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FREE PRODUCTS OF n-TUPLE SEMIGROUPS

A.V. Zhuchok1 and J. Koppitz2 UDC 512.579

We construct a free product of arbitrary n -tuple semigroups, introduce the notion of n -bands of n -tuple
semigroups and, in terms of this notion, describe the structure of the free product. We also construct a free
commutative n -tuple semigroup of any rank and characterize one-generated free commutative n -tuple
semigroups. Moreover, we describe the least commutative congruence on a free n -tuple semigroup and
prove that the semigroups of the constructed free commutative n -tuple semigroup are isomorphic and
that its automorphism group is isomorphic to a symmetric group.

1. Introduction

Recall that a nonempty set G is called an n-tuple semigroup [1] if there are n binary operations (denoted
by 1 , 2 , . . . , n ) defined on this set and satisfying the axioms (x r y) s z = x r (y s z) for all x, y, z 2 G

and r, s 2 {1, 2, . . . , n} . It is clear that each semigroup is an n-tuple semigroup for n = 1. However, there are
many examples of n-tuple semigroups that are not semigroups.

The notion of n-tuple semigroups was used in [1] in the investigation of associative n-tuple algebras. The iden-
tities of n-tuple semigroups were used in [2, 3]. Various aspects and properties of n-tuple semigroups were
studied by several authors (see, e.g., [4–14]). Thus, n-tuple semigroups are closely connected with doppelsemi-
groups [4–7], interassociative semigroups [8–10], restrictive bisemigroups [15, 16], commutative dimonoids [11,
12], and commutative trioids [13]. For more historical information, see [17, 18], where the dimonoids and trioids
were considered. Examples of n-tuple semigroups with important applications can be found in [14]. Namely,
it was shown that every commutative dimonoid (trioid) is a 2-tuple (3-tuple) semigroup. Moreover, the indepen-
dence of the axioms of n-tuple semigroup was proved and a free n-tuple semigroup was constructed.

In the present paper, we continue the investigations originated in [14].
In Sec. 2, we construct the free product of arbitrary n-tuple semigroups.
In Sec. 3, for the first time, we give an example of an n-band with different operations and, hence, answer

an open question posed by the first author in [5]. This enables us to introduce the notion of n-band of n-tuple
semigroups that generalizes the well-known notion of a band of semigroups introduced in [19] and proves to be
efficient for the description of structural properties of n-tuple semigroups. In terms of the n-band of n-tuple
semigroups, we describe the structure of the free product of n-tuple semigroups.

In Sec. 4, we construct a free commutative n-tuple semigroup of arbitrary rank and characterize one-generated
free commutative n-tuple semigroups. In addition, it is shown that the semigroups of a free commutative n-tuple
semigroup are isomorphic and that its group of automorphisms is isomorphic to a symmetric group.

In Sec. 5, we describe the least commutative congruence on a free n-tuple semigroup and present criteria for
the coincidence of operations of an n-tuple semigroup.

The results obtained in the present paper generalize some results from [4].
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2. Construction of the Free Product

We now construct a free product of arbitrary n-tuple semigroups.
Let R be a class of universal algebras A

β

, β 2 ⌦. A free product in the class R of algebras A

β

, β 2 ⌦,

is defined as an algebra A from the class R that contains all A
β

as subalgebras and is such that any collection
of homeomorphisms of the algebras A

β

into any algebra B from R can be extended to a homeomorphism of the
algebra A into B. The free product always exists if R is a manifold of universal algebras and each free algebra is
a free product of one-generated free algebras. The structures of free products in manifolds of groups, semigroups,
dimonoids, etc. are known in the general algebra.

In a natural way, we arrive at the problem of construction of the free product in a manifold of n-tuple semi-
groups.

As usual, by N we denote the set of all natural numbers.
The lemma presented below is used in the proof of the main result of this section.

Lemma 1 ([14], Lemma 1). In the n-tuple semigroup
�

G, 1 , 2 , . . . , n
�

, for any 1 < m 2 N, any x
i

2 G,

1  i  m+ 1, and any ⇤
j

2
�

1 , 2 , . . . , n
 

, 1  j  m, an arbitrary arrangement of brackets in

x1 ⇤1 x2 ⇤2 . . . ⇤m x

m+1

gives the same element from G.

Let X be an arbitrary nonempty set and let υ be an arbitrary word in the alphabet X. By l

υ

we denote the
length of υ. By definition, the length of an empty word is equal to 0.

Let Fr[T
i

]
i2I be the free product of arbitrary semigroups T

i

, i 2 I. For every w 2 Fr[T
i

]
i2I , by w

(0)

(resp., w(1) ) we denote the first (resp., the last) letter in the word w. We fix n 2 N. Let Y = {y1, y2, . . . , yn} be
an arbitrary set formed by n elements. By n we denote the set {1, 2, . . . , n}. Further, let

��

S

i

, i1 , i2 , . . . , i

n

� 

i2I

be a family of arbitrary n-tuple pairwise disjoint semigroups, let F ✓[Y ] be a free monoid on Y, and let ✓ 2 F

✓[Y ]

be an empty word. For any j 2 n, by j

⇤ we denote an operation on Fr
⇥�

S

i

, i

j

�⇤

i2I . We fix j 2 n and define
n binary operations 1 0

, 2 0
, . . . , n

0 on the set

V =
n

(w, u) 2 Fr
⇥�

S

i

, i

j

�⇤

i2I ⇥ F

✓[Y ]
�

�

l

w

− l

u

= 1
o

by setting

(w1, u1) r
0(w2, u2) =

8

>

<

>

:

(w1w2, u1yru2) , w

(1)
1 2 S

k

, w

(0)
2 2 S

m

, k,m 2 I, k 6= m,

⇣

w1 r
⇤
w2, u1u2

⌘

, w

(1)
1 , w

(0)
2 2 S

k

, k 2 I,

for all (w1, u1), (w2, u2) 2 V and r 2 n. These operations are well defined because, for all r 2 n, we have

l

w1w2 − l

u1yru2 = l

w1 r

⇤
w2

− l

u1u2 = 1.

