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1 Introduction

Letn € Nand denote by T, the monoid (under composition) of all full transformations
onthe setn = {1, ..., n} of the first n natural numbers. Let < be any partial order on
n. Let o € T,. We say that « is an order-preserving transformation (with respect to
<) if x < y implies xa < ya, for all x, y € n. Clearly, the subset of T}, of all order-
preserving transformations (with respect to a fixed partial order) forms a submonoid
of T,,.

A very important particular and natural case occurs when a linear order (for instance
the one induced by the usual order on the natural numbers) is considered. The monoid
O, of all order-preserving transformations on 7z, endowed with a linear order, has been
extensively studied since the early 1960s. In fact, in 1962, Aizenstat [1,2] showed that
all non-trivial congruences of O,, are Rees congruences and gave a monoid presentation
for O,, in terms of 2n — 2 idempotent generators, from which it can be deduced
that, for n > 1, O, only has one non-trivial automorphism. In 1971, Howie [13]
calculated the cardinal and the number of idempotents of O, and later (1992), jointly
with Gomes [11], determined its rank and idempotent rank. More recently, Fernandes
et al. [9] described the endomorphisms of the semigroup O, by showing that there
are three types of endomorphism: automorphisms, constants, and a certain type of
endomorphism with two idempotents in the image. The monoid O, also played a
main role in several other papers [3,7,8,10,12,16,17,19], where the central topic
concerns the problem of the decidability of the pseudovariety generated by the family
{O, | n € N}. This question was posed by J.-E. Pinin 1987 in the “Szeged International
Semigroup Colloquium” and, as far as we know, is still open.

A nonlinear order (in some sense) close to a linear order is the so-called zig-zag
order. The pair (77, <) is called a zig-zag poset or fence if

1<2>=3<---<n—1>n, ifnisodd, and
1<2>3<--->n—1=<mn, ifniseven,ordually
1>2<3>--->=n—1<n, ifnisodd, and
1>2<3>---<n—1>n, ifniseven.

The definition of the partial order < is self-explanatory. For instance, forn = 5 and
n = 6, we have the following fences (given by Hasse diagrams):

0] ©) ® @ ©) ©) @ @ ©) @ ®
Observe that, every element in a fence is either minimal or maximal.
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Order-preserving transformations of (finite) fences were first investigated by Currie
and Visentin [5] and by Rutkowski [18]. In [5], by using generating functions, the
authors calculate the number of order-preserving transformations of a fence with an
even number of elements. On the other hand, an exact formula for the number of such
transformations, for any natural number n, was given in [18].

Recently, several properties of monoids of order-preserving transformations of a
fence were studied. In [4] the authors discussed the regular elements in these monoids.
So-called coregular elements of this monoids were determined in [15]. On the other
hand, in [6] Dimitrova and Koppitz investigated the monoid of all partial permutations
preserving a zig-zag order on a set with n elements, by studying Green’s relations and
generating sets of this monoid.

Without loss of generality, we will assume that (72, <) is an up-fence, i.e.,

1<2>3<---.

Let x, y € n. We say that x and y are comparable if x < yorx = yory < x.
Otherwise, x and y are said incomparable. Clearly, x and y are comparable if and only
ifxe{y—1,y,y+1}

Denote by TF,, the submonoid of T), of all order-preserving transformations of the
fence (n, <).

In this paper, we determine the rank and count the number of idempotents of TF,,.

Recall that the rank of a (finite) semigroup S is defined by

rank S = min{|A| | A C generates},

i.e., the rank of § is the minimal size of a generating set of S. For general background
on semigroup theory and standard notation, we refer the reader to Howie’s book [14].

We begin, in the next section, by giving a characterization of the elements of TF,,.
Clearly, the identity mapping id, on 7 is order-preserving. Also, all the n constant
mappings are order-preserving. Moreover, for an even n, id,, is the unique permutation
of 7 belonging to TF,, and, on the other hand, if # is odd, then TF), has exactly two
permutations, namely the identity mapping and the reflection

(1 2 -
m=\pn-1...1)"

Therest of Sect. 2 is dedicated to counting the idempotents of TF,,. Notice thatitis easy
to show that an element o € T, is idempotentif and only if Imo = {x € n | xa = x},
i.e., the image of o coincides with the set of its fix points. In the third section of
this paper, we determine the rank of JJF,. In particular, we provide a minimal size
generating set for TF,.

Notice that TF; coincides with T; and TF, coincides with the monoid O, of all
order-preserving transformations on a two-element chain. Hence, from now on, we
always consider n > 3.
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2194 V. H. Fernandes et al.

2 Idempotents

The aim of this section is to provide a formula for the number of idempotents of TF,,.
In order to accomplish this, it is useful to know the form of the elements of TJF,. We
have the following characterization of a transformation in T7F,.

Theorem 2.1 Let « € T,. Then o € TF,, if and only if
(i) xa — (x+ Da| <1, forallx e{l,...,n—1};
(ii) x and xa have the same parity or (x — Do = xa = (x + Do, for all x €

{2,...,n—1}L

Proof First, suppose that « € TF,. Let x € {l,...,n — 1}. Then, x and x + 1
are comparable, which implies that xa and (x 4+ 1)« are also comparable and so
[xa& — (x 4+ 1)a| < 1. This shows (i). Now let x € {2,...,n — 1}. Assume that x is
even. Then,x — 1 <x >x+1landso (x — Do < xa > (x + Da. If (x — Do # xa
or xa # (x + De, then (x — o < xa or xa > (x + 1), which implies in both
cases that xo is even. Similarly, if x is odd, we may deduce that x« is also odd or
(x — )a = xa = (x + 1)«. This shows (ii).

Conversely, suppose that (i) and (ii) are satisfied. Let x, y € n be such that x < y.
Then, x is odd and y is even. Moreover, y € {x — 1, x + 1}. Admit that xa # yo.
Ify=x—-1,then2 <y <n—1andso |ye —xa| = |yo — (y+ Da| =1
and y and yo have the same parity. If y = x + 1, then 1 < x < n — 1 and so
|xa — ya| = |xa — (x + 1)a| = 1. Furthermore, in this last case, if x > 1, then x and
xo have the same parity; otherwise y = 2 < n and so y and y« have the same parity
(since (y — 1)a = xa # ya). Therefore, we have yo € {xa — 1, xa + 1} and, on the
other hand, yw is even or x« is odd. Thus, in all cases, xa < y«, as required. O

As a consequence of Theorem 2.1, we have that the image of a transformation in
TF, is an interval of 7 (with the usual order).

