the ranks of the monoids
PAut(Pn) and IEnd(Pn). We will show that

rank PAut(Pn) =

⎧
⎪⎪⎨

⎪⎪⎩

2 for n = 1
2 for n = 2
3 for n = 3
n − 1 for n ≥ 4

and rank IEnd(Pn) =

⎧
⎪⎪⎨

⎪⎪⎩

2 for n = 1
2 for n = 2
4 for n = 3
n + � n

2 � − 2 for n ≥ 4.

Wealso aim to describeGreen’s relations of PAut(Pn) and IEnd(Pn) and to calculate
the cardinals of both monoids.

Observe that PAut(Pn) and IEnd(Pn) are submonoids of the symmetric inverse
monoid In = I ({1, . . . , n}).

Recall that the Green’s relations L , R, and J of a monoid S are defined as
following: for α, β ∈ S,

– αL β if and only if there exist γ, δ ∈ S such that α = γβ and β = δα;
– αRβ if and only if there exist γ ′, δ′ ∈ S such that α = βγ ′ and β = αδ′;
– αJ β if and only if there exist γ, γ ′, δ, δ′ ∈ S such that α = γβγ ′ and β = δαδ′.

The relations L and R commute (i.e. L ◦ R = R ◦ L ) and Green’s relation D is
defined by D = L ◦ R = R ◦ L (i.e. αDβ if and only if there exists σ ∈ S such
that αL σRβ, for α, β ∈ S). Notice that for a finite monoid the relations J and D
coincide. Finally, we have Green’s relation H defined byH = L ∩ R.

If S is an inverse semigroup of injective partial transformations on a given set, then
the relations L ,R, and H can be described as following: for α, β ∈ S,

– αL β if and only if Im α = Im β;
– αRβ if and only if Dom α = Dom β;
– αH β if and only if Im α = Im β and Dom α = Dom β.

Since PAut(Pn) is an inverse semigroup, it remains to obtain a description of its
Green’s relationJ . On the other hand, that is not the situation of IEnd(Pn), for n ≥ 3,

since IEnd(Pn) is not an inverse semigroup (for instance,

(
1 3
1 2

)

∈ IEnd(Pn) is not

a regular element of IEnd(Pn)). Notice that IEnd(Pn) = PAut(Pn), for n = 1, 2.
For general background on Semigroup Theory and standard notation, we refer the

reader to Howie’s book [22]. Regarding Algebraic Graph Theory, our main reference
is Knauer’s book [24].
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1 Green’s relations

Let n ∈ N. We now describe Green’s relations L , R, H , and J of the monoid
IEnd(Pn) as well as Green’s relation J of the inverse monoid PAut(Pn).

In this section, for a set X ⊆ N, we need the following concept. A set I ⊆ X is
called a maximal interval of X if I satisfies the following properties:

– I is an interval of X (i.e. x, y ∈ I and z ∈ N with x < z < y implies z ∈ I );
– If J ⊆ X is an interval of X then I ⊆ J implies I = J .

Recall that a partial transformation α of {1, . . . ,n} is said to be order-preserving
(respectively, order-reversing) if x < y implies xα ≤ yα (respectively, if x < y
implies xα ≥ yα), for all x, y ∈ Dom α.

Let α ∈ In . The following observations are easy to show:

– α ∈ IEnd(Pn) if and only if for each interval I of Dom α the image Iα is an
interval of Im α;

– If α ∈ IEnd(Pn) then α is order-preserving or order-reversing in I (i.e. the restric-
tion α|I of α to I is an order-preserving or order-reversing transformation), for
each interval I of Dom α;

– If for each maximal interval I of Dom α the image Iα is an interval of Im α and
α is order-preserving or order-reversing in I then α ∈ IEnd(Pn);

– If α ∈ PAut(Pn) and I is a maximal interval of Dom α then the image Iα is a
maximal interval of Im α;

– If for each maximal interval I of Dom α the image Iα is a maximal interval of
Im α and α is order-preserving or order-reversing in I then α ∈ PAut(Pn).

Let α ∈ In . Let {X1, . . . , Xk} be a partition of Dom α. We will use the notation

α =
(
X1 · · · Xk

Y1 · · · Yk
)

to express that Yi = (Xi )α, for i ∈ {1, . . . , k}.
Let α, β ∈ IEnd(Pn). Since IEnd(Pn) is a submonoid of the inverse monoidIn , if

αL β (respectively, αRβ) in IEnd(Pn) then αL β (respectively, αRβ) inIn , whence
Im α = Im β (respectively, Dom α = Dom β). Moreover, we have the following
descriptions of the relations L and R in IEnd(Pn):

Proposition 1 Let α, β ∈ IEnd(Pn)and let {I1, I2, . . . , Ik} and {I ′
1, I

′
2, . . . , I

′
l }be the

(partitions into) maximal intervals of Dom α and in Dom β, respectively. Then, the
following three conditions are equivalent:

1. αL β;
2. {I1α, I2α, . . . , Ikα} = {I ′

1β, I ′
2β, . . . , I ′

l β};
3. Im α = Im β and αβ−1 ∈ PAut(Pn).

