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Stable varieties of semigroups and groupoids

Slavcho Shtrakov and Jörg Koppitz

Abstract. The paper deals with Σ-composition and Σ-essential composition of terms
which lead to stable and s-stable varieties of algebras. A full description of all
stable varieties of semigroups, commutative and idempotent groupoids is obtained.
We use an abstract reduction system which simplifies the presentations of terms of
type τ = (2) to study the variety of idempotent groupoids and s-stable varieties of
groupoids. S-stable varieties are a variation of stable varieties, used to highlight re-
placement of subterms of a term in a deductive system instead of the usual replacement
of variables by terms.

1. Introduction

Let F be any finite set of operation symbols. Let τ : F → N be a mapping

into the non-negative integers; for f ∈ F , the number τ(f) will denote the

arity of the operation symbol f . The pair (F , τ) is called a type or signature.

If it is obvious what the set F is, we will write “type τ”. The set of symbols

of arity p is denoted by Fp.

Let X = {x1, x2, . . . } be a countable set of variables, and let τ be a type

with the set of operation symbols F . The set Wτ (X) of terms of type τ

with variables from X is the smallest set such that X ∪ F0 ⊆ Wτ (X) and

if f is an n-ary operation symbol, and t1, . . . , tn ∈ Wτ (X) are terms, then

f(t1, . . . , tn) ∈ Wτ (X).

If f ∈ F , then fA denotes a τ(f)-ary operation on the set A. An algebra

A = 〈A;FA〉 of type τ is a pair consisting of a set A and an indexed set FA

of operations, defined on A. If s, t ∈ Wτ (X), then the pair s ≈ t is called an

identity of type τ which is satisfied in the algebra A, A |= t ≈ s iff tA = sA.

The operators Id and Mod are defined for classes of algebras K and for sets

of identities Σ as follows

Id(K) = {t ≈ s | A ∈ K ⇒ A |= t ≈ s}, and

Mod(Σ) = {A | t ≈ s ∈ Σ ⇒ A |= t ≈ s}.

The fixed points with respect to the closure operators IdMod and Mod Id

are called equational theories and varieties of algebras, respectively.

In Section 2 we introduce the inductive, positional, and Σ-composition of

terms.
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We apply the concept of Σ-composition of terms to study the stable varieties

of semigroups (see Theorem 3.8). We prove that a variety V of semigroups is

stable if and only if Id(V ) contains an identity of the form (x1x2)x3 ≈ xixj

with 1 � i < j � 3. We present a complete list of all the stable varieties of

semigroups (see Theorem 3.9).

An Abstract Reduction System (ARS) for terms, which reduces the com-

plexity of terms by such traditional measures as depth and length is introduced

in Section 4.

The varieties of commutative and idempotent groupoids are stable which is

shown in Section 5.

We present stronger conditions for stability of varieties which successfully

work in the variety of groupoids. These conditions allow us to define and study

the s-stable varieties of groupoids in Section 6 (see Theorem 6.13).

2. Compositions of terms

If t is a term, then the set var(t) consisting of those elements of X which oc-

cur in t is called the set of input variables (or variables) in t. If t = f(t1, . . . , tn)

is a non-variable term, then f is the root symbol (root) of t.

For a term t ∈ Wτ (X) the set Sub(t) of its subterms is defined as follows:

if t ∈ X ∪ F0, then Sub(t) = {t} and if t = f(t1, . . . , tn), then Sub(t) =

{t} ∪ Sub(t1) ∪ · · · ∪ Sub(tn).

Let r, s, t ∈ Wτ (X) be terms of type τ . By t(r ← s) we denote the term,

obtained by simultaneous replacement of every occurrence of r as a subterm

of t by s. This term is called the inductive composition [8] of the terms t and

r by s. If ri /∈ Sub(rj) when i �= j, then t(r1 ← s1, . . . , rm ← sm) means

the inductive composition of t, r1, . . . , rm by s1, . . . , sm, respectively. In the

particular case when rj = xj for j = 1, . . . ,m and var(t) = {x1, . . . , xm} we

will briefly write t(s1, . . . , sm) instead of t(x1 ← s1, . . . , xm ← sm).

Any term can be regarded as a tree with nodes labeled as the operation sym-

bols and leaves labeled as variables or nullary operation symbols (see Figure 1,

below).

Let τ be a type and let F be its set of operation symbols. Denote by

Nτ = {m ∈ N | m � max
f∈F

τ(f)}.

Let N∗
τ be the set of all finite strings over Nτ . The set N∗

τ is naturally ordered

by p � q ⇐⇒ p is a prefix of q. The Greek letter ε, as usual denotes the

empty word (string) over Nτ .

To distinguish between different occurrences of the same operation symbol

in a term t we assign to each occurrence of an operation symbol a position.