Corollary 2.2 Leta € TF,. Thenlmoa = {k,k+1, ..., ¢}, forsomel <k < { < n.

Proof Let k = minIm « and ¢ = max Im o« (with respect to the usual order of N).
Assume that there exists p € {k,k+1,..., £} suchthat p ¢ Ima. Let x = max{i €
nlia < p}l.Ifx <n,then(x+1)a > pandso |xa — (x + )| > 1, acontradiction.
Then,y = max{i e n | i > p} < nand(y+1)a < p,whence |yo — (y + De| > 1,
which again is a contradiction. Thus, Ima = {k,k + 1, ..., £}, as required. O

Next we will give a formula for the number of idempotents in 7F,,. Let m € n and
O<p<n—m.Forrel{0,...,m—1},let

s t
0<Y (=D"'pi <pforl <s<t;) pi=r)

i=1 i=1

and

.
K(m.r)={(ko,....k) | ko+7r+2) ki=m—1k,....k € NU{O}}.
i=1
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Further, define

m—1
A(m, p)=Y_|P(p.r)|-|K(m,r)|.
r=0
Lemma 2.3 Let « € TF, withIma = {k, ...,k + p}, for some k € n and some
pef0,...,n—k}. Letap € {k,k + p}andr € {0, ...,k — 1}. Then, there exists a
bijection between the set P(p, r) and the set of all sequences agp, ay, ...,a, € Ima
such that |laj—1 —a;| = 1, foralli € {1,...,r}, and there exists a partition Ay >

Ay > - > A, of {1,...,k}, if ap = k, or a partition Ag < A1 < --- < Ay of
{k+ p,...,n}, ifao =k + p, verifying Aja = {a;}, fori € {0, ..., r}.

Proof Fix a sequence ag, ay, ..., a, € Ima verifying the conditions of the lemma.
Notice that, if = 0 then P(p, 0) = {(0)} and ay is the only possible sequence. Then,
we may admit that » > 0. Let j = 1,ifag =k, or j =2,ifap =k + p. Put po =0
(by technical reasons).

Then, there exists p; € {1, ..., r} such that (—l)l‘Hp] €{0,...,p},ai =ap+
(=1)/*li for 1 <i < py,andeither r = py orap,+1 = ap+ (= 1)/ py + (= 1)/ +2,

If r > pi, then there exists po € {1,...,r — pi} such that (—=1)!T!1p; +
(=D*1py €0, ..., plap +i =ao+ (=1 p; + (=1)/*2i,for 1 <i < ps,and
either r = pi + pa Or ap, 4 py1 = ao + (=1)/ T py + (=1)7 T2 py + (= 1)7 13

Continuing in this way, we obtain ¢, p; ..., p; € N such that

1 N
Zpi:r’ Z(—l)i“pi €{0,...,p}, forl <s <rt,
i=1 i=1

and
qg—1
a .1 =ap+ Z(—I)J'Mpg + (=1)/™i, forl <i < pyandl <q <t.
i+ pe =1
=1
Hence, the sequence ag, a1, . . ., a, is uniquely determined by the ¢-uple (po, . . ., p;).

O

Let us denote by E,, the set of all idempotents of TF,,, for all m > 1. It is clear
that Ey = 751 = T = { ()} and B2 = 752 = 2\ { (D)} = { (D). (). D).
Theorem 2.4 We have

n n—k

|Enl =YY Ak, p)- An+1— (k + p), p).

k=1p=0

Proof Let«a € E,. Then, by Corollary 2.2, there existk e mand p € {0, ..., n — k}
such that
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2196 V. H. Fernandes et al.

Ima=1{k,k+1,...,k+ p}.
Since « is idempotent, we have (k + i)a = k + i, fori € {0, ..., p}. Let
A" ={l,...,k} and AT ={k+p,...,n}.

First, we consider the set A~. By Theorem 2.1, we have |xa¢ — (x + Da| < 1 for
allx € {1,...,k—1}. Hence, there existr € {0, ...,k — 1}, asequence ag, ..., a, €
Im e and a partition Ag > A} > --- > A, of A™ such that |a;_; —a;| = 1, for
1 <i <r,and Aja = {a;}, for 0 < i < r. Moreover, xa and x have the same
parity or (x — )¢ = xa = (x + Do, forall x € A7\{1, n}. It follows that there exist
ko, k1, ..., k. € NU{O}suchthat |A;| = 1+2k;,forO0 <i <r—1,and |A,| =k, +1.
Thenk, +r+2 Zf;é ki = k—1andsothe sequence Ag > Ay > --- > A, isuniquely
determined by an element of K (k, r).

Ifr =0,then A~ = Ag and P(p, 0) = {(0)}. On the other hand, admit that » > 0.
Then, by Lemma 2.3 (with ag = k), we have that the sequence ay, .. ., a, is uniquely
determined by an element of the set P(p, r). Hence, o[ 4 is uniquely determined by
an element of the set

k—1
B~ (k. p) = | JK(k.r) x P(p,r) x {r}.
r=0
Dually, there exist s € {0,...,n — (k + p)}, a sequence ao, ...,as; € Ima and
a partition Ag < Ay < --- < A of At such that |gj_1 —a;| = 1,for1 <i < s,

and A;a = {a;}, for 0 < i < s. Also, there exist £y, £1, ..., £L; € N U {0} such that
s—1

|A;l = 1+2¢,for0 <i <s—1,and |As| = €5 + 1. Then, £, +r +2) ¢ =
i=0

n—(k+p)=m+1)—(k+ p) — 1, whence the sequence Ag < A1 < --- < Ay is

uniquely determined by an element of K (n + 1 — (k + p), s).