Proof [1 ⇒ 2] Suppose that αL β. Then, by the definition of Green’s relation L ,
there exist γ, δ ∈ IEnd(Pn) such that α = γβ and β = δα. Let i ∈ {1, . . . , k}. Since
Dom α ⊆ Dom γ , Ii is also an interval of Dom γ , whence Iiγ is an interval of Dom β

and so Iiγ ⊆ I ′
j , for some j ∈ {1, . . . , l}. It follows that Iiα = Iiγβ ⊆ I ′

jβ, for
some j ∈ {1, . . . , l}. Similarly, we may show that, for all j ∈ {1, . . . , l}, there exists
i ∈ {1, . . . , k} such that I ′

jβ ⊆ Iiα. Now, since Im α = Im β, we may deduce that
{I1α, I2α, . . . , Ikα} = {I ′

1β, I ′
2β, . . . , I ′

l β}.
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[2 ⇒ 3] From {I1α, I2α, . . . , Ikα} = {I ′
1β, I ′

2β, . . . , I ′
l β} it follows immediately

that k = l and Im α = Im β. Let σ be the permutation of {1, . . . , k} such that Iiα =
I ′
iσ β, for all i ∈ {1, . . . , k}. Then αβ−1 =

(
I1 I2 · · · Ik
I ′
1σ I ′

2σ · · · I ′
kσ

)

and so αβ−1 maps

maximal intervals of its domain into maximal intervals of its image. Hence, in order
to prove that αβ−1 ∈ PAut(Pn), it suffices to show that αβ−1 is order-preserving or
order-reversing in Ii , for i ∈ {1, . . . , k}. Let i ∈ {1, . . . , k}. Then, we have αβ−1|Ii =
α|Ii β−1|Iiα = α|Ii β−1|I ′

iσ β and β−1|I ′
iσ β =

(
I ′
iσ β

I ′
iσ

)

. As Ii is an interval, α|Ii is
order-preserving or order-reversing. On the other hand, as I ′

iσ is an interval, β|I ′
iσ

is

order-preserving or order-reversing and so its inverse mapping β−1|I ′
iσ β is also order-

preserving or order-reversing. Thus, αβ−1 is order-preserving or order-reversing in Ii ,
as required.

[3 ⇒ 1] From Im α = Im β and αβ−1 ∈ PAut(Pn), it follows that αβ−1 and
βα−1 = (αβ−1)−1 lie in IEnd(Pn), (αβ−1)β = α(β−1β) = α id |Im β = α id |Im α =
α and (αβ−1)−1α = (βα−1)α = β(α−1α) = β id |Im α = β id |Im β = β, whence
αL β. �
Proposition 2 Let α, β ∈ IEnd(Pn). Then αRβ if and only if Dom α = Dom β and
α−1β ∈ PAut(Pn).

Proof Suppose that αRβ. Then Dom α = Dom β. Moreover, there exist transfor-
mations γ, δ ∈ IEnd(Pn) such that β = αγ and α = βδ. Then, we have α−1β =
α−1αγ = id |Im αγ = γ |Im α and (α−1β)−1 = β−1α = β−1βδ = id |Im βδ = δ|Im β .
Since, clearly, any restriction of a transformation of IEnd(Pn) is still a transformation
of IEnd(Pn), we have α−1β, β−1α ∈ IEnd(Pn) and so α−1β ∈ PAut(Pn).

Conversely, admit that Dom α = Dom β and α−1β ∈ PAut(Pn). Then α−1β,
β−1α = (α−1β)−1 ∈ IEnd(Pn), β= id |Dom ββ = id |Dom αβ =(αα−1)β = α(α−1β)

and α = id |Dom αα = id |Dom βα = (ββ−1)α = β(β−1α), whence αRβ, as required.
�

Since H = R ∩ L , it follows immediately that:

Corollary 1 Let α, β ∈ IEnd(Pn). Then αH β if and only ifDom α = Dom β, Im α =
Im β and α−1β, αβ−1 ∈ PAut(Pn).

Before presenting our descriptions of Green’s relation J on IEnd(Pn) and on
PAut(Pn), we need to introduce some notions and notations.

For A, B ⊆ N, denote by A < B if a < b for all a ∈ A and b ∈ B.
Let a = (a1, . . . , ap) be a sequence of elements of N. We define the reverse of a

as being the sequence aR = (ap, . . . , a1).
Let α ∈ IEnd(Pn) and let J be a maximal interval of Im α. Define the type of J to

be the sequence τα(J ) = (|I1|, |I2|, . . . , |Ip|), where {I1, I2, . . . , Ip} are the maximal
intervals of Jα−1 such that Iiα < Ii+1α, for 1 ≤ i < p.

Now, let α, β ∈ IEnd(Pn). We say that α and β have similar type if there exists a
bijection σ from the set of maximal intervals of Im α into the set of maximal intervals
of Im β such that τα(J ) ∈ {τβ(Jσ), τβ(Jσ)R}, for any maximal interval J of Im α.
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92 I. Dimitrova et al.

Observe that two elements α and β of IEnd(Pn) have similar type if and only if
they have maximal intervals of their images with the same type up to reversion and
the same number of occurrences.

Lemma 1 Let α, β ∈ IEnd(Pn) be such that α and β have similar type. Then, there
exist γ, δ ∈ PAut(Pn) such that β = γαδ and α = γ −1βδ−1.

Proof Let {J1, J2, . . . , Jk} and {J ′
1, J

′
2, . . . , J

′
k} be the maximal intervals of Im α and

Im β, respectively. Then there exist a permutation σ of {1, . . . , k} such that τβ(J ′
r ) ∈

{τα(Jrσ ), τα(Jrσ )R}, for r = 1, . . . , k.
For 1 ≤ r ≤ k, let {I ′

r ,1, I
′
r ,2, . . . , I

′
r ,pr } and {Irσ,1, Irσ,2, . . . , Irσ,pr } be the max-

imal intervals of J ′
rβ

−1 and Jrσ α−1, respectively, such that I ′
r ,iβ < I ′

r ,i+1β and
Irσ,iα < Irσ,i+1α, for all 1 ≤ i < pr . Moreover, let J ′

r ,i = I ′
r ,iβ and Jrσ,i = Irσ,iα,

for r = 1, . . . , k and i = 1, . . . , pr . Clearly, J ′
r = J ′

r ,1 ∪ J ′
r ,2 ∪ · · · ∪ J ′

r ,pr and
Jrσ = Jrσ,1 ∪ Jrσ,2 ∪ · · · ∪ Jrσ,pr .