Usually positions are finite sequences (strings) over Nτ . Each position is as-

signed to a node of the tree diagram of t, starting with the empty sequence

ε for the root and using the integer j, 1 � j � n for the j-th branch of an

n-ary operational symbol f . Inductively, let the position p = a1a2 · · · as ∈ N∗
τ
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be assigned to a node of t labeled by the n-ary operational symbol f . Then

the position assigned to the j-th child of this node is a1a2 · · · asj. The set of

positions of a term t is denoted by Pos(t).

Let t ∈ Wτ (X) be a term of type τ and let subt : Pos(t) → Sub(t) be the

function which maps each position in a term t to the subterm of t, whose root

node occurs at that position.

Let t, r ∈ Wτ (X) be two terms of type τ and let p ∈ Pos(t) be a position in

t. The positional composition [8] of t and r on p is the term s = t(p; r) obtained

from t by replacing the term subt(p) by r on the position p, only. We will use

the notation t(p, q; r) for the composition t(p; r)(q; r) when p �� q & q �� p, and

if S = 〈p1, . . . , pm〉 ∈ Pos(t)m with (∀i, j � m)(i �= j ⇒ pi �� pj & pj �� pi),

then t(S; r) = t(p1, . . . , pm; r) = t(p1; r) · · · (pm; r). If T = 〈t1, . . . , tm〉 ∈
Wτ (X)m, then t(S;T ) = t(p1; t1) · · · (pm; tm).

Let Xn = {x1, . . . , xn} be a finite set of variables in X. Then we denote by

Wτ (Xn) the set Wτ (Xn) = {t ∈ Wτ (X) | var(t) ⊆ Xn} of terms.

Let Σ ⊆ Id(τ), let t ∈ Wτ (Xn) be an n-ary term of type τ , let A = 〈A,F〉
be an algebra of type τ , and let xi ∈ var(t) be a variable which occurs in t.

The variable xi is called essential [7] in t with respect to the algebra A if there

are n+ 1 elements a1, . . . , ai−1, a, b, ai+1, . . . , an ∈ A such that

tA(a1, . . . , ai−1, a, ai+1, . . . , an) �= tA(a1, . . . , ai−1, b, ai+1, . . . , an).

The set of all essential variables in t with respect to A is denoted by Ess(t,A).

Fic(t,A) denotes the set of all variables in var(t), which are not essential with

respect to A, called fictive variables.

Let Σ be a set of identities of type τ . Then A |= Σ means that A |= t ≈ s

for all t ≈ s ∈ Σ. For t, s ∈ Wτ (X), we say Σ yields t ≈ s (write: Σ |= t ≈ s)

if, given any algebra A, we have A |= Σ ⇒ A |= t ≈ s.

Let Σ be a set of identities of type τ . Two terms t and s are called Σ-

equivalent (or Σ-equal) if Σ |= t ≈ s.

A variable xi is said to be Σ-essential [8] in a term t if there is an algebra

A, such that A |= Σ and xi ∈ Ess(t,A). The set of all Σ-essential variables in

t is denoted by Ess(t,Σ). If a variable is not Σ-essential in t, then it is called

Σ-fictive in t. Fic(t,Σ) denotes the set of all Σ-fictive variables in t.

The concept of Σ-essential positions is a natural extension of Σ-essential

variables. Let A = 〈A,F〉 be an algebra of type τ , let t ∈ Wτ (Xn), and let

p ∈ Pos(t). If xn+1 ∈ Ess(t(p;xn+1),A), then the position p ∈ Pos(t) is called

essential in t with respect to A. The set of all essential positions in t with

respect to A is denoted by PEss(t,A) (see Example 2.3 below or Example 2.1

of [8]).

When a position p ∈ Pos(t) is not essential in t with respect to A, it is called

fictive in t with respect to A. The set of all fictive positions with respect to

A is denoted by PFic(t,A).

If xn+1 ∈ Ess(t(p;xn+1),Σ), the position p ∈ Pos(t) is called Σ-essential

in t [8]. The set of Σ-essential positions in t is denoted by PEss(t,Σ). When a
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We apply the concept of Σ-composition of terms to study the stable varieties

of semigroups (see Theorem 3.8). We prove that a variety V of semigroups is

stable if and only if Id(V ) contains an identity of the form (x1x2)x3 ≈ xixj

with 1 � i < j � 3. We present a complete list of all the stable varieties of

semigroups (see Theorem 3.9).

An Abstract Reduction System (ARS) for terms, which reduces the com-

plexity of terms by such traditional measures as depth and length is introduced

in Section 4.

The varieties of commutative and idempotent groupoids are stable which is

shown in Section 5.