Ifs = 0,then AT = Agand P(p, 0) = {(0)}. So,admitthats > 0. Then, by Lemma
2.3 (with ap = k + p), we have that the sequence ao, . . ., a; is uniquely determined
by an element of the set P(p, s). Consequently, |4+ is uniquely determined by an
element of the set

n—(k+p)

Btk.p)= ) Ka+1—(k+p).s)x P(p.s)x s}
s=0

Notice that it is easy to verify that |B_(k, p)| = A(k, p) and |B+(k, p)| =AM+
1 —(k+ p), p). Moreover, & |m « is the identity mapping on Im « and Im « is uniquely
determined by an element k of the set 77 and an element p of the set {0, ...,n — k}.
Thus, the transformation « € E,, is uniquely determined by an element of the set

n n—k

UUB . p) x B¥ k. p) x (k. p)}.

k=1p=0
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Conversely, as the construction of this set clearly justifies that each of its elements
determines uniquely an idempotent in T, we have

n n—k

|Eql = |U U B (k, p) x B*(k, p) x {(k, p)}
k=1p=0
n n—k

= Y Y |B (k. p) x B¥(k, p) x {(k, p)}|
k=1p=0

n n—k
=Y 3 |B k, p)|-|BTk, p)}| - K p)}
k=1p=0
n n—k

= > Y Ak,p)-An+1—(k+ p), p),
k=1p=0

as required. O

The table below gives us an idea of the size of the monoids TJ,, and of their number
of idempotents.

[Em|[|TFm| m| |En] [TFm|
1 1 9( 1039 6187
3 10| 2243 16,459
8 11 11| 4901 44,931
19 | 31 121 10,591 | 117,831
44 | 99 13] 23,190 | 315,067
98 | 275 14] 50,335 | 817,323
218 | 811 15]110,651|2,152,915
47412199 16|241,457|5,537,839

oo QA O L] K| W Of —=[ I

These numbers were calculated by the formula of Theorem 2.4 and by the formulas
given by Rutkowski [18].

3 The Rank of TF,

This section is devoted to determine the rank of TF,. In the process, we give an explicit
minimal size set of generators of JJF,. The cases n odd and n even will be treated
separately.

The following general observation will be frequently used without reference.

Lemma 3.1 Let o, o' € TF, be such that Ker o = Ker o’ and rank o > 1. Then, xo
and xo' have the same parity, for all x € 7.

Proof Letx € n.Sincerank « > 1,thereexists y € xaa ™! suchthat y+1 € 7\ yoor ™!
or y — 1 € m\yaa~!. Therefore we may consider four cases. For instance, if y + 1 €
m\yaa~ ' and y < y + 1 then xa = ya < (y + Da and xo/ = ya' < (y + Do/,
whence xa and xo’ have the same parity. The other three cases are similar. O
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2198 V. H. Fernandes et al.

Next, we define a series of transformations of TF,,. Let (for any n)

T234.
“r=1 9 34. .
1~%7@7ﬁfﬁ7ﬁkﬂu.n
Lek=1 & k+1 k+2~-~n—2)’ for 2=k=n—4,
o (1 n—=3n=2nn-1
2= n=3 n=2 n-1

ck—=1kk+1,k+2k+3--- n

1.
le.k+1.k+2=<1._.k_1 k k+1---n=2

),fornz4,
), forl <k<n-2,

K41k kT2 22k 1ok T12k+2 - n n—1
k1 k+2 -0 2k 2k+1 2k+2~-~n>’ for ISkSL J and

P (U k=1kk+2mk+1,k+2m—1Lk+2m+1 ---
km =1 k=1 &k k+1
k+(m—1)k+2m—(m—1)k+2m+(m—1)k+m k+3mk+3m+1--- n
. k+@m-—1) k+m k+m+1 ---n—2m

for 2 <k,m <nsuchthatk +3m <n — 1.
Moreover, for an odd n, recall that
(1 2 ---n—1n
m=\nn-1--- 2 1)
and, for an even n, let

. 1,2 3 4 ...n

o =

1.2 nn—1ln—-2.---2)°

o _ 1 2 ---n—2n-1,n
=\ 1p—2... 2 1 ’
1 2k—15+k5+k—-1,5+k+15+k—-2,5+k+2---2k,n
2k.n = s
2k—1124k Tk—1 L4k-2 s 2k

n—4
forl <k < , and
e (k+1kk+2- 2.2k TL.2k+12k+2--- n n—2
"‘12k+1_(k—1 ko 2k—2 2%k—1 2% ...n—2) frEsk=s—7—

Now, for an odd n, define
G = {yn- 012} U{onis2 |2 <k < "2} Uforppiasa | 1 <k < 251U
{2k | 1<k <S5 U{Bem |2 <k,m <5  and 2k +3m < n + 1)
and, for an even n, define
Gp = {idn, af 5, 013, 1. tn—2.} Utk k2 | 2 <k <n—4}

U{etk k1,442 |12 <k <n -3} U

@ Springer



The Rank of the Semigroup of All Order-Preserving... 2199

n n—4
{o] 2kt |2Sk§§_l}u{a2k,n|1§k§T}
U{Bkm | 2<k,m <nand k+3m <n —1}.

From now on, our main aim is to prove that G, is a generating set for TF, of
minimal size.

The following lemma shows that all the transformations above defined belong to
the subsemigroup (G,) of TF, generated by G,,. Frequently, we will use it without
reference.

Lemma 3.2 We have:

@) {ork+1 k42 |1 <k <n—2} C(Gp);

(i) {o1ok41 12 <k < |52 ]} S (Gy)s

(i) {ag k42 12 <k <n—4} C(Gy);

) {(Bxm |12 <k,m <nandk +3m <n — 1} C (Gp);
1...2km... E_Fk’@_‘_k ﬂ_{_k

) @2n = (1 L2k 2kl e "2;1+2k ni g

odd and 1 < k < "53;
(Vl) p—2n € (Gn)

Proof (i) Forn oddand % <k < n—=2,wehave ot k+1.k+2 = YnOn—k—1.n—k.n—k+1
¥n1,2,3. On the other hand, for n even, we have a123 = (xizan_lg,, and
Op—2n—1,n = an—l,naiz‘xl,Z,}

(ii) Fornevenand2 < k < %, we have o] 2541 = “f,2k+10‘i20‘1,2,30‘(f,2-

(iii) For n odd and % <k <n—4,wehave ok y+2 = YnOn—k—2.n—kVn¥1,2,3-

(iv) Let n be an odd number and let k, m € % be such that k + 3m < n — 1 and
2k +3m > n+ 1. Then 2(n — (k +3m) + 1) < n + 1 and we have S, =
Vnﬁn—(k+3m)+l,myn (a1,2,3)m~

(v) For 1 <k < 52, we have a0 = Yn01 2(k-+1)+1Vn-

vi) Finally, we have «,,_7 ,, = Y,01.3Y,, Whenever n is odd.

Y , VYn¥1,3Y
O

In order to prove that the set G, generates TJ,, our first step is to show that, for
any transformation in TJ,,, there exists a transformation in (G, ) with the same kernel.
For any set A C 7, define

Rel(A) = {x € n\ A | x and a are comparable, forsomea € A}.