Let r = 1, . . . , k. We define partial transformations γr and δr as following:

– Dom γr = ∪{I ′
r ,1, I

′
r ,2, . . . , I

′
r ,pr } = J ′

rβ
−1;

– Dom δr = ∪{Jrσ,1, Jrσ,2, . . . , Jrσ,pr } = Jrσ ;

– I ′
r ,iγr =

{
Irσ,i if τβ(J ′

r ) = τα(Jrσ )

Irσ,pr−i+1 if τβ(J ′
r ) = τα(Jrσ )R,

for i = 1, . . . , pr ;

– Jrσ,iδr =
{
J ′
r ,i if τβ(J ′

r ) = τα(Jrσ )

J ′
r ,pr−i+1 if τβ(J ′

r ) = τα(Jrσ )R,

for i = 1, . . . , pr ;

– γr |I ′
r ,i

is

{
order-preserving if (a) or (b) is satisfied
order-reversing otherwise,

where

(a) τβ(J ′
r ) = τα(Jrσ ) and α|Irσ,i and β|I ′

r ,i
are both order-preserving or both

order-reversing, and
(b) τβ(J ′

r ) = τα(Jrσ )R and α|Irσ,pr−i+1 is order-preserving and β|I ′
r ,i

is order-
reversing or vice versa,

for i = 1, . . . , pr ;

– δr |Jrσ is

{
order-preserving if τβ(J ′

r ) = τα(Jrσ )

order-reversing if τβ(J ′
r ) = τα(Jrσ )R .

It is easy to verify that both γr and δr are well defined. Then, we define partial
transformations γ and δ as follows:

– Dom γ = ∪{I ′
1,1, . . . , I

′
1,p1

, . . . , I ′
k,1, . . . , I

′
k,pk

} = Dom β;
– Dom δ = ∪{J1σ,1, . . . , J1σ,p1 , . . . , Jkσ,1, . . . , Jkσ,pk } = Im α;
– γ |I ′

r ,s
= γr |I ′

r ,s
for r = 1, . . . , k and s = 1, . . . , pr ;

– δ|Jrσ,s = δr |Jrσ,s for r = 1, . . . , k and s = 1, . . . , pr .

Clearly, both transformations γ and δ are partial automorphisms. Let r = 1, . . . , k
and s = 1, . . . , pr . Then

I ′
r ,sγαδ =

{
Irσ,sαδ = Jrσ,sδ = J ′

r ,s = I ′
r ,sβif τβ

(
J ′
r

) = τα (Jrσ )

Irσ,pr−s+1αδ = Jrσ,pr−s+1δ = J ′
r ,s = I ′

r ,sβif τβ

(
J ′
r

) = τα (Jrσ )R .
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Taking into account properties (a) and (b), we can deduce that γαδ|I ′
r ,s

is order-
preserving if β|I ′

r ,s
is order-preserving and γαδ|I ′

r ,s
is order-reversing if β|I ′

r ,s
is order-

reversing, which allows us to conclude that β = γαδ. On the other hand, since
Im γ = Dom α and Im α = Dom δ, we obtain γ −1γαδδ−1 = id |Dom αα id |Im α = α

and so we also have α = γ −1βδ−1, as required. �
Now, we can describe Green’s relation J for the monoid IEnd(Pn).

Proposition 3 Let α, β ∈ IEnd(Pn). Then αJ β if and only if α and β have similar
type.

Proof Let α, β ∈ IEnd(Pn) be such that αJ β. Then, there exists γ ∈ IEnd(Pn) such
that αL γRβ and so, by Propositions 1 and 2 , we have Dom γ = Dom β and Im γ =
Im α and αγ −1, γ −1β ∈ PAut(Pn). In addition, α−1αγ −1 = γ −1 = γ −1ββ−1.
Moreover, Dom(γ −1β) = Im α and Im(γ −1β) = Im β. Hence, γ −1β ∈ PAut(Pn)
maps each maximal interval J of Im α into a maximal interval Jγ −1β of Im β, thus
defining a bijection σ (J �→ Jσ = Jγ −1β) from the set of maximal intervals of Im α

into the set of maximal intervals of Im β. Let J be a maximal interval of Im α. Then
(Jσ)β−1 = Jγ −1ββ−1 = Jγ −1 = Jα−1αγ −1 = (Jα−1)αγ −1. Since αγ −1 ∈
PAut(Pn), we may deduce that τα(J ) ∈ {τβ(Jσ), τβ(Jσ)R}. Therefore α and β have
similar type.

Conversely, let α, β ∈ IEnd(Pn) be such that α and β have similar type. Then, by
Lemma 1, we have directly αJ β, as required. �

Wefinish this section with the description of Green’s relationJ of PAut(Pn), which
follows immediately from Lemma 1 and Proposition 3.

Corollary 2 Let α, β ∈ PAut(Pn). Then αJ β if and only if α and β have similar type.

Observe that the type of a maximal interval of the image of an element of PAut(Pn)
is always a unitary sequence which we can identify with the size of the interval taken.
Therefore, two elements α and β of PAut(Pn) have similar type if and only if they
have maximal intervals of their images with the same size and with the same number
of occurrences.

2 Cardinality

Let n ∈ N and n = {1, . . . , n}. We will determine the cardinality of PAut(Pn) as well
as of IEnd(Pn). For this, we need some technical notations.

Let A ∈ {0, 1}n and let A(p) denotes the element on the position p in A. Further,
let A(0) = A(n + 1) = 0.

Let RA = {p ∈ n | A(p − 1) = 0 and A(p) = 1} and rA = |RA|.
Let sA =

n∑

p=1
A(p).

Let z(1) = 1, z(2) = rA and

qA,i =
⎧
⎨

⎩

(
n − sA + z(i)

rA

)

if A(p) �= 0, for some p ∈ n

1 otherwise,
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94 I. Dimitrova et al.

for i ∈ {1, 2}.
Let tA,i = (rA!)qA,i , for i ∈ {1, 2} and let TA = |{p ∈ RA | A(p + 1) = 1}|.