The algebra (V, 1 0
, 2 0

, . . . , n

0) is denoted by Fr
n

T (S
i

)
i2I . It is clear that the structure of Fr

n

T (S
i

)
i2I is

independent of the choice of j in the definition of V.
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Theorem 1. Fr
n

T (S
i

)
i2I is the free product of n-tuple semigroups (S

i

, i1 , i2 , . . . , i

n

), i 2 I.

Proof. Let (w1, u1), (w2, u2), (w3, u3) 2 Fr
n

T (S
i

)
i2I and let w

(1)
1 2 S

k

, w

(0)
2 2 S

m

, w

(1)
2 2 Ss ,

and w

(0)
3 2 S

h

. We fix ", e 2 n and consider four cases: (1) k 6= m, f 6= h; (2) k 6= m, f = h; (3) k = m,

f 6= h; and (4) k = m, f = h.

Case 1:
�

(w1, u1) "
0(w2, u2)

�

e

0(w3, u3) = (w1w2, u1y"u2) e
0(w3, u3)

= (w1w2w3, u1y"u2yeu3)

= (w1, u1) "
0 (w2w3, u2yeu3)

= (w1, u1) "
0 �(w2, u2) e

0(w3, u3)
�

.

Case 2:
�

(w1, u1) "
0(w2, u2)

�

e

0(w3, u3) = (w1w2, u1y"u2) e
0(w3, u3)

=
⇣

(w1w2) e
⇤
w3, u1y"u2u3

⌘

=
⇣

w1(w2 e

⇤
w3), u1y"u2u3

⌘

= (w1, u1) "
0�
w2 e

⇤
w3, u2u3

�

= (w1, u1) "
0�(w2, u2) e

0(w3, u3)
�

.

Case 3:
�

(w1, u1) "
0(w2, u2)

�

e

0(w3, u3) =
⇣

w1 "

⇤
w2, u1u2

⌘

e

0(w3, u3)

=
⇣

(w1 "

⇤
w2)w3, u1u2yeu3

⌘

=
⇣

w1 "

⇤ (w2w3), u1u2yeu3

⌘

= (w1, u1) "
0 (w2w3, u2yeu3)

= (w1, u1) "
0 �(w2, u2) e

0(w3, u3)
�

.

Case 4:
�

(w1, u1) "
0(w2, u2)

�

e

0(w3, u3) =
⇣

w1 "

⇤
w2, u1u2

⌘

e

0(w3, u3)

=
⇣

(w1 "

⇤
w2) e

⇤
w3, u1u2u3

⌘
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=
⇣

w1 "

⇤ (w2 e

⇤
w3), u1u2u3

⌘

= (w1, u1) "
0�
w2 e

⇤
w3, u2u3

�

= (w1, u1) "
0 �(w2, u2) e

0(w3, u3)
�

.

Hence, Fr
n

T (S
i

)
i2I is an n-tuple semigroup.

If s = 1, then we assume that the sequence a1 . . . as−1 2 F

✓[Y ] is equal to ✓.

For any n-tuple semigroup (S
i

, i1 , i2 , . . . , i

n

), i 2 I, we have

�

S

i

, i1 , i2 , . . . , i

n

� ⇠= S

i

=
�

(w, u) 2 Fr
n

T (S
i

)
i2I | w 2 S

i

 

,

and all algebras S

i

, i 2 I, generate Fr
n

T (S
i

)
i2I . In addition, it follows from the definition of the algebra

Fr
n

T (S
i

)
i2I that any its element (z

m1 . . . zms , a1 . . . as−1) , where z

mp 2 S

mp , 1  p  s, and a

⇣

2 Y,

1  ⇣  s − 1, admits a unique representation in the form of a product of finitely many different elements
from [

i2ISi

:

(z
m1 . . . zms , a1 . . . as−1) = (z

m1 , ✓) ⇤1 . . . ⇤s−1 (zms , ✓) ,

where ⇤
r

2
�

1 0
, 2 0

, . . . , n

0 
, r 2 s− 1, and ⇤

r

= t

0 for some t 2 n if and only if a
r

= y

t

.

Further, for any i 2 I, we consider

↵

i

:
�

S

i

, i1 , i2 , . . . , i

n

�

!
�

K , 1
⇧
, 2

⇧
, . . . , n

⇧�

i.e., a homomorphism from
�

S

i

, i1 , i2 , . . . , i

n

�

into an arbitrary n-tuple semigroup
�

K, 1
⇧
, 2

⇧
, . . . , n

⇧�
.

We introduce a mapping

↵ : Fr
n

T (S
i

)
i2I !

�

K, 1
⇧
, 2

⇧
, . . . , n

⇧�

by the rule

!↵ =

8

<

:

z

m1↵m1ea1 . . . .eas−1zms↵ms for ! = (z
m1 . . . zms , a1 . . . as−1), s > 1,

z

m1↵m1 for ! = (z
m1 , ✓),

where ea
r

= t

⇧ for some t 2 n if and only if a
r

= y

t

(1  r  s − 1, s > 1). By Lemma 1, the mapping ↵ is
well defined. By using this lemma, we can show that ↵ is a homomorphism.