Lemma 3.3 For any o € TF,, there exists o' € (G,) such that Ker o’ = Ker a.

Proof Let a € TF,. We make the proof by induction on the rank of «.

If rank @ = n, then Kera = Kerid,, and we have id,, € G,, for n even, and
id, = ynz € (Gy), for n odd.

Assume that rank « = n — 1. Then, there exists i € Im « such that |ia’1| =2 and
|je™'| =1, forall j € Ima\{i}. This implies |Rel(ia™!)| < 2,i.e.,ia™! = (1,2}
oria”! ={1,3}oria”! = {n—2,n}oria~! = {n — 1, n}. By noticing that, for an
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2200 V. H. Fernandes et al.

odd n, we have a1, = ypo1,2 and @,—2., = Yn®1,3Yn, it follows that there exists
o' € (G,) such that Ker o’ = Ker «.

Admit now that rank @« = n —2. Then, for some i € Im «, we have 2 < |ioc_1| < 3.

If [ia™!| = 3, then there exists k € {1,...,n—2} suchthatia™" = {k, k+1, k+2}
and ‘j(x_ly =1, forall j € Ima\{i},i.e., Kera = Ker g g+1,x+2, With g x+1,k42 €
(Gn).

Now, suppose that |ia‘1| = 2. Then, ja‘1| =2, for some j € Ima\{i}.

Admit that [Rel(ia )| < 2. Then,ia™! = {1,2} oria™" = {1, 3}orie™! = {n—
2,n} or o~ = {n — 1, n}. Since rank « = n — 2, we conclude that |Re1(joc_1)| <2
oria”! C Rel(ja!).So, wehave ja~' = {(n—2,n}or jo~' = {n—1,n},ifia"! =
(1,2} oria™ ' ={1,3},0or ja= ' ={2,4},ifia”' ={1,3},0or ja~ ' = {n—3,n—1},
if ia™! = {n — 2,n}. Hence, we get Kero’ = Kera, with &' = &) 20,1, (and

o = (a12¥n), whenever n is odd) or ' = a1 2042, OF & = &) 30,1, (and

o = a1 3Yn01,2Yn, Whenever n is odd) or ¢/ = 30,2, or &' = 13015 Or
o = ap_pp0n_ap. Observe ay_4, = yya15yn € (G,), whenever n is odd (since
a5 € (Gp) by Lemma 3.2), and a2 = af’zaf’z, whenever n is even. Since all the
other transformations used belong to (G,), we have o’ € (G,). Dually, in the case
‘Rel(joc_l)| < 2, we can show that there exists o’ € (G,), with Kero’ = Ker «.

Notice that the case |Rel(ia‘1)| > 4 or |Rel(ja_l)| > 4 is not possible since

rank o = n—2. So, it remains the case |Rel(ia’1)| = ]Rel(ja’])} = 3. This provides
ia~! = {1, k), for some k € 2N + 3, or i~ ! = {n — k, n}, for some k € 2N + 2,
oria~! = {k, k + 2} for some k € {2, ...,n — 3}. Then, there are two elements in

Rel(ja~!) with the same image, which is i since rank @ = n — 2. This shows that
ie”! C Rel(a™). By the same argumentation, we obtain ja~! C Rel(ia™").

Supposethatioz_1 = {1, k},forsome k € 2N+3. Assume thatk > 7.Then,jo¢_1 -
Rel(ia™) = {2,k — 1,k + 1} and ia~! C Rel(jo™!) implies [Rel(ja™!)| =4, a
contradiction. Hence, we have ia~! = {1, 5}. Then, once again o™l C Rel(jot_l)
and |Rel(joz’1)| = 3 implies jo~! = {2,4}. Thus, Kera = Kerojs and a1 5 €
(G,). Dually, we can show the existence of a’ € (G,) with Kero/ = Kera, if
ia” !l = {n — k, n}, for some k € 2N + 2. Similarly, we obtain &’ € (G,) with
Kera’ = Kera, if ja~™! = {1, k}, for some k € 2N + 3, or ja~! = {n — k, n}, for
some k € 2N + 2.

Finally, we consider the case il = {k, k+ 2} and joz_1 = {¢, £ + 2}, for some
k,t € {2,...,n—3}).Noticethat {k, k+2} = ia~' C Rel(ja™!) = {¢—1, £+1, £+3)}
andso k = £ — 1 or k = £+ 1. Therefore, we have Ker o« = Ker «;; 42, withm =k,
ifk=¢—1,orm =¢{,ifk = ¢4 1. Hence, Ker o« = Ker oy, ;42 and oty 2 € (G).

Next, we suppose that p = rank @ < n — 2 and assume that for all 8 € TF,, with
rank 8 > p, there exists 8’ € (G,) such that Ker 8/ = Ker 8. Further, there exist
a unique m € n, a sequence di, ..., d, € Ima and a partition A < --- < A, of
n with |a; —ajy1| = 1, for 1 <i < m, and Aja = {a;}, for | < i < m. Notice
that the elements in the sequence ay, ..., a, have not to be pairwise distinct and
Imo ={ay, ..., an}. Put x (o) = m. Observe that this construction can be applied to
any element of JJ,, and so we have a well-defined mapping x : TF, — 7.
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Let
_J 0 if ayis odd
=17 if aj is even
and define
f— A Ay - An
“\l+ay 24ay - m4ay )’
Itis clear that 8 € TF,,.
First, consider the case m = p (i.e., Kero = Ker g). Take i € {1, ..., p} such that

|A;| >3and A; = {k, k+1, ..., k+s},withk € {l,...,n—2}ands € {2,...,n—k}.
Define

o = A A k k+1 k+2---k+s Aiti Ap
"\ i4ay - i—l+ay i+ay i+14+ay i+2+ay i+3+ay - p+2+ap)’

fori > 1, and

o — l--k=24s k—14s k+s Ay - A,
= 1+ ag 24ay 34ay 44+ay -+ p+2+ag/)’

ifi = 1.Since p < n—2,wehave p+2+aqaq € n. By using Theorem 2.1, we can verify
thata € T3, Sincerank o1 > p, thereis af € (G,) with Ker o] = Ker o;. Suppose
_ . -1 .
thatlma} = {af, ..., a%,,}suchthatat(e})™" = (j+ao)a;  forj € {I,..., p+2}.
Let
s k *
= Uaf.af, ) afy, ?f ai = aH’*l
afpat,ap 1 aiyy <aj
It is a routine matter to verify that Ker ajap = Ker 8 and so there exists a’ € (G,,)
such that Ker o’ = Ker 8 = Ker a.