Theorem 1 One has

|PAut (Pn)| =
∑

A∈{0,1}n
2TA tA,1 and |IEnd (Pn)| =

∑

A∈{0,1}n
2TA tA,2.

Proof The domain of an injective endomorphism on Pn is a subset of n. For each
A ∈ {0, 1}n , let A∗ be the subset of n with x ∈ A∗ if and only if A(x) = 1. In
particular, by A �−→ A∗, a bijection between {0, 1}n and the powerset of n, i.e.
between {0, 1}n and the possible domains of injective endomorphisms on Pn , is given.
Let A ∈ {0, 1}n .

First, we suppose that A �= (0, 0, . . . , 0). Then A∗ consists of rA maximal intervals
A1 < A2 < · · · < ArA of A∗. For i ∈ {1, . . . , rA}, let pi be the minimal element
in the set Ai . So, we have A(pi − 1) = 0 and A(pi ) = 1, for i ∈ {1, . . . , rA}. This
provides RA = {pi | i ∈ {1, . . . , rA}}. Moreover, we have sA = |A∗|.

An injective endomorphism on Pn with domain A∗ has the form

(
A1 A2 · · · ArA
B1 B2 · · · BrA

)

,

where B1, . . . , BrA are intervals. We observe that for each permutation σ on
{1, . . . , rA}, there is a possible image sequence B1, . . . , BrA such that B1σ < B2σ <

· · · < BrAσ , i.e. there are rA! possibilities in which the intervals B1, . . . , BrA are
ordered. If the image sequence B1, . . . , BrA is ordered by B1σ < B2σ < · · · < BrAσ ,
for some permutation σ on {1, . . . , rA}, then there are still n−sA elements being not in
the image of an injective endomorphism. If we restricted us to partial automorphisms
then there are b1, . . . , brA−1 ∈ n such that B1σ < b1 < B2σ < b2 < · · · < brA−1 <

BrAσ and so there are still n− sA − rA +1 elements being not in the image of a partial
automorphism. These remaining elements can be distributed before or after the Bi ’s,
i.e. at rA + 1 places. The number of all these possibilities is

(
(rA + 1) + (n − sA) − 1

n − sA

)

=
(
rA + n − sA

n − sA

)

=
(
rA + n − sA

rA

)

= qA,2

for injective endomorphism and

(
(rA + 1) + (n − sA − rA + 1) − 1

n − sA − rA + 1

)

=
(

n − sA + 1
n − sA − rA + 1

)

=
(
n − sA + 1

rA

)

= qA,1

if we only consider partial automorphisms. In other words, we have qA,2(rA!) = tA,2
and qA,1(rA!) = tA,1 possibilities for the intervals B1, . . . , BrA , whenever A

∗ (with
the partition A1 < · · · < ArA ) is the domain of an injective endomorphism and of a
partial automorphism, respectively. For i ∈ {1, . . . , rA}, if |Ai | ≥ 2 then we have to

consider two cases, namely

(
Ai

Bi

)

is order-preserving or order-reversing. In order to
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realize it, we consider the cardinality TA of the set DA = {i ∈ {1, . . . , rA} | |Ai | ≥ 2},
i.e. TA = |DA|. So, we have still to consider 2TA possibilities, whenever the intervals
B1, . . . , BrA are already fixed. Observe that DA = {p ∈ RA | A(p + 1) = 1}.

Thus, there are 2TA tA,2 injective endomorphisms and 2TA tA,1 partial automorphisms
on Pn with domain A∗.

Next, suppose that A = (0, 0, . . . , 0). Then, there exists exactly one injective
endomorphism on Pn with the domain A∗ = ∅, namely the empty transformation.
In this case, we have qA,1 = qA,2 = 1 and rA = TA = 0. Hence, tA,1 = tA,2 =
qA,1(rA!) = 1(0!) = 1, 2TA = 20 = 1 and 2TA tA,1 = 2TA tA,2 = 1.

Weconclude that |PAut(Pn)| =∑
A∈{0,1}n 2TA tA,1 and |IEnd(Pn)| =∑

A∈{0,1}n 2TA tA,2,
as required. �

3 Generators and rank

In this section we present the main results of this paper. We are referring to the
calculation of the ranks of PAut(Pn) and IEnd(Pn). In both cases, we proceed by
determining a generating set of minimal size.

It is clear that PAut(P1) = {id,∅} is a generating set of minimal size of PAut(P1) =
IEnd(P1), where ∅ is the empty transformation. Moreover, it is easy to verify that

G =
{(

1 2
2 1

)

,

(
1
1

)}

is a generating set of minimal size of

PAut(P2) = IEnd(P2) =
{

id,

(
1 2
2 1

)

,

(
1
1

)

,

(
1
2

)

,

(
2
1

)

,

(
2
2

)

,∅
}

.

This shows that

rank PAut(P1) = rank IEnd(P1) = rank PAut(P2) = rank IEnd(P2) = 2.

Next, let n ≥ 3 and define

τ =
(
1 2 · · · n − 1 n
n n − 1 · · · 2 1

)

and

αi =
(
1 2 · · · i − 1 i + 1 i + 2 · · · n − 1 n
1 2 · · · i − 1 n n − 1 · · · i + 2 i + 1

)

,

for i = 1, 2, . . . , n.
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Let

A =
{ {τ, α1, α2} if n = 3

{τ } ∪ {αi | i = 1, 2, . . . , n − 2} if n ≥ 4.

First, we will show thatA is a generating set of PAut(Pn). To accomplish this aim
we start by proving a series of lemmas.

Lemma 2 One has {αi | i = n − 1, n} ⊆ 〈A 〉.