Let

(z
m1 . . . zms , a1 . . . as−1),

�

c

q1 . . . cqg , b1 . . . bg−1

�

2 Fr
n

T (S
i

)
i2I ,

where

c

ql
2 S

ql
, 1  l  g, and b

d

2 Y, 1  d  g − 1.

If m
s

6= q1, then

�

(z
m1 . . . zms , a1 . . . as−1) "

0(c
q1 . . . cqg , b1 . . . bg−1)

�

↵

= (zm1
. . . z

mscq1 . . . cqg , a1 . . . as−1y"b1 . . . bg−1)↵
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= z

m1↵m1ea1 . . .eas−1zms↵msey"cq1↵q1
e

b1 . . .
e

b

g−1cqg↵qg

= (z
m1↵m1ea1 . . .eas−1zms↵ms) "

⇧(c
q1↵q1

e

b1 . . .
e

b

g−1cqg↵qg)

= (z
m1 . . . zms , a1 . . . as−1)↵ "

⇧ �
c

q1 . . . cqg , b1 . . . bg−1

�

↵.

If v = m

s

= q1, then, by using the homomorphisms ↵
i

, i 2 I, we get

((z
m1 . . . zms , a1 . . . as−1) "

0(c
q1 . . . cqg , b1 . . . bg−1))↵

= ((z
m1 . . . zms) "

⇤ (c
q1 . . . cqg), a1 . . . as−1b1 . . . bg−1)↵

= (z
m1 . . . zms−1(zms v" c

q1)cq2 . . . cqg , a1 . . . as−1b1 . . . bg−1)↵

= z

m1↵m1ea1 . . .eas−1(zms v" c

q1)↵ms
e

b1cq2↵q2
e

b2 . . .
e

b

g−1cqg↵qg

= z

m1↵m1ea1 . . .eas−1zms↵ms "
⇧
c

q1↵q1
e

b1cq2↵q2
e

b2 . . .
e

b

g−1cqg↵qg

= (z
m1 . . . zms , a1 . . . as−1)↵ "

⇧(c
q1 . . . cqg , b1 . . . bg−1)↵.

Thus, ↵ is a homomorphism extending the homomorphisms ↵

i

, i 2 I, and Fr
n

T (S
i

)
i2I is the free product

of n-tuple semigroups

(S
i

, i1 , i2 , . . . , i

n

), i 2 I.

The theorem is proved.

Theorem 1 generalizes Theorem 3.2 in [4] obtained for doppelsemigroups. It is also worth noting that some
facts in the proof of Theorem 3.2 in [4] were left for independent reader’s verification, unlike Theorem 1 for which
we present the complete proof.

We define n binary operations ·
y1 , ·y2 , . . . , ·yn on the set F ✓[Y ] by setting

u1 ·yr u2 = u1yru2

for all u1, u2 2 F

✓[Y ] and r 2 n. According to Corollary 1 in [14],

(F ✓[Y ], ·
y1 , ·y2 , . . . , ·yn)

is a free n-tuple semigroup of rank 1. Further, let {⇤
i

}
i2I be a family of free n-tuple semigroups of rank 1.

In view of the fact that every free algebra is a free product of one-generated free algebras, by Theorem 1, we arrive
at the following corollary that gives a free n-tuple semigroup:

Corollary 1. The free product Fr
n

T (S
i

)
i2I of n-tuple semigroups ⇤

i

, i 2 I, is a free n-tuple semigroup of
rank |I|.

Recall that, for the first time, a free n-tuple semigroup of any rank was constructed in [14].
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3. Structure of FrnT (Si)i2I

In this section, we introduce the notion of n-band of n-tuple semigroups and use this notion to describe the
structure of free products of n-tuple semigroups. In addition, we solve the open problem posed in [5] and construct,
for the first time, an example of n-band with different operations.

Recall that a semigroup is called a semigroup of left (right) zeros if it satisfies the identity xy = x (xy = y).

A semigroup of idempotents is called a band. A semigroup is called a rectangular band if it satisfies the iden-
tity xyx = x. Equivalently, a semigroup is called a rectangular band if it satisfies the identities x

2 = x

and xyz = xz. It is known that each rectangular band is isomorphic to the Cartesian product of a semigroup
of left zeros and a semigroup of right zeros. A commutative band is called a semistructure.

An n-tuple semigroup is called an n-band if each its operation is an idempotent operation. It is clear that each
band can be regarded as an n-band.

The next statement gives affirmative answer to an open problem posed in [5] concerning the existence of
examples of doppelsemigroups with different idempotent operations. Note that the terms “doppelsemigroup” and
“double semigroup” coincide.

Let n 2 N, let

G = {a, b} [ {c
i

: i 2 n} [ {d
i

: i 2 n}

and, in addition, let the sets {a, b}, {c
i

: i 2 n}, and {d
i

: i 2 n} be mutually disjoint. We define the opera-
tions [j], j 2 n, on the set G setting

a[j]a = a, b[j]b = b,

a[j]b = c

j

, b[j]a = d

j

,

a[j]c
k

= c

k

, b[j]d
k

= d

k

,

a[j]d
k

= c

j

, b[j]c
k

= d

j

,

c

k

[j]x = c

k

, d

k

[j]x = d

k

for all x 2 G and j, k 2 n.

Proposition 1. (G, [1], [2], . . . , [n]) is an n-band. Moreover, (G, [i]) ⇠= (G, [j]) for any i, j 2 n.