We present stronger conditions for stability of varieties which successfully

work in the variety of groupoids. These conditions allow us to define and study

the s-stable varieties of groupoids in Section 6 (see Theorem 6.13).

2. Compositions of terms

If t is a term, then the set var(t) consisting of those elements of X which oc-

cur in t is called the set of input variables (or variables) in t. If t = f(t1, . . . , tn)

is a non-variable term, then f is the root symbol (root) of t.

For a term t ∈ Wτ (X) the set Sub(t) of its subterms is defined as follows:

if t ∈ X ∪ F0, then Sub(t) = {t} and if t = f(t1, . . . , tn), then Sub(t) =

{t} ∪ Sub(t1) ∪ · · · ∪ Sub(tn).

Let r, s, t ∈ Wτ (X) be terms of type τ . By t(r ← s) we denote the term,

obtained by simultaneous replacement of every occurrence of r as a subterm

of t by s. This term is called the inductive composition [8] of the terms t and

r by s. If ri /∈ Sub(rj) when i �= j, then t(r1 ← s1, . . . , rm ← sm) means

the inductive composition of t, r1, . . . , rm by s1, . . . , sm, respectively. In the

particular case when rj = xj for j = 1, . . . ,m and var(t) = {x1, . . . , xm} we

will briefly write t(s1, . . . , sm) instead of t(x1 ← s1, . . . , xm ← sm).

Any term can be regarded as a tree with nodes labeled as the operation sym-

bols and leaves labeled as variables or nullary operation symbols (see Figure 1,

below).

Let τ be a type and let F be its set of operation symbols. Denote by

Nτ = {m ∈ N | m � max
f∈F

τ(f)}.

Let N∗
τ be the set of all finite strings over Nτ . The set N∗

τ is naturally ordered

by p � q ⇐⇒ p is a prefix of q. The Greek letter ε, as usual denotes the

empty word (string) over Nτ .

To distinguish between different occurrences of the same operation symbol

in a term t we assign to each occurrence of an operation symbol a position.

Usually positions are finite sequences (strings) over Nτ . Each position is as-

signed to a node of the tree diagram of t, starting with the empty sequence

ε for the root and using the integer j, 1 � j � n for the j-th branch of an

n-ary operational symbol f . Inductively, let the position p = a1a2 · · · as ∈ N∗
τ
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position is not Σ-essential in t it is called Σ-fictive. PFic(t,Σ) denotes the set

of all Σ-fictive positions in t.

The set of Σ-essential subterms in t is defined as follows:

SEss(t,Σ) = {r ∈ Wτ (X) | Σ |= r ≈ subt(p) for p ∈ PEss(t,Σ)}.

So, a term is a Σ-essential subterm of a term t if it is Σ-equivalent to a subterm

of t whose root is located at a Σ-essential position in t.

Let t, r ∈ Wτ (X) and let ΣSt
r = {v ∈ Sub(t) | Σ |= r ≈ v} be the set of all

subterms of t which are Σ-equal to r.

Let ΣP t
r = {p ∈ Pos(t) | subt(p) ∈ ΣSt

r} be the set of all positions of

subterms of t which are Σ-equivalent to r. Let P t
r = {p1, . . . , pm} be the set

of all the minimal elements in ΣP t
r with respect to the ordering � in the set

of positions, i.e., p ∈ P t
r if for each q ∈ ΣP t

r we have q �� p.

Definition 2.1. [8] Term Σ-composition tΣ(r ← s) of t and r by s is defined

as follows

(i) tΣ(r ← s) = t if P t
r = ∅;

(ii) tΣ(r ← s) = t(P t
r ; s) if P

t
r �= ∅.

Lemma 2.2. If Σ |= r ≈ v, then tΣ(r ← u) = tΣ(v ← u).

Proof. The lemma follows from the obvious equation P t
r = P t

v for each term

v ∈ Wτ (X) with Σ |= r ≈ v. �

Example 2.3. Let τ = (2) and let us consider the variety RB = Mod(Σ) of

rectangular bands, where

Σ = {x1(x2x3) ≈ (x1x2)x3 ≈ x1x3, x1x1 ≈ x1}.

Let t = ((x1x2)x2)((x1x2)x3), r = x1x2 and s = x4.

The sets of Σ-essential positions and subterms in t are:

PEss(t,Σ) = {ε, 1, 11, 111, 2, 22},
SEss(t,Σ) = {t, (x1x2)x2, x1x2, x1, (x1x2)x3, x3}.

The Σ-essential and Σ-fictive positions in t are represented by large and small

black circles, respectively in Figure 1. Next, we have

ΣSt
r = {x1x2, (x1x2)x2}, ΣP t

r = {1, 11, 21} and P t
r = {1, 21}.

Thus, we have tΣ(r ← s) = x4(x4x3) (see Figure 2).