Now, admit thatm > p. Then, thereexisti € {l,...,m—1}ands € {i,...,m—i}
such that the elements of {a;, ..., a;+} are pairwise distinct, a;+2; = a; and one of
the following five conditions is satisfied:

(@ i+ao=1;

Mb)i+ay>2,i+2s=manday+i+2s =n;
©i+ay>2,i+2s=m,ap+i+2s <nandn—m < i,
di+ay>2,i+2s=m,ap+i+2s <nandn—m > i,
(e) ajy3s = aj+s andi + 3s < n.

We will define in each of these five cases transformations p; and w;. Let p1 = a1 25+1,
in the case (a); let p1 = «_| ,_o, | , in the case (b); let p; = o | 241-n | _» 10 the case
ZLTJ” B fJ’"

(c), where 2(i +s) —n =i +m —n > i —i = 0; let p} be defined by

ot = 20 +s+ap) —x ifl<x<i+4+s+a
PL= otherwise,
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in the case (d); and let p; = B, 5, in the case (e). It is easy to verify that p; € (G,) in
the cases (a), (b), (c) and (e). In the case (d), we observe that ¢ = rank pf =n — (i +
s+4ag)+1 > p.Then, there exists p; € (G,) such that Ker p; = Ker p'. Suppose that
Imp; = {dy, ..., d,} suchthat j(05)~" = d;_(s4itag)+10; ' fori+s+ap < j <n.
Let w; be defined by

ajys ifl<x<l+4s

Xw] = 1 dy ifl+s<x<m
a,  otherwise,

in the case (a); let @ be defined by
Ay—qy fl+ay<x<i+s+ao

xw1={ a4y ifi+s+ay<x=<n
aj otherwise,

in the cases (b) and (c). Since ¢ and a¢_g4, have the same parity forall 1 +ap < £ <
m ~+ ag, we conclude that w; € TF),. Let w; be defined by

Qits ifl<x<dy <dyord, <dy <x<n
xw) =3 Giys—¢+1 fx =dpand1 <€ <i+s
ap otherwise

in the case (d). Let [ € {1,...,i 4+ s}. Then, there exists j € {i +s + ag, ..., n}
suchthat £ = j — (i +a + ap) — 1. From j(,oi“)_1 = dg,ol_l, dew) = ajy5—¢+1 and
the fact that j and a4, have the same parity, we conclude that d; and dyw; have
the same parity. This shows that w; € 7 F,,. Moreover, rank w; = ranka = p and
x (o) = x(w1) + s. Consider now the case (e) and define w; by

Ax—ag ifl4+ag<x<i+s+ap
o — gtx—ay fi+s+a+1<x<m-—2s+ag
! anm, ifm—2s+ay<x<n
aj ifx =1.

It is easy to verify that rank @ = rank w1 and x (o) = x(w1) + 2s. Moreover, it is a
routine matter to show that w; € T, and @ = Bpjw;.

Next, we can focus on w; and end up getting a sequence py, ..., p; € (G,) (for a
suitable r € N) and an element w € T, such that rank @ = rank w, x (w) = p and
a = pp1---po.

By the case m = p, there exists @' € (G,) such that Ker o’ = Ker w, whence
Ker Bp1 - - - p;’ = Kera.

On the other hand, since m > p, there exists u € (G,) such that Keru =
{A1, ..., Ay}, say

Al Ay - Ap
Hn= )
CI cz e Cm
by our inductive assumption. Clearly, by Theorem 2.1, either ¢y > --- > ¢, or
g < - <cp.Ifep > -+ > ¢ then we take 1 = af ,, if 7 is even, and we
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take €1 = yy, if n is odd. Since ¢ € G,, whence ue; € (G,), we can assume that
c1 < -+ <cp.If 1 4ag < cy, then there exists s € n such that 1 +ay = ¢1 — 2s. It
follows that B = u(a1,2,3)° andso B € ( n)-

Altogether, we have shown that Bp; - - - p,w” € (G,,) andKer Bp; - - - p;w’ = Ker«,
as required. O

Now, we are able to prove that G, is a generating set for JF,.
Proposition 3.4 We have (G,) = TF,.

Proof Leta € TF,.

Admit that rank o« = n. If n is even, then @ = id,, € G,,. If n is odd, then @ = id,,
ora =y, € Gy, with v, ¥, = id,,. Thus, @ € (G,,).

Suppose now that 2 < m = ranka < n. By Lemma 3.3, there exists o’ € (G,)
such that Ker o = Ker o’. Take

Ima ={aj,...,an} and Ima’' ={a},...,a,},
with ay <a2<~~~<amandai <a2<~-<a and define A; = gja”!, for
1 <i < m. Observe that A; = aja’~ ' for1 <i <m, orA; =a l,for

) ml+la
1 <i<m.

Letm =n—1.Then,n ¢ Imaxor 1 ¢ Ima as wellasn ¢ Ima’ or | ¢ Im¢’.
IfA; = alfo/_l, for 1 <i <n — 1, then a; = a}, since a; and a| have the same
parity, by Lemma 3.1. Hence, ¢; = a;, f0r1 <i<n-—1,andsoa = o’.

Next consider the case A; = am l+10‘ for 1<i<n-—1.Let
k= 0 ifa; =1
11 ifa; =2.

Then, a; =i + k and

, _|n—k—i+1 ifnisodd
Ap—it1 n+k—i ifnis even,

fori =1,...,n— 1.If nisodd, then we have

71/1

a; (a/)/n) =@{+hy, o 1

=(n—G+k+Da" =a,_; o ' A =0,

for1 <i < n — 1. Since Kera = Kera’ = Kera/y,, this shows that « = o'y, €
(Gp). If n is even then put po = aty—1,n € (Gn) and p1 = af , € (G,). Observe that
o restricted to Im ' is an injection. Hence, we have Ker @ = Ker o/ = Ker o’ o and
’ -1 . -1 /-1 . =1 -1
ai(@'p)” =@ +kp, @ =m—-it+tka =A =aqa
forl <i <n—1.Thusa =a’p € (G,).
Admit now that 2 < m < n — 2 and suppose that 8 € (G,,), for all 8 € TF,, such
that rank 8 > m.
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Suppose that A; = a =1 for 1 <i < m. Take

/
m—i—Ha
Yn ifnisodd

p=19af, ifnis evenand 1 ¢ Im
Qn—1n ifnisevenandl € Ima.