Proof. Since

a[j]a = a, b[j]b = b, c

k

[j]c
k

= c

k

, d

k

[j]d
k

= d

k

for all j, k 2 n, the operations [1], [2], . . . , [n] are idempotent. It remains to check the axioms of n-tuple semi-
groups. Since

c

k

[j]x = c

k

, d

k

[j]x = d

k

for all x 2 G, j, k 2 n, it suffices to consider an equation of the form

a[i](x[j]y) = (a[i]x)[j]y or b[i](x[j]y) = (b[i]x)[j]y,
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where x, y 2 G, i, j 2 n. We consider only the first equation. The second equation is verified in a similar way.
If x /2 {a, b}, then

a[i](x[j]y) = a[i]x = (a[i]x)[j]y

because a[i]x /2 {a, b}. It remains to consider the equation with x 2 {a, b}, i.e., we get the family of equalities

a[i](b[j]a) = a[i]d
j

= c

i

= c

i

[j]a = (a[i]b)[j]a,

a[i](b[j]b) = a[i]b = c

i

= c

i

[j]b = (a[i]b)[j]b,

a[i](a[j]b) = a[i]c
j

= c

j

= a[j]b = (a[i]a)[j]b,

a[i](b[j]c
k

) = a[i]d
j

= c

i

= c

i

[j]c
k

= (a[i]b)[j]c
k

,

a[i](b[j]d
k

) = a[i]d
k

= c

i

= c

i

[j]d
k

= (a[i]b)[j]d
k

,

a[i](a[j]c
k

) = a[i]c
k

= c

k

= a[j]c
k

= (a[i]a)[j]c
k

,

a[i](a[j]d
k

) = a[i]c
j

= c

j

= a

i

[j]d
k

= (a[i]a)[j]d
k

.

Finally, we directly check that, for any i, j 2 n, the mapping

(G, [i]) ! (G, [j]),

given by the rule

c

i

7! c

j

, d

i

7! d

j

, c

j

7! c

i

, d

j

7! d

i

and x 7! x otherwise,

is an isomorphism.
Proposition 1 is proved.

Note that, for n = 2, Proposition 1 yields an example of a doppelsemigroup with different idempotent opera-
tions.

The existence of n-bands with different operations enables us to introduce the notion of n-band of n-tuple
semigroups.

If ⌧ : S1 ! S2 is a homomorphism of n-tuple semigroups, then we denote the corresponding congruence
on S1 by ∆

⌧

.

Let (S, 1 , 2 , . . . , n ) be an arbitrary n-tuple semigroup, let (J, 1 0
, 2 0

, . . . , n

0) be an n-band, and let

↵ : (S , 1 , 2 , . . . , n ) ! (J , 1 0
, 2 0

, . . . , n

0) : x 7! x↵

be a homomorphism. Then each class of congruence ∆
↵

is an n-tuple subsemigroup of the n-tuple semigroup
(S , 1 , 2 , . . . , n ), namely, (S , 1 , 2 , . . . , n ) is the union of n-tuple semigroups S

⇠

, ⇠ 2 J, such that

x↵ = ⇠ , x 2 S

⇠

= ∆x

↵

= {t 2 S | (x; t) 2 ∆
↵

},
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S

⇠

r S

"

✓ S

⇠ r

0
"

for all r 2 n,

⇠ 6= " ) S

⇠

\ S

"

= ?.

In this case, we say that (S , 1 , 2 , . . . , n ) is decomposed into an n-band of n-tuple semigroups
[or (S , 1 , 2 , . . . , n ) is an n-band (J , 1 0

, 2 0
, . . . , n

0) of n-tuple semigroups S
⇠

, ⇠ 2 J ]. If

(J , 1 0
, 2 0

, . . . , n

0)

is a band, i.e.,

1 0 = 2 0 = . . . = n

0
,

then we say that (S , 1 , 2 , . . . , n ) is a band (J , 1 0) of n-tuple semigroups S

⇠

, ⇠ 2 J. If the operations of
the n-band (J , 1 0

, 2 0
, . . . , n

0) coincide and it is a semigroup of left zeros (resp., a semigroup of right zeros),
then we say that (S , 1 , 2 , . . . , n ) is the left (resp., right) band (J, 1 0) of the n-tuple semigroups S

⇠

, ⇠ 2 J.

It is worth noting that the notion of n-band of n-tuple semigroups generalizes the well-known notion of a band
of semigroups [19]. The semistructural decompositions of semigroups were described in [20].

Let X be an arbitrary nonempty set and let

X

`z

= (X,a), X

rz

= (X,`), and X

rb

= X

`z

⇥X

rz

be a semigroup of left zeros, a semigroup of right zeros, and a rectangular band, respectively. It is known [21] that
X

`z

, X

rz

, and X

rb

are a free semigroup of left zeros, a free semigroup of right zeros, and a free rectangular band,
respectively. Further, let B(X) be the semistructure of all nonempty finite subsets of the set X with respect to the
operation of theoretical-set union and let

B

rb

(X) =
�

((x, y), A) 2 X

rb

⇥B(X) | x, y 2 A

 

,

B

`z

(X) =
�

(x,A) 2 X

`z

⇥B(X) | x 2 A

 

,

B

rz

(X) =
�

(x,A) 2 X

rz

⇥B(X) | x 2 A

 

.

It is clear that B
rb

(X), B

`z

(X), and B

rz

(X) are subsemigroups of the semigroups X

rb

⇥ B(X), X

`z

⇥
B(X), and X

rz

⇥ B(X), respectively. According to [21], B(X), B

rb

(X), B

`z

(X), and B

rz

(X) are a free
semistructure, a free normal band, a free left normal band, and a free right normal band, respectively.

For any element

w = z

m1 . . . zml
. . . z

ms 2 Fr
⇥�

S

i

, i

j

�⇤

i2I

(see Sec. 2), we set

ec(w) =

s

[

l=1

{z
ml
j

0},

where

j

0 :
S

i2I
S

i

! I : a 7! i for a 2 S

i

, i 2 I.
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Let

Φ((x,y),C) =
�

(w, u) 2 Fr
n

T (S
i

)
i2I |

�

(w(0)
j

0
, w

(1)
j

0),ec(w)
�

= ((x, y), C)
 

for all ((x, y), C) 2 B

rb

(I),

Φ(x,C] =
�

(w, u) 2 Fr
n

T (S
i

)
i2I | (w(0)

j

0
,ec(w)) = (x,C)

 

for all (x,C) 2 B

`z

(I),

Φ[x,C) =
�

(w, u) 2 Fr
n

T (S
i

)
i2I | (w(1)

j

0
,ec(w)) = (x,C)

 

for all (x,C) 2 B

rz

(I),

Φ(x,y) =
�

(w, u) 2 Fr
n

T (S
i

)
i2I | (w(0)

j

0
, w

(1)
j

0) = (x, y)
 

for all (x, y) 2 I

rb

,

Φ(x) =
�

(w, u) 2 Fr
n

T (S
i

)
i2I | w(0)

j

0 = x

 

for all x 2 I

`z

,

Φ[x] =
�

(w, u) 2 Fr
n

T (S
i

)
i2I | w(1)

j

0 = x

 

for all x 2 I

rz

, and

ΦC =
�

(w, u) 2 Fr
n

T (S
i

)
i2I | ec(w) = C

 

for all C 2 B(I).