Proof The proof follows immediately from the relations αi = τα2
n−i+1τ , for i =

n − 1, n. �

Let

α∗
i =

(
1 2 · · · i − 2 i − 1 i + 1 · · · n − 1 n

i − 1 i − 2 · · · 2 1 i + 1 · · · n − 1 n

)

,

for i = 1, 2, . . . , n.

Lemma 3 One has α∗
i ∈ 〈A 〉, for i = 1, 2, . . . , n.

Proof We have α∗
i = αiταn−i+1ταi , whence α∗

i ∈ 〈A 〉, for i = 1, 2, . . . , n. �

Let

εi, j =
(
1 2 · · · i − 1 i + 1 · · · j − 1 j + 1 · · · n
1 2 · · · i − 1 i + 1 · · · j − 1 j + 1 · · · n

)

,

for 1 ≤ i < i + 1 < j ≤ n.

Lemma 4 One has εi, j ∈ 〈A 〉, for 1 ≤ i < i + 1 < j ≤ n.

Proof We have εi, j = α2
i α

2
j , whence εi, j ∈ 〈A 〉, for 1 ≤ i < i + 1 < j ≤ n. �

Let

ε∗
i, j =

(
1 2 · · · i − 1 i + 1 i + 2 · · · j − 2 j − 1 j + 1 · · · n
1 2 · · · i − 1 j − 1 j − 2 · · · i + 2 i + 1 j + 1 · · · n

)

,

for 1 ≤ i < i + 1 < j ≤ n.

Lemma 5 One has ε∗
i, j ∈ 〈A 〉, for 1 ≤ i < i + 1 < j ≤ n.

Proof We have ε∗
i, j = εi, jα

∗
jα

∗
j−iα

∗
j , which implies ε∗

i, j ∈ 〈A 〉, for 1 ≤ i < i + 1 <

j ≤ n. �
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Define α0 = τ , αn+1 = id, ε∗
0,n+1 = τ , ε∗

0, j = α∗
j , for j = 2, . . . , n, and

ε∗
i,n+1 = αi , for i = 1, . . . , n − 1.
Let

ρ+
i, j =

(
1 2 · · · i − 1 i + 2 · · · j j + 2 · · · n
1 2 · · · i − 1 i + 1 · · · j − 1 j + 2 · · · n

)

,

for 0 ≤ i < i + 2 < j ≤ n.

Lemma 6 One has ρ+
i, j ∈ 〈A 〉, for 0 ≤ i < i + 2 < j ≤ n.

Proof Wehaveρ+
i, j = α2

i α
2
i+1α

2
j+1ε

∗
i, j+1ε

∗
i, j , whenceρ+

i, j ∈ 〈A 〉, for 0 ≤ i < i+2 <

j ≤ n. �
Let

ρ−
i, j =

(
1 2 · · · i − 2 i · · · j − 2 j + 1 · · · n
1 2 · · · i − 2 i + 1 · · · j − 1 j + 1 · · · n

)

,

for 1 ≤ i < i + 2 < j ≤ n + 1.

Lemma 7 One has ρ−
i, j ∈ 〈A 〉, for 1 ≤ i < i + 2 < j ≤ n + 1.

Proof We have ρ−
i, j = α2

i−1α
2
j−1α

2
j ε

∗
i−1, jε

∗
i, j , which implies ρ−

i, j ∈ 〈A 〉, for 1 ≤ i <

i + 2 < j ≤ n + 1. �
Now, we are prepared to prove thatA is a generating set of the monoid PAut(Pn).

Proposition 4 One has PAut(Pn) = 〈A 〉.
Proof We will perform this proof by using a recurring construction. First, for an
arbitrary element α of PAut(Pn), we set some notations. Denote by I α

1 , I α
2 , . . . , I α

k
the maximal intervals of Dom α such that

I α
1 < I α

2 < · · · < I α
k .

Let Jα
r = I α

r α, for r = 1, . . . , k. Then Jα
1 , Jα

2 , . . . , Jα
k are the maximal intervals of

Im α. Denote by σα the permutation of {1, 2, . . . , k} such that

Jα
1σα

< Jα
2σα

< · · · < Jα
kσα

.

Now, fix α ∈ PAut(Pn). Let I = n\Dom α and define β = ∏
i∈I α2

i (observe that
α2
i , i ∈ n, is an idempotent and idempotents commute). Clearly, Dom β = Dom α.
Let s be the least number r ∈ {1, . . . , k} such that rσα �= rσβ . Let t be the minimal

element in the set Jβ
sσβ

and q be the maximal element of Jβ
sσασβ

. Then, we put

β = βε∗
t−1,q+1
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(i.e. we define a new β as being βε∗
t−1,q+1; below we will made similar variables’s

redefinitions). Then either rσα = rσβ , for all r ∈ {1, . . . , k}, or the least number
r ∈ {1, . . . , k} such that rσα �= rσβ is greater than s.

We repeat the procedure until rσα = rσβ for all r ∈ {1, . . . , k}.
Further, we put γ = β and let u be the least number p ∈ {1, . . . , k} such that

γ |Iα
pσγ

�= α|Iα
pσγ

.
If Im γ |Iα

uσγ
= Im α|Iα

uσγ
then we put

γ = γ ε∗
a,b,

where a and b are the greatest and respectively the least number with a < J γ
uσγ

< b.
If Im γ |Iα

uσγ
�= Im α|Iα

uσγ
then there exist x, y ∈ n such that Im α|Iα

uσγ
= {x, . . . , z}

and either Im γ |Iα
uσγ

= {x − y, . . . , z − y} or Im γ |Iα
uσγ

= {x + y, . . . , z + y}, where
z = x + |Iα

uσγ
| − 1.

First, suppose that Im γ |Iα
uσγ

= {x − y, . . . , z − y}. Then, there exists j ∈ n with

j > J γ
uσγ

such that j, j + 1 /∈ Im γ . In this case, we put

γ = γρ−
x−y, j+1.