Then, we have Ker « = Kera’ = Kera'p and

-1 1 1

= (ay, i p)@p)!,

/ / / —
Ai=a,_ ;o =(a,_i 1p)p

forl <i <m,witha'p € (G,) anda,’n_in < a;l_j+1p,for1 <i < j <m.Thus,
we can assume that A; = a{a’_l, forl <i <m.
Ifa = a§ = 1, then we immediately obtain that a; = alf, forl <i < m,ie.,

a=ca €(G,).
Consider a; = 1, a} > 1 and a,, # n. This implies a;,,, a,, < n and so we put

ﬂoz 1...ai aé . o a;n ar/’1+1...n .
ap a -+ apy am + 1

It is easy to show that By € TF,, with rank 8y = rank & + 1, whence By € (G,). For
1 <i <m, we have

ai@ o) =aipyle T =dd T = Ay = qia,

as a; is the unique element in Ima’ N a; By !, Since the restriction of Bo to Ima’ is
injective, we also have Ker o = Kera’ = Ker o/By. Thus, a = o’ By € (G).

Next, consider a; = 1, a] > 1 and a;, = n. Then, a} > 3, since a; and a| have the
same parity. Further, we have a; = i, forl <i < m. So, we obtain

6 = 1,3 2,4 5 --- n _ Jasef 5 €(Gn) ifniseven
'ZU1 2 3 oon=2) 7 laseserns € (Gy) ifnisodd.

Moreover, let

182: 12ai_1 ai al/’l‘l*l al//n...n '
1 2 3 - m+1 m+2

It is easy to verify that 8, € TF,,, withrank 8, = rank « +2 > m, whence 8, € (G,,).
Hence,

ar@Bap) = apr Byl T =187 B e T = (1,387
= {l,a/l}o/_1 = a/lo/_1 = Al =aja !,
_ _ _ —1 _ —1 —1
wm@' b)) =267 T = 2,48 T = (2, af — 1 ab)e!

—1 _
= aéo/ = A2 = a !
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and, for 3 <i < m,
— ch—1 p— —1 . — -1 —1 _
ai@'paB)” =i By T =i+ 2By T =aja = A =aia

Notice that B, restricted to Im o and By restricted to Ima’By = {3, ..., m + 2} are
injective. It follows that Ker o« = Kera’B81 and so @ = o’ B281 € (Gy).
Now, consider a; > 1. Suppose that a] = 1. Then, a,, < n — 1, since rank o’ <

n — 2. Take
By = 12 - n—-3 n—-2,n—-1,n
37\3 4 - n—1 n ‘

If n is even, then B3 = an_lgnaf’z, whence 83 € (G,). On the other hand, if n is odd,
then B3 = y,a12.3Yn € (Gy). Thus, we have @’ B3 € (G,). Clearly, 1 ¢ Im 83 and so
1 ¢ Ima’Bs. Since n,n — 1 ¢ Im o/, we have that B3 restricted to Im &’ is injective.
Hence, Ker o’ = Ker o’ 83. Therefore, we can assume that a| > 1. Take

/ / / -
ﬁ4= 1...a1_1 al ... am71 am...n )
ar —1 ap -+ Apm—1 am

It is easy to verify that 84 € TF,, with rank 84 = rankoe + 1 > m, whence B4 €
(Gp). Since B4 restricted to Im &’ is injective, we obtain Ker o = Ker o’ = Ker o’y
and, fori € {1, ..., m}, we have
_ -1
ai(a' )~ = aiﬂ;]a/ I do = A =aal
Thus, @ = o'B4 € (G,).
Finally, let m = 1, i.e., there exists a € n such that i = a, for all i € n. Without

loss of generality, suppose that a > 1. Clearly, 85 = < } 2 2 n) € (G,) and either
1,2 3---n e 1,2 3.-n .
Be = u a—l) € (Gp) (if a is even) or Bg = a—1 € (G,) (ifa
is odd). Then S5 B is the constant mapping with image {a}, i.e.,« = B58¢ € (G), as
required. O

It remains to show that G, is a generating set for TJ,, of minimal size. With this
goal in mind, in the next two lemmas, we determine a lower bound for the minimal
size of a generating set for T3, (for n odd as well as for n even) and find it coincides
with the cardinality of G, (which gives us an upper bound).

First, we consider an odd n.

)

n—

Lemma 3.5 Letn be an odd number. Then, rank (TF,,) > %(n— D+
k
= |Gyl

4

(12 -

||
S}

Proof Let A be a generating set of 7F,.
Since {a € TF, | ranka = n} = {y,,id,}, we have y, € A. Let AQ = {y,}.
Then, |[AQ| = 1.
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Let « € TF, be such that rank @ < n — 1. Then, for some natural number p,
there exist oy, ...,ap € A\{id,}, with @1 # y,, suchthat ¢ = a1 ---ap or @ =
Yno1 - - - p. Take

- {al ifa =ar---ap
b= e ifo = o - cOp.

Clearly, Ker o] € Kero and rank o] <n — 1.

If @ = > then Keraf = Keraj or Kera] = Kery,a s, i.e., there exists
p1,2 € AwithKer p1 » = Ker o 5 or Ker p1 2 = Ker y,,a1 2 (namely p1,» = «1). Take
AD = AO U{p) ). Then, |[AD]| = |AQ| +|{p) 2}| = 2. Analogously, there exists
p1,3 € A with Ker p1 3 = Keray 3 or Ker p1 3 = Ker y,,a1 3. Clearly, p13 ¢ AW and
we take A®) = AV U {p; 3}. Then |[AP| = |AD| + [{p13}| =2+ 1=3.