In terms of the notion of n-band of n-tuple semigroups, we get the following two structural theorems:

Theorem 2. The free product Fr
n

T (S
i

)
i2I of n-tuple semigroups (S

i

, i1 , i2 , . . . , i

n

), i 2 I, is:

(i) a normal band B

rb

(I) of n-tuple semigroups Φ((x,y),C)
, ((x, y), C) 2 B

rb

(I);

(ii) a left normal band B

`z

(I) of n-tuple semigroups Φ(x,C]
, (x,C) 2 B

`z

(I);

(iii) a right normal band B

rz

(I) of n-tuple semigroups Φ[x,C)
, (x,C) 2 B

rz

(I).

Proof. (i) We define a mapping

%

rb

: Fr
n

T (S
i

)
i2I ! B

rb

(I)

by the rule

(w, u) 7!
�

(w(0)
j

0
, w

(1)
j

0),ec(w)
�

, (w, u) 2 Fr
n

T (S
i

)
i2I .

It is easy to see that

ec(w ? !) = ec(w) [ ec(!),

(w ? !)(0)j0 = w

(0)
j

0
, (w ? !)(1)j0 = !

(1)
j

0

for all w,! 2 Fr
⇥�

S

i

, i

j

�⇤

i2I and ? 2
�

1⇤ , 2⇤ , . . . , n

⇤  
.
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By using the previous equalities, for any elements (w1, u1), (w2, u2) 2 Fr
n

T (S
i

)
i2I , and r 2 n, we get

((w1, u1) r
0(w2, u2))%

rb

=

8

>

<

>

:

(w1w2, u1yru2) %
rb

, w

(1)
1 2 S

k

, w

(0)
2 2 S

m

, k,m 2 I, k 6= m,

�

w1 r
⇤
w2, u1u2

�

%

rb

, w

(1)
1 , w

(0)
2 2 S

k

, k 2 I,

=

8

>

<

>

:

��

((w1w2)
(0))j0, ((w1w2)

(1))j0
�

,ec(w1w2)
�

, w

(1)
1 2S

k

, w

(0)
2 2S

m

, k,m2I, k 6=m,

��

((w1 r
⇤
w2)

(0))j0, ((w1 r
⇤
w2)

(1))j0
�

,ec(w1 r
⇤
w2)

�

, w

(1)
1 , w

(0)
2 2 S

k

, k 2 I,

= ((w
(0)
1 j

0
, w

(1)
2 j

0),ec(w1) [ ec(w2))

= ((w
(0)
1 j

0
, w

(1)
1 j

0),ec(w1))((w
(0)
2 j

0
, w

(1)
2 j

0),ec(w2))

= (w1, u1)%
rb

(w2, u2)%
rb

.

Hence, %
rb

is a surjective homomorphism. It is easy to see that Φ((x,y),C)
, ((x, y), C) 2 B

rb

(I), is a class of
congruence ∆

%rb
, which is an n-tuple subsemigroup of the algebra Fr

n

T (S
i

)
i2I . This implies that Fr

n

T (S
i

)
i2I

is a normal band B

rb

(I) of n-tuple semigroups Φ((x,y),C)
, ((x, y), C) 2 B

rb

(I).

(ii) The analysis similar to the proof of assertion (i) shows that the mapping

%

`z

: Fr
n

T (S
i

)
i2I ! B

`z

(I)

given by the rule

(w, u) 7! (w(0)
j

0
,ec(w)), (w, u) 2 Fr

n

T (S
i

)
i2I

is a surjective homomorphism. This implies that Φ(x,C]
, (x,C) 2 B

`z

(I), is a class of congruence ∆
%`z

, which
is an n-tuple subsemigroup of the algebra Fr

n

T (S
i

)
i2I . Hence, FrnT (Si

)
i2I is a left normal band B

`z

(I) of
n-tuple semigroups Φ(x,C]

, (x,C) 2 B

`z

(I).

(iii) We define the mapping

%

rz

: Fr
n

T (S
i

)
i2I ! B

rz

(I)

by the rule

(w, u) 7! (w(1)
j

0
,ec(w)), (w, u) 2 Fr

n

T (S
i

)
i2I .

As in the proof of assertion (i), we conclude that %
rz

is a surjective homomorphism and Φ[x,C)
, (x,C) 2

B

rz

(I), is class of congruence ∆
%rz , which is an n-tuple subsemigroup of the algebra Fr

n

T (S
i

)
i2I . Thus,

Fr
n

T (S
i

)
i2I is a right normal band B

rz

(I) of n-tuple semigroups Φ[x,C)
, (x,C) 2 B

rz

(I).

The theorem is proved.
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The proof of the following theorem is similar to the proof of Theorem 2:

Theorem 3. The free product Fr
n

T (S
i

)
i2I of n-tuple semigroups (S

i

, i1 , i2 , . . . , i

n

), i 2 I, is:

(i) a rectangular band I

rb

of n-tuple semigroups Φ(x,y)
, (x, y) 2 I

rb

;

(ii) a left band I

`z

of n-tuple semigroups Φ(x)
, x 2 I

`z

;

(iii) a right band I

rz

of n-tuple semigroups Φ[x]
, x 2 I

rz

;

(iv) a semistructure B(I) of n-tuple semigroups ΦC

, C 2 B(I).