On the other hand, admit that Im γ |Iα
uσγ

= {x + y, . . . , z + y}. Then, there exists
j < J γ

uσγ
, with j > J γ

pσγ
, for all p < u such that j − 1, j /∈ Im γ . In this case, we

put

γ = γρ+
j−1,z+y .

After y such steps, we obtain a transformation γ such that Im γ |Iα
uσγ

= Im α|Iα
uσγ

. If
γ |Iα

uσγ
�= α|Iα

uσγ
then we put

γ = γ ε∗
a,b,

where a and b are the greatest and the least number, respectively, such that a < J γ
uσγ

<

b.
We repeat the procedure until γ = α. Therefore, by Lemmas 2-7, we may deduce

that α ∈ 〈A 〉 and so A is a generating set of PAut(Pn), as required. �
Next, we will show that A is a generating set of PAut(Pn) of minimal size.
Let G be a generating set of PAut(Pn).
First, notice that Dom τ = n. Moreover, for α ∈ PAut(Pn), clearly, we have

Dom α = n if and only if α = τ or α = id = τ 2. Thus, it follows immediately that:

Lemma 8 One has τ ∈ G.

Let

Ai = {α ∈ PAut(Pn) | Dom α = n\{i} or Dom α = n\{n − i + 1}},
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for i = 1, . . . , � n
2 �.

Lemma 9 One has |G ∩ Ai | ≥ 1, for all i ∈ {1, . . . , � n
2 �}.

Proof Let i ∈ {1, . . . , � n
2 �} and consider the transformation αi defined previously.

Notice that Dom αi = n\{i} and so αi ∈ Ai . Let β1, . . . , βk ∈ G\{id} be such
that αi = β1 · · · βk and {β j , β j+1} �= {τ }, for j = 1, . . . , k − 1. Since Dom αi =
Dom(β1 · · · βk) ⊆ Dom β1, rank αi = n−1 and β1 �= id, we have Dom β1 = Dom αi

or β1 = τ .
If Dom β1 = Dom αi then β1 ∈ Ai and so β1 ∈ G ∩ Ai .
On the other hand, suppose that β1 = τ . In that case, since Dom αi =

Dom(β1 · · · βk) ⊆ Dom(τβ2), rank αi = n − 1 and β2 ∈ G\{id, τ }, we have
Dom αi = Dom(τβ2), whence Dom β2 = n\{n − i + 1} and so β2 ∈ G ∩ Ai .

Thus, in both cases, we have shown that |G ∩ Ai | �= ∅, as required. �
Lemma 10 Let n ≥ 6. Then |G ∩ Ai | ≥ 2, for all i ∈ {3, . . . , � n

2 �}.
Proof First, observe that it is a routine matter to check that |Ai | = 16, for all i ∈
{3, . . . , � n

2 �}. Recall also that τ ∈ G, by Lemma 8.
Now, assume by contradiction that |G ∩ Ai | < 2, for some i ∈ {3, . . . , � n

2 �}.
Then, by Lemma 9, we have G ∩ Ai = {α}, for some α ∈ PAut(Pn). Without loss of
generality, we may suppose that Dom α = n\{i}. Hence, we have two cases:

Case 1. Im α = n\{i}. Then, as α3 = α and rank ατα = n − 2, we have

〈G〉 ∩ Ai = {α, α2, ατ, τα, α2τ, τα2, τατ, τα2τ } �= Ai ,

which is a contradiction (since G is a generating set of PAut(Pn)).
Case 2. Im α = n\{n − i + 1}. In this case, as (ατ)2 = id |Dom α , (τα)2 = id |Im α

and rank α2 = n − 2, we obtain

〈G〉 ∩ Ai = {α, ατ, τα, ατα, τατ, (ατ)2, (τα)2, τ (ατ)2} �= Ai ,

which again is a contradiction, as required. �
Now, as a consequence of Proposition 4 and Lemmas 8–10, we may prove the first

of our main results:

Theorem 2 The rank of PAut(P3) is equal to 3 and, for n ≥ 4, the rank of PAut(Pn)
is equal to n − 1.

Proof By Proposition 4, the set A generates PAut(Pn). Thus,

rank PAut(Pn) ≤ |A | =
{
3 if n = 3
n − 1 if n ≥ 4.

LetG be any generating set of PAut(Pn). By Lemmas 8 and 9 , the transformation τ

and
⌈ n
2

⌉
pairwise different transformations of rank n−1 are inG. Thus, |G| ≥ 1+⌈ n

2

⌉
.

In particular, we have |G| ≥ 3, if n = 3, 4, and |G| ≥ 4, if n = 5. If n ≥ 6 then,
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by Lemma 10, there exist
⌊ n
2

⌋ − 2 additional pairwise different transformations with
rank n − 1 in G. This shows that

rank PAut(Pn) ≥
{
3 if n = 3
n − 1 if n ≥ 4,

as required. �
Next, we calculate the rank of the monoid IEnd(Pn).
Define

βi =
(
1 2 · · · i − 1 i + 1 i + 2 · · · n − 1 n
1 2 · · · i − 1 i i + 1 · · · n − 2 n − 1

)

,

for i = 2, . . . , n − 1, and let B = A ∪ {βi | i = 2, . . . , � n
2 �}.

Lemma 11 One has {βi | i = 2, . . . , n − 1} ⊆ 〈B〉.
Proof For i = 2, . . . , � n

2 �, we have βi ∈ B. Let i = � n
2 � + 1, . . . , n − 1 then

βi = τβn−i+1α
∗
n . �

Proposition 5 Let β ∈ IEnd(Pn)\PAut(Pn). Then

β ∈ 〈PAut(Pn) ∪ {βi | i = 2, . . . , n − 1}〉.

Proof Let β ∈ IEnd(Pn)\PAut(Pn). Then, it is easy to show that there exists a trans-
formation δ ∈ PAut(Pn)with Dom δ = Im β and Im δ ⊆ {1, 2, . . . , | Im β|+mβ −1},
where mβ is the number of the maximal intervals of Im β.