Terms are important tools in various areas, such as abstract data type spec-

ifications, implementation of programming languages, automated deduction

etc. They can be used as models for different structures in logic programming,

term rewriting systems and other computational procedures.

A valuation of a term is a function Val : Wτ (X) → N such that for some

c ∈ N, Val(xi) = c for all i � 1, and Val(t) � c for all t ∈ Wτ (X). The natural

number c is called initial value of the valuation Val. It is often important for
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Figure 2. Σ-composition of terms t and r by s.

applications that terms be represented in forms with low complexity, including

sometimes in normal forms.

Some common valuations are based on a linguistic point of view which

counts the number of variables or the number of operation symbols occurring

in the term.

If li denotes the number of occurrences of the variable xi in the n-ary term

t, then the valuation Len, defined by Len(t) =
∑

xi∈var(t) li, is called the length

of t. Its initial value is 1.

The depth of a term t is defined by Depth(xi) = 0 for i = 1, 2, . . . and

otherwise, Depth(f(t1, . . . , tn)) = max{Depth(t1), . . . ,Depth(tn)}+ 1.

Let t ∈ Wτ (X) be a term and let Wv(t) = xi1 · · ·xis be the word of variables

in t which are written from left to right, and let St(t) = i1 · · · is ∈ N∗ be the

string of the indexes in Wv(t). The term t is called Σ-minimal if for each

s ∈ Wτ (X) with Σ |= t ≈ s, we have Len(t) < Len(s) or St(t) ≺lex St(s) when

Len(t) = Len(s), where ≺lex is the lexicographical order in N∗.

Clearly, Σ-minimal terms are unique. For instance, let t be the term defined

in Example 2.3. Then Len(t) = 6, Depth(t) = 3, Wv(t) = x1x2x2x1x2x3, and

St(t) = 122123. The Σ-minimal term corresponding to t is x1x3. It is clear
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position is not Σ-essential in t it is called Σ-fictive. PFic(t,Σ) denotes the set

of all Σ-fictive positions in t.

The set of Σ-essential subterms in t is defined as follows:

SEss(t,Σ) = {r ∈ Wτ (X) | Σ |= r ≈ subt(p) for p ∈ PEss(t,Σ)}.

So, a term is a Σ-essential subterm of a term t if it is Σ-equivalent to a subterm

of t whose root is located at a Σ-essential position in t.

Let t, r ∈ Wτ (X) and let ΣSt
r = {v ∈ Sub(t) | Σ |= r ≈ v} be the set of all

subterms of t which are Σ-equal to r.

Let ΣP t
r = {p ∈ Pos(t) | subt(p) ∈ ΣSt

r} be the set of all positions of

subterms of t which are Σ-equivalent to r. Let P t
r = {p1, . . . , pm} be the set

of all the minimal elements in ΣP t
r with respect to the ordering � in the set

of positions, i.e., p ∈ P t
r if for each q ∈ ΣP t

r we have q �� p.

Definition 2.1. [8] Term Σ-composition tΣ(r ← s) of t and r by s is defined

as follows

(i) tΣ(r ← s) = t if P t
r = ∅;

(ii) tΣ(r ← s) = t(P t
r ; s) if P

t
r �= ∅.

Lemma 2.2. If Σ |= r ≈ v, then tΣ(r ← u) = tΣ(v ← u).

Proof. The lemma follows from the obvious equation P t
r = P t

v for each term

v ∈ Wτ (X) with Σ |= r ≈ v. �

Example 2.3. Let τ = (2) and let us consider the variety RB = Mod(Σ) of

rectangular bands, where

Σ = {x1(x2x3) ≈ (x1x2)x3 ≈ x1x3, x1x1 ≈ x1}.

Let t = ((x1x2)x2)((x1x2)x3), r = x1x2 and s = x4.

The sets of Σ-essential positions and subterms in t are:

PEss(t,Σ) = {ε, 1, 11, 111, 2, 22},
SEss(t,Σ) = {t, (x1x2)x2, x1x2, x1, (x1x2)x3, x3}.

The Σ-essential and Σ-fictive positions in t are represented by large and small

black circles, respectively in Figure 1. Next, we have

ΣSt
r = {x1x2, (x1x2)x2}, ΣP t

r = {1, 11, 21} and P t
r = {1, 21}.

Thus, we have tΣ(r ← s) = x4(x4x3) (see Figure 2).

Terms are important tools in various areas, such as abstract data type spec-

ifications, implementation of programming languages, automated deduction

etc. They can be used as models for different structures in logic programming,

term rewriting systems and other computational procedures.

A valuation of a term is a function Val : Wτ (X) → N such that for some

c ∈ N, Val(xi) = c for all i � 1, and Val(t) � c for all t ∈ Wτ