We describe one congruence on Fr
n

T (S
i

)
i2I and use it to get a free product of semigroups from the free

product of n-tuple semigroups.
Let γ be an arbitrary fixed congruence on the free product Fr

⇥�

S

i

, i

j

�⇤

i2I . We define the operation eγ

on Fr
n

T (S
i

)
i2I by the rule

(w1, u1)eγ(w2, u2) , w1γw2

for all (w1, u1), (w2, u2) 2 Fr
n

T (S
i

)
i2I .

The following statement can be easily proved:

Proposition 2. The operation eγ is a congruence on the free product Fr
n

T (S
i

)
i2I of n-tuple semigroups

�

S

i

, i1 , i2 , . . . , i

n

�

, i 2 I, and the operations of the quotient algebra Fr
n

T (S
i

)
i2I/eγ coincide.

Proposition 2 yields the following corollary:

Corollary 2. If γ is a diagonal of Fr
⇥�

S

i

, i

j

�⇤

i2I , then Fr
n

T (S
i

)
i2I/eγ is the free product of semigroups.

4. Free Commutative n-Tuple Semigroups

In this section, we construct a free commutative n-tuple semigroup of an arbitrary rank and consider one-
generated free commutative n-tuple semigroups. In addition, we show that semigroups of a free commutative
n-tuple semigroup are isomorphic and its automorphism group is isomorphic to a symmetric group.

In the proof of the main result of this section, we use the following three statements:
Let G be an arbitrary n-tuple semigroup with operations 1 , 2 , . . . , n and a1, a2, . . . , an 2 G. We define

a new operations 1
a1
, 2

a2
, . . . , n

an
on G by the rule

x i
ai
y = x i a

i

i y

for all x, y 2 G and i 2 n.

Proposition 3 ([14], Proposition 3).
�

G, 1
a1
, 2

a2
, . . . , n

an

�

is an n-tuple semigroup.

An n-tuple semigroup
�

G, 1
a1
, 2

a2
, . . . , n

an

�

is called either a version of G, or (alternatively) a sand-
wich n-tuple semigroup of the algebra G relative to the sandwich elements a1, a2, . . . , an, or an n-tuple semi-
group with deformed multiplications. The operations 1

a1
, 2

a2
, . . . , n

an
are called sandwich operations [14].

We call an n-tuple semigroup commutative if all its operations are commutative. The class of all commutative
n-tuple semigroups forms a submanifold in a manifold of n-tuple semigroups. An n-tuple semigroup, which is
free in the manifold of commutative n-tuple semigroups, is called a free commutative n-tuple semigroup.
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Lemma 2. In the commutative n-tuple semigroup
�

G, 1 , 2 , . . . , n
�

, the equality

(x ⇧ y) ◦ z = x ◦ (y ⇧ z)

holds for all x, y, z 2 G and ⇧, ◦ 2
�

1 , 2 , . . . , n
 

.

Proof. For any x, y, z 2 G, we get

(x ⇧ y) ◦ z = z ◦ (x ⇧ y) = (z ◦ x) ⇧ y

= (x ◦ z) ⇧ y = x ◦ (z ⇧ y) = x ◦ (y ⇧ z)

in view of the commutativity of the operations ⇧ and ◦ and the axiom of n-tuple semigroup.
The lemma is proved.

Lemma 3. In the commutative n-tuple semigroup
�

G, 1 , 2 , . . . , n
�

, for any m 2 N and any x

i

2 G,

1  i  m+ 1, i ⇤
j

2
�

1 , 2 , . . . , n
 

, 1  j  m, the following equality is true:

x1 ⇤1 x2 ⇤2 . . . ⇤m x

m+1 = x1⇡ ⇤1⇡0
x2⇡ ⇤2⇡0

. . . ⇤
m⇡

0
x(m+1)⇡,

where ⇡ and ⇡

0 are permutations on m+ 1 and m, respectively.

Proof. The proof of the lemma follows from Lemmas 1 and 2 and the commutativity of the operations ⇤
j

,

1  j  m.

We fix n 2 N and, as above, assume that X is an arbitrary nonempty set and Y = {y1, y2, . . . , yn} is
an arbitrary set of n elements. Further, let F ⇤[X] be a free commutative semigroup on X, let F ✓

⇤ [Y ] be a free
commutative monoid on Y, and let ✓ 2 F

✓

⇤ [Y ] be an empty word. We define n binary operations 1 , 2 , . . . , n

on the set

XY(n) =
�

(w, u) 2 F

⇤[X]⇥ F

✓

⇤ [Y ]
�

�

l

w

− l

u

= 1
 

and set

(w1, u1) i (w2, u2) = (w1w2, u1 ·yi u2) (1)

for all (w1, u1), (w2, u2) 2 XY(n) and i 2 n, where ·
yi is a sandwich operation on F

✓

⇤ [Y ]. The operations
thus defined are correct because l

w1w2 − l

u1yiu2 = 1 for all i 2 n. By FC

n

S(X) we denote the algebra
(XY(n), 1 , 2 , . . . , n ).

Theorem 4. FC

n

S(X) is a free commutative n-tuple semigroup.

Proof. The proof of the theorem is similar to the proof of Theorem 4.3 in [4]. In this case, we use Proposi-
tion 3 and Lemmas 1 and 3.

Note that, for n = 2, the Theorem 4 yields Theorem 4.3 in [4].

Corollary 3.

�

F

✓

⇤ [Y ], ·
y1 , ·y2 , . . . , ·yn

�

is a free commutative n-tuple semigroup of rank 1.
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Proof. If X = {r} , then we can easily show that the mapping

δ :
�

F

✓

⇤ [Y ], ·
y1 , ·y2 , . . . , ·yn

�

! FC

n

S(X)

given by the rule uδ = (rlu+1
, u) for all u 2 F

✓

⇤ [Y ] is an isomorphism.
The corollary is proved.