Leta = ag k42, forsomek € {2, ..., %}.Then (k,k+2) e Kerafor (k+1, k+
3) e Keraf.From2 <k < #,itfollows thatk+3 < n.Hence, |Rel({k, k + 2})| =
[Rel({k + 1, k + 3})| = 3 and thereexista, b € n\{k,k+2}ora,b € n\{k+1, k+3}
such that (a, b) € Ker . But Ker o} C Ker g 42 implies that (a, b) € Ker ay x42.
Since rank oy k42 = n—2, we have Ker o] = Ker o x42. Hence, there exists p x12 €
A with Ker pg x42 = Ker oy k42 or Ker pg k2 = Ker y, a4 k2. Moreover, we have
Pk k+2 ¢ AD _ On the other hand, assume there exist 2 < k < £ < % such that
Ker oy k2 = Ker yyop p42. Thenk =n— (£ +3)+ landson=k+£+3 -1 <
% + % +2=n—-3+2=n—1, acontradiction. Hence o k42 # pe,¢+2, for
2 <k << Take

B® = {prrs2 |k e{2,.... 52}

and A® = A® U B® . Since AP N B = ¢, we obtain [A®| = |AP |+ |BO| =
3482 = nfl

Let @« = g k+1,k+2, for some k € {2, %} Then, k + 2 < n and, by
Theorem 2.1, there exists no § € TF, with rank 8 = n — 1 such that Ker § C
Ker oy y41,k+2. Hence, Ker af = Ker oy x+1,k+2 and so there exists pg k41,442 € A
with Ker og k+1,k+2 = Ker o k41,k+2 Or Ker pg k+1,k+2 = Ker oy k+1,4+2. Clearly,
Pririht2 & AD.

Let « = «j23. If ranka] = n — 2 then Keraf = Keraj3 or Keraf =
Ker y,o1 2 3. Now, admit that rank oz’l“ = n— 1. Then, there exists j € {2, ..., p}such
that rank ey ...aj—1 = n — 1 and rank @ .. .aj = n — 2. Observe that either
Imafoy...aj—; = {1,...,n — 1}, with {1,2,3}afaz...aj_1 = {n —2,n — 1},

or Imajay...aj—1 = {2,...,n}, with {1,2,3}afas...aj—1 = {2,3}. Suppose
that Imofar...aj—1 = {2,...,n}. Then {1,2,3}afar...j—1 = (2,3} and
we conclude that (2,3) € Kera;. By Theorem 2.1, this implies that (1,2) €
Keraj or (3,4) € Keraj. The case (3,4) € Kera; is not possible since oth-
erwise rank oz’faz ...aj < n — 3, a contradiction. Thus (1,2) € Kera; and so
Keraj = Keray 3. If Im ai‘az ...aj_1 ={1,...,n — 1} then, similarly, we obtain
Kera; = Keray—2,-1,n = Kery,ai 2 3. Therefore, there exists p123 € A with
Ker p1,2,3 = Keray 2,3 or Ker p1 23 = Ker y,12,3. Clearly, p12,3 ¢ A® . Assume
thereexist 1 < k < £ < % such that Ker o 4 +1,x+2 = Ker yot¢ ¢+1,042. Then
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k=n—(+2)+landson=L+k+1<H +2t1=n—14+1=na
.

.. 1
contradiction. Hence o k41 k42 # pPe.e+1.642,forl <k < £ < %5 Take

BY = {ppprips2 | ke {l,.... 5t}

and A® = A® U B® _ Since, A® N B® = @, we obtain ’A(“)] = |A(3)] + ‘B(“)‘ =
2 2

Leto = oy 2k41, forsome k € {2, ..., %}.Then
Kerojoky1 ={(1+i,2k+1—-0) |0<i<k—-1}U{(x,x) | x en}.
Giveni € {1,...,k —2}suchthat (1 +i,2k+1—1) eKera’f,wehave
Rel({l1 +i,2k+1—-ih)={1+i—-1,2k+1—-i—-1,14+i+1,2k+1—-i+1}.

Since Kera] < Keroaj gy, we have (1 4+ (G 4+ 1),2k+1 -G + 1), 1+ ( —
1,2k +1— (@G —1) € Keraf. If (k,k +2) € Keraf then Rel({k, k + 2}) =
{k —1,k+ 1,k + 3} and so we have (k — 1, k 4 3) € Ker a]. Now, assume that (1 4
i,2k+1—i) ¢ Keraj,foralli € {1, ..., k—1}. Then, Ker o] C Ker oy 241 implies
(1,2k + 1) € Keraj and rank of = n — 1, which is not possible by Theorem 2.1.
Therefore, Ker off = Ker o1 2k+1 and so there exists p1 2x+1 € A with Ker p1 2¢41 =
Ker oty 2k+1 or Ker p1,2k+1 = Ker y,a1,2¢41. Since (1,2k + 1) € Ker p1 2x+1 or
(n,n — 2k) € Ker p1 2k+1, we have p1 241 ¢ A® Fork,l e {2,..., %}, we have
(1,2k+1) € Keraj og+1 and (1, 2k+1) ¢ Ker ypay 20+1. Hence, p1 ok+1 # 01,2041,

for2§k<€§%.Take

B® = {p1aks1 | kef2,.... 51}

and A® = A® U BO) . Since A® N BO = ¢, we obtain |A(5)| = |A(4)| + |B(5)| =
n—i—"T_3=3"2_3 =%(n—1).

Finally, let @« = B, for some k,m € {2, ..., %} such that 2k +3m < n + 1.
It is easy to verify that {k + i,k +2m — i,k + 2m + i}, for 0 < i < m, are all
the non-singleton Ker By ,,-classes. If i € {1,...,m — 1} is such that (k + i)a] =
(k +2m — i)af = (k +2m + i)a then

Rel({k +i,k+2m—ik+2m+i}) ={k+i—1,k+2m—i—1,
k+2m4i—lk+i+lLk+2m—i+1,k+2m+i+1)

implies
k+G—1)af=®k+2m—(G—1)ef =®k+2m+ G —1)aj
and

(k+ (i + 1)} = (k+2m — (i + D)af = (k+2m + (i + D)a,
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since Ker o C Ker By . If (k, k +2m) € Ker o} then, similarly, we have
(k + Daf = (k+2m — Daf = (k+2m + Daf.
Moreover, we obtain
k+m—1Daf =(k~+2m—(m—1))af = k+2m+ (m—1)af,
whenever (k +m, k+3m) e Ker af. Therefore Ker o] = Ker f , and so there exists

8k.m € A with Ker & ,, = Ker Bi , or Ker &k ,, = Ker y,, Bi.m. Moreover, it is easy to
verify that & ;, ¢ A®) . Take

B = (8m | kome{2,.... Y and 2k +3m < n +1}.