Define β̄ = βδ. It is clear that Dom β̄ = Dom β.
Further, let I be the set of all x ∈ Dom β̄ such that x β̄ + 1 ∈ Im β̄ and x β̄ + 1 /∈

{(x − 1)β̄, (x + 1)β̄}. Clearly, I �= ∅ since β /∈ PAut(Pn). We let I = {i1, . . . , ik} be
such that i1β̄ < i2β̄ < · · · < ik β̄.

Let X1, X2, . . . , Xk+1 be the partition of Dom β̄ such that

Xr = {x ∈ Dom β̄ | ir−1β̄ < x β̄ ≤ ir β̄},

for r ∈ {1, 2, . . . , k + 1}, where i0β̄ = 0 and ik+1β̄ = n.
Let β∗ be the transformation defined by xβ∗ = x β̄ + r − 1, for all x ∈ Xr and

r = 1, 2, . . . , k + 1. It is clear that Dom β∗ = Dom β̄ = Dom β and β∗ ∈ IEnd(Pn).
First, we show β∗ ∈ PAut(Pn). Let u ∈ n be such that u, u+1 ∈ Im β∗. Then there

exist a ∈ Xr1 and b ∈ Xr2 such that aβ̄ + r1 − 1 = u and bβ̄ + r2 − 1 = u + 1, for
some r1, r2 ∈ {1, . . . , k + 1}. In order to obtain a contradiction, assume that r1 �= r2.

Suppose that r1 < r2. Then Xr1 β̄ < Xr2 β̄ and so aβ̄ < bβ̄. This implies r1+1 ≤ r2
and aβ̄ + 1 ≤ bβ̄, whence bβ̄ + r2 ≥ aβ̄ + 1+ r1 + 1 = aβ̄ + r1 − 1+ 3 = u + 3 =
bβ̄ + r2 − 1 + 2 = bβ̄ + r2 + 1. Thus bβ̄ ≥ bβ̄ + 1, which is a contradiction.

On the other hand, suppose that r1 > r2. Then Xr1 β̄ > Xr2 β̄ and so aβ̄ > bβ̄. This
implies r1 ≥ r2 + 1 and aβ̄ ≥ bβ̄ + 1. Thus, we have aβ̄ + r1 ≥ bβ̄ + 1 + r2 + 1 =
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bβ̄ + r2 − 1 + 3 = u + 1 + 3 = aβ̄ + r1 + 3, whence aβ̄ ≥ aβ̄ + 3, which is a
contradiction.

Therefore, we have r1 = r2. Then u = aβ̄ + r1 − 1, u + 1 = bβ̄ + r1 − 1
and so a, b ∈ Xr1 . This implies bβ̄ + r1 = bβ̄ + r1 − 1 + 1 = u + 1 + 1 =
aβ̄ + r1 − 1 + 2 = aβ̄ + r1 + 1, i.e. bβ̄ = aβ̄ + 1. Thus aβ̄ + 1 ∈ Im β̄, since
b ∈ Dom β̄. Assume aβ̄ + 1 /∈ {(a − 1)β̄, (a + 1)β̄}. Then a ∈ I and so a = ir1 and
bβ̄ ≤ aβ̄, since a, b ∈ Xr1 . Hence, aβ̄ + 1 = bβ̄ ≤ aβ̄, which is a contradiction.
Thus, bβ̄ = aβ̄ + 1 ∈ {(a − 1)β̄, (a + 1)β̄} and so we obtain b ∈ {a − 1, a + 1}.

This shows that β∗ ∈ PAut(Pn).
Finally, we show that β = β∗βi1β̄+1βi2β̄+1 · · ·βik β̄+1δ

−1, fromwhich follows that

β ∈ 〈PAut(Pn) ∪ {βi | i = 2, . . . , n − 1}〉.

Since β̄δ−1 = βδδ−1 = β id |Dom δ = β id |Im β = β, it suffices to show that β̄ =
β∗βi1β̄+1βi2β̄+1 · · · βik β̄+1.

We proceed by showing that

xβ∗βi1β̄+1βi2β̄+1 · · ·βis β̄+1

=
{
x β̄, if x ∈ X1 ∪ · · · ∪ Xs

x β̄ + r − 1 − s, if x ∈ Xr , for some r ∈ {s + 1, . . . , k + 1},
by induction on 1 ≤ s ≤ k.

Let s = 1. Then

xβ∗βi1β̄+1 = (x β̄ + r − 1)βi1β̄+1

=

⎧
⎪⎪⎨

⎪⎪⎩

(x β̄)βi1β̄+1 = x β̄ if x ∈ X1,

since x β̄ < i1β̄ + 1
x β̄ + r − 1 − 1 = x β̄ + r − 1 − s if x ∈ Xr for some r > 1,

since x β̄ ≥ i1β̄ + 1.

Assume that the above expression is true for some s < k. We will prove it for s+1.
Let x ∈ X1 ∪ · · · ∪ Xs+1. If x /∈ Xs+1 then xβ∗βi1β̄+1 · · · βis β̄+1 = x β̄, by the

induction hypothesis and (x β̄)βis+1β̄+1 = x β̄, since x β̄ < is+1β̄ + 1.

If x ∈ Xs+1 then xβ∗βi1β̄+1 · · ·βis β̄+1 = x β̄+s+1−1−s = x β̄, by the induction

hypothesis and (x β̄)βis+1β̄+1 = x β̄, since x β̄ < is+1β̄ + 1.
Now, let x ∈ Xr for some r ∈ {s + 2, . . . , k + 1}. Then

(xβ∗βi1β̄+1 · · · βis β̄+1)βis+1β̄+1 = (x β̄ + r − 1 − s)βis+1β̄+1 = (x β̄ + r − 1 − s) − 1

= x β̄ + r − 1 − (s + 1),

since x β̄ > is+1β̄ + 1, which completes the proof. �
From Proposition 4, Lemma 11 and Proposition 5, we obtain immediately:

Corollary 3 One has IEnd(Pn) = 〈B〉.
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Now, we will prove that B is a generating set of IEnd(Pn) of minimal size. We
start by presenting a series of five lemmas.