The following statement establishes relationships between the semigroups of the free commutative n-tuple
semigroup FC

n

S(X) :

Proposition 4. For any i, j 2 {1, 2, . . . , n}, the semigroups (XY(n), i ) and (XY(n), j ) are isomorphic.

The proof of this proposition is similar to the proof of Lemma 2 in [14].

By =[X] we denote a symmetric group on the set X and by AutG0 we denote a group of automorphisms of
the n-tuple semigroup G

0
.

A free commutative n-tuple semigroup FC

n

S(X) is defined to within an isomorphism of cardinality of the
set X because the generating set FC

n

S(X) has the same cardinality as X. This yields the following description
of the group of automorphisms of the free commutative n-tuple semigroup:

Proposition 5. AutFC

n

S(X) ⇠= =[X].

We construct a congruence on FC

n

S(X) and use it to get a free commutative semigroup from the free
commutative n-tuple semigroup.

Let ⇣ be an arbitrary fixed congruence on the free commutative semigroup F

⇤[X]. We define an operation e

⇣

on FC

n

S(X) by the rule

(w1, u1)e⇣(w2, u2) , w1⇣w2

for all (w1, u1), (w2, u2) 2 FC

n

S(X).

The following statement can be easily proved:

Proposition 6. The operation e

⇣ is a congruence on the free commutative n-tuple semigroup FC

n

S(X) and
the operations of the quotient algebra FC

n

S(X)/e⇣ coincide.

Proposition 6 yields the following corollary:

Corollary 4. If ⇣ is a diagonal of F ⇤[X], then FC

n

S(X)/e⇣ is a free commutative semigroup.

5. Least Commutative Congruence on the Free n-Tuple Semigroup

We describe the least commutative congruence on the free n-tuple semigroup and present criteria for the
coincidence of operations of the n-tuple semigroup.

We now recall the structure of free n-tuple semigroup [14]. To do this, we use the notation introduced in the
previous section.

In the structure of FC

n

S(X), we replace the free commutative semigroup F

⇤[X] on X by the free semi-
group F [X] on X and the free commutative monoid F

✓

⇤ [Y ] on Y by the free monoid F

✓[Y ] on Y with empty
word ✓. In this case, by F

n

TS(X) we denote the algebra
�

XY(n), 1 , 2 , . . . , n

�

with operations specified by
condition (1). By Theorem 2 in [14], F

n

TS(X) is a free n-tuple semigroup.
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If ⇢ is a congruence on the n-tuple semigroup G

0 such that G0
/⇢ is a commutative n-tuple semigroup, then

we say that ⇢ is a commutative congruence. In this section, by ? (resp., ·) we denote the operation on F

⇤[X]
�

resp., on F

✓

⇤ [Y ]
�

.
We take

(x1x2 . . . xs, b1b2 . . . bs−1), (z1z2 . . . z
k

, c1c2 . . . c
k−1) 2 F

n

TS(X),

where x

d

, z

r

2 X, 1  d  s, 1  r  k, b

p

, c

j

2 Y, 1  p  s− 1, 1  j  k− 1. If s = 1, then we assume
that the sequence h1h2 . . . hs−1, where h

i

2 Y, i 2 s− 1, is equal to ✓. We define the operation λ on F

n

TS(X)

by the rule

(x1x2 . . . xs, b1b2 . . . bs−1)λ(z1z2 . . . z
k

, c1c2 . . . c
k−1)

if and only if

(x1 ? x2 ? . . . ? xs, b1 · b2 · . . . · bs−1) = (z1 ? z2 ? . . . ? z
k

, c1 · c2 · . . . · c
k−1).

Theorem 5. The operation λ on the free n-tuple semigroup F

n

TS(X) is the least commutative congruence.

Proof. Let ! = (x1x2 . . . xs, b1b2 . . . bs−1) 2 F

n

TS(X), where x

d

2 X, 1  d  s, b

p

2 Y,

and 1  p  s− 1.

We define a mapping

⇡ : F
n

TS(X) ! FC

n

S(X)

by the rule

!⇡ =

8

<

:

(x1 ? x2 ? . . . ? xs, b1 · b2 · . . . · bs−1) for s > 1,

! for ! = (x1, ✓).

It is easy to see that ⇡ is a surjective homomorphism. By Theorem 4, FC

n

S(X) is a free commutative
n-tuple semigroup. Thus, ∆

⇡

(see Sec. 3) is the least commutative congruence on F

n

TS(X). The definition of ⇡
implies that ∆

⇡

= λ.

The theorem is proved.

Note that, for n = 2, the last theorem yields the first part of Theorem 4.9 in [4].
At the end of the section, we formulate conditions under which the operations of an arbitrary (commutative)

n-tuple semigroup coincide.

Proposition 7. The operations of a commutative n-tuple semigroup coincide if they are idempotent.

Proof. Let
�

G, 1 , 2 , . . . , n

�

be an arbitrary commutative n-tuple semigroup. By Lemma 2, (x⇧y)◦z =

(x ◦ y) ⇧ z for all x, y, z 2 G and ⇧, ◦ 2
�

1 , 2 , . . . , n

 

. For x = y, in view of the idempotence of the
operations ⇧ and ◦, we obtain x ◦ z = x ⇧ z.

The proposition is proved.

Proposition 8. The operations of the n-tuple semigroup (G, 1 , 2 , . . . , n ) coincide if one of the following
conditions is satisfied:

(i) (G, i ) is a semigroup of left zeros for some i 2 n;
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(ii) (G, i ) is a semigroup of right zeros for some i 2 n;

(iii) (G, i ) is a rectangular band for some i 2 n;

(iv) (G, i ) is a semigroup with zero multiplication for all i 2 n.