Assume there exist k,m, p,q € {2, ..., %} such that B m = yuBp,q, With 2k +
3m,2p+3qg <n+1landk # porm # q.Then,k =n—(p+3q)+1.1fk < p then
n=k+p+3¢g—1<2p+39g—1 <n+1—1 = n,acontradiction. Admit that p < k.
From By m = YuBp,q.itfollows that B, o = ¥ Br,m andso p = n—(k+3m)+1. This
provides again n < n, as in the previous case. Suppose now that p = k. Then, g # m
andwehave p = n—(p+3m)+1 #n—(p+3q)+1 =k,i.e., p # k,acontradiction.
This allows us to conclude that 8¢, # &p 4, Wwheneverk, m, p,q € {2, ..., %},with

n—=>5
2k+3m,2p+3q <n-+1landk # porm # q. Thus, |BO| = 5 (| 22| —1).
k=2

Take A©® = A® U B©® Since A® N B© = @, we obtain
%
3 1—2k
=] 0] =S 0+ 5 (| 22 1) .
2 k=2 3

n=>5
Since A©® < A, we have [A] > |A©| = 3 — 1) + i (| 2525 | — 1), which
k=2

[V}

i

0+

allows us to deduce that rank(T7F,) > %(n -1+ (L”Jrg—_sz — 1) = |Gy, as

required. =

~
[|
S}

Next, we consider the even case.
n=7
Lemma 3.6 Letn be an even number. Then, rank (TF,) > 3n—8+ > (L%J —-1)
= Gul. -
Proof Let A be a generating set of 7F,.

Since {« € TF, | rank @ = n} = {id,}, we have id, € A. Let A = {id,}. Then,
|AO] = 1.
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Let o € JF, be such that rank o < n — 1. Then, there exist ay, ..., a, € A\{id,}
such that @ = a; ..., for some natural number p. Clearly, Kera; C Kera and
ranka; <n —1.

Ifa € BO = {o1,2, @13, tn—1.n, @n—2,n}, then it is easy to verify that « = ;.
Hence, B!)' € Aandwe define A" = AQUBM . Wehave |[AD| = |A@|+|BD| =
1+4=5.

Leta = o k42,forsome?2 < k < n—4.Then (k, k+2) € Keraj or (k+1,k+3) €
Kerag.Since2 <k <n—3,wehave Rel({k, k+2}) ={k—1,k+1,k+3} Cnor
Rel({k+ 1, k+3}) = {k, k+2, k+4} C 7, respectively. Since Ker a1 € Ker ot 42,
we obtain Ker o1 = Ker a4 x+2. Hence, there exists pg x+2 € A suchthatKer pg 42 =
Ker o k2. Thus, being

B(z) = {Pk,k+2 | k S {2, e, n —4}},

we have [B®| = n — 5. Take A®) = AD U B@. Since rank pj 42 = n — 2, it
follows that pg k42 ¢ AWM Then |A(2)| = |A(1)| + |B(2)| =54n—-5=n.

Leta = ali,k+1,k+2’ for some k € {2, ...,n — 3}. Then, there is no § € TF, such
thatrank 8 = n — 1 and Ker 8 C Keroz,‘ikﬂ,kﬁ. Thus, there exists pg k+14+2 € A

with Ker pg k41442 = Keraf ;| 1o Clearly, p xy1442 ¢ A, Take

B® = {ppsihs2 ke (2,...,n—3}.

Then, |B(3)| = n — 4. Furthermore, being A® = A@ U B®, we have }A(S)’ =
AP+ |B®|=n+n—-4=2n—4.
Let o = o1 2k+1, forsome k € {2, ..., ’% — 1}. It is clear that

Keragope1 ={(1+i,2k+1—-0)|0<i <k —1}U{(x,x)|x € n}.
Ifi e{l,...,k—2}issuchthat (1 +1i,2k+1—1i) € Keray, then
Rel({l +i,2k+1—ih) ={14+i—1,2k+1—i—1,1+i+1,2k+1—i+ 1}

and, as Ker a1 € Ker o 2¢+1, it follows (1 4+ (@ +1),2k+1— (G 4+ 1)) € Kero; and
(14+G—1),2k+1—(@G—1)) € Keray.If (k, k+2) € Ker g then Rel({k, k +2}) =
{k—1,k+1,k+3}, whence (k— 1, k+3) € Ker o (since Ker oy C Ker o ox41). If
(1,2k+1) € Keray, thenRel({1, 2k+1}) = {2, 2k, 2k+2} C 7 (note that k < %—1
implies 2k + 2 < n) and, since Kera; C Ker o 2141, we have (2,2k) € Kera;.
Therefore, Ker ¢ = Ker aq 2¢+1 and there exists pj 2t+1 € A with Ker pj 2¢41 =
Ker o1 2k+1. Clearly, p1,2k+1 ¢ A®.

Leto = gy, forsomem € {1, ..., %}. Analogously, we can show there exists
P2m.n € AwithKer po, , = Ker gy, . Moreover, itis easy to verify that o, , ¢ A®
and pomn # Prok+1s since (2m,n) € Ker pouy and (2m,n) ¢ Ker pioks1, for
kef2,....,5 -1}

Take

BW = {proxs1 ke {2, ..., 2 = 1} U{pmn | me{l,.... 52}
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Then, |B<4)‘ = ”2;4 + % = n — 4. Furthermore, define A® = A® U B® . Since
A® N BW =g, it follows that [A® | = |A® |+ [BW| =2n—4+n—4=3n-38.

Let o = Bx m, forsome k,m € {2, ..., n} such that k + 3m < n — 1. Similarly to
the proof of Lemma 3.5, we can prove the existence of an element & ,, € A such that
Ker 8k,m = Ker B . Clearly, we also have &, ¢ A® . Take

B® = (8l k,me{2, ... ,nyandk+3m <n—1}.

—7
Then, IB(S)i = nZ (L’%;_I‘J — 1). Moreover, being A® = A®UB®O gince AW N

B® = @, we obtain

-1 —k
49| =[a9] + |BO| =30 -5+ q J—1>=|Gn|.
k=2

Since A®) C A, we have |A| > |A®| =3n -8+ Z (LMJ — 1), which allows
us to conclude that rank(T7F,) > 3n — 8 + Z (1% n=l- kJ 1) = |Gyl, as required. O
k=2

As an immediate consequence of Proposition 3.4 and Lemmas 3.5 and 3.6, we can
state our main result.

Theorem 3.7 We have

n—s
-1+ Ly (| 2525 | —1) if nisodd
rank (TF,) = 7k7:2
3n—8+ Z (L”féfkj —1) if niseven.
k=2
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