Let G ′ be a generating set of IEnd(Pn).

Lemma 12 One has |G ′ ∩ (IEnd(Pn)\PAut(Pn))| ≥ � n
2 � − 1.

Proof Let 2 ≤ j ≤ n − 1. Then β j = γ1 · · · γk , for some k ≥ 1 and γ1, . . . , γk ∈ G ′.
As rank β j = n − 1 then rank γi ≥ n − 1, for all i = 1, . . . , k, and there exists
i ∈ {1, . . . , k} such that γi /∈ PAut(Pn). Let i be the least r ∈ {1, . . . , k} such as
γr /∈ PAut(Pn). Let γ = γ1 · · · γi−1 ∈ PAut(Pn) (with γ = id if i = 1). Thus, β j =
γ γi · · · γk implies γ −1β j = γ −1γ γi · · · γk = γi · · · γk (since γ −1γ = id |Dom γi ).

We have rank γ = n − 1 or rank γ = n. If rank γ = n − 1 then Im γ −1 =
Dom β j = {1, . . . , n}\{ j}. Thus Dom γ = {1, . . . , n}\{ j}, whence Im γ = Dom β j

or Im γ = Dom βn− j+1, and so Dom γi = Im γ = Dom β j or Dom γi = Im γ =
Dom βn− j+1 (since rank γi = n − 1). If rank γ = n then γ = id or γ = τ . If
γ = id then Dom γi = Dom β j . If γ = τ then Dom γi = Dom βn− j+1. Note that
n − j + 1 ≥ � n

2 �.
Therefore, we must have in G ′ at least � n−2

2 � = � n
2 � − 1 distinct elements of

IEnd(Pn)\PAut(Pn). �
Lemma 13 For α ∈ IEnd(Pn) such that Dom α ∈ {{1, . . . , n − 1}, {2, . . . , n}}, we
have α ∈ PAut(Pn).

Proof It is a routine matter to verify that

α ∈ {α1, τα1, α1τ, τα1τ, αn, ταn, αnτ, ταnτ } ⊆ PAut(Pn),

as required. �
Lemma 14 If α ∈ IEnd(Pn)\PAut(Pn) has rank n − 1, then Im α ∈ {{1, . . . , n − 1},
{2, . . . , n}}.
Proof As rank α = n−1,we conclude thatα ∈ {βi , τβi , βiτ, τβiτ | i = 2, . . . , n−1}.
Let i = 2, . . . , n − 1. Since Im βi = {1, . . . , n − 1} and Dom τ = Im τ = n, we
obtain

Im βi , Im(τβi ), Im(βiτ), Im(τβiτ) ∈ {{1, . . . , n − 1}, {2, . . . , n}},

whence Im α ∈ {{1, . . . , n − 1}, {2, . . . , n}}, as required. �
Lemma 15 One has 〈G ′ ∩ PAut(Pn)〉 = PAut(Pn).

Proof First, notice that it is clear that τ ∈ G ′.
On the other hand, let α be any transformation of PAut(Pn) with rank α = n − 1.
Then, there existγ1, . . . , γk ∈ G ′ such thatα = γ1 · · · γk (k ≥ 1).Assume that there

exists i ∈ {1, . . . , k} such that γi /∈ PAut(Pn). Let i be the least index r ∈ {1, . . . , k}
such that γr /∈ PAut(Pn) and let γ = γ1 · · · γi−1 ∈ PAut(Pn) (with γ = id if
i = 1). Then α = γ γi · · · γk implies γi · · · γk = γ −1γ γi · · · γk = γ −1α ∈ PAut(Pn)
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(since γ −1γ = id |Dom γi ). Hence, we have i < k. We have γi+1 · · · γk /∈ {id, τ }
(otherwise γi = γ −1α(γi+1 · · · γk)−1 ∈ PAut(Pn), which is a contradiction). Hence,
rank(γi+1 · · · γk) = n − 1. Let λ = γi+1 · · · γk . Then Dom λ = Im γi ∈ {{1, . . . , n −
1}, {2, . . . , n}}, by Lemma 14. Therefore, we obtain λ ∈ PAut(Pn), by Lemma 13.
Thus, γ −1α = γiλ implies that γi = γ −1αλ−1 ∈ PAut(Pn), which is a contradiction.
Thus, γ1, . . . , γk ∈ PAut(Pn).

Therefore, in particular, we showed that A ⊆ 〈G ′ ∩ PAut(Pn)〉, and therefore,
〈G ′ ∩ PAut(Pn)〉 = PAut(Pn), by Proposition 4. �

Now, as an immediate consequence of Lemma 15 and Theorem 2, we have:

Lemma 16 One has |G ′ ∩ PAut(Pn)| ≥
{
3 if n = 3
n − 1 if n ≥ 4.

Finally, we conclude with the presentation of our second main result.

Theorem 3 The rank of IEnd(P3) is equal to 4 and, for n ≥ 4, the rank of IEnd(Pn)
is equal to n + � n

2 � − 2.

Proof By Corollary 3, we have

rank IEnd(Pn) ≤ |B| =
{
3 + 1 = 4 if n = 3
n − 1 + � n

2 � − 1 = n + � n
2 � − 2 if n ≥ 4.

On the other hand, by Lemmas 12 and 16 , we have

rank IEnd(Pn) ≥
{
3 + 1 = 4 if n = 3
n − 1 + � n

2 � − 1 = n + � n
2 � − 2 if n ≥ 4,

as required. �
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