Proof. Let x, y, z 2 G and let ⇧, ◦ 2
�

1 , 2 , . . . , n

 

.

(i) Setting x ⇧ y = x for all x, y 2 G and using the axiom of n-tuple semigroup, we obtain

(x ⇧ y) ◦ z = x ⇧ (y ◦ z) = x = x ◦ z.

This yields x ◦ z = x for all x, z 2 G.

Case (ii) is proved similarly.

(iii) Let (G, ◦) be a rectangular band. By the definition of rectangular band (see Sec. 3), we find

x ◦ y ◦ x = x, y ◦ x ◦ y = y, x ◦ z ◦ y = x ◦ y.

By using these equalities and the axioms of n-tuple semigroup, we get

x ⇧ y = (x ◦ y ◦ x) ⇧ (y ◦ x ◦ y)

= x ◦ ((y ◦ x) ⇧ (y ◦ x ◦ y))

= x ◦ ((y ◦ x) ⇧ (y ◦ x)) ◦ y = x ◦ y.

(iv) Let 0 and 00 be zero elements of the semigroups (G, ⇧) and (G, ◦), respectively. Thus, we get

0 = (0 ◦ 0) ⇧ 0 = 0 ◦ (0 ⇧ 0) = 00.

The proposition is proved.

Let V be a manifold of semigroups and let u, v 2 F [X]. By IdV we denote the set of all identities u ⇡ v

such that u ⇡ v 2 IdV provided that each semigroup S 2 V satisfies the identity u ⇡ v. By c(u) we denote the
set of all elements x 2 X contained in the word u. Let C be a manifold of semigroups with zero multiplication.

Proposition 9. Suppose that V is a manifold of semigroups such that C ✓ V, G is an arbitrary set
with |G| ≥ 4, and n > 1. The following statements are equivalent:

(i) for any n-tuple semigroup (G, [1], [2], . . . , [n]) with (G, [j]) 2 V and all j 2 n, the following assertion
is true: if there exists i0 2 n such that (G, [i0]) 2 C, then [i] = [j] for all i, j 2 n;

(ii) there exists u 2 F [X] with c(u) = {x, y, z} such that xy ⇡ u 2 IdV.

Proof. (i) ) (ii). Let c and a0 be different elements from G. We define an operation [2] on G by the rule

a[2]c = c[2]a = c for all a 2 G,

a[2]b = b[2]a = a0 for all a, b 2 G \ {c}.
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Further, let (G, [1]) be a semigroup with zero multiplication and null element c. We can easily show that

(G, [1], [2], . . . , [n]),

where [k] = [2] for 3  k  n is an n-tuple semigroup, and (G, [k]), k 2 n, satisfies any identity u ⇡ v

with u, v 2 F [X] and c(u) = c(v). Thus, there exists u ⇡ v 2 IdV with c(u) 6= c(v), i.e., there exists
an element u1 2 F [X] with c(u1) = {x, y} such that u1 ⇡ x

k 2 IdV for some k ≥ 2. Otherwise, (G, [j]) 2 V

for all j 2 n and, according to assertion (i), we get [i] = [j] for all i, j 2 n. We arrive at a contradiction.
Now let a0, b0, d0, and c be different elements from G and let the operation [1] be defined as above.

We define the operation [2] on G as follows:

a[2]b = c for all (a, b) 2 G⇥G with (a, b), (b, a) 6= (a0, b0),

a0[1]b0 = b0[1]a0 = d0.

Further, let [k] = [2] for 3  k  n. It is easy to see that (G, [1], [2], . . . , [n]) is an n-tuple semigroup such that,
for all k 2 n, the semigroup (G, [k]) satisfies the commutative law and any of the identities u ⇡ v, u, v 2 F [X]

with l

u

, l

v

≥ 3 or l
u

≥ 3 and v = υυ for some υ 2 X (or conversely). Thus, there exists u2 2 F [X] with
c(u2) = {x, y} such that u2 ⇡ xy 2 IdV. Otherwise, for all u ⇡ v 2 IdV of length l

u

, l

v

≥ 3 or l
u

≥ 3 and
v = υυ for some υ 2 X (or conversely), we conclude that, according to assertion (i), [i] = [j] for all i, j 2 n.

We arrive at a contradiction. As a result of direct calculations, we conclude that the equalities u1 ⇡ x

k 2 IdV and
u2 ⇡ xy 2 IdV imply that u3 ⇡ xy 2 IdV for some u3 2 F [X] with c(u3) = {x, y, z}.

(ii) ) (i). Let a, b 2 G and let (G, [1], [2], . . . , [n]) be an n-tuple semigroup such that (G, [j]) 2 V for
all j 2 n. Assume that there exists i0 2 n such that (G, [i0]) 2 C. Further, let j 2 n \ {i0}. Replacing x with a,

y with b, and z with a[i0]b in xy ⇡ u 2 IdV, we obtain a[j]b = a1[i
0]b1 for some a1, b1 2 G. This implies

that [i0] = [j].

Proposition 9 is proved.

Proposition 10. Suppose that (G, 1 , 2 , . . . , n ) is an n-tuple semigroup and i, j 2 n. The semigroup
(G, i ) is a semigroup with the null element 0 if and only if (G, j ) is a semigroup with the null element 0.

Proof. Let 0 i x = 0 for all x 2 G. Then, for all y 2 G, we get

�

0 i x) j y = 0 i (x j y

�

= 0 = 0 j y.

This yields 0 j y = 0 for all y 2 G. Similarly, we can prove that y j 0 = 0 for all y 2 G.

The converse assertion is proved in a similar way.
Proposition 10 is proved.

The present paper was written in the course of scientific training of the first author at the Potsdam University
(Germany) within the framework of the program of the German Service of Academic Exchange (DAAD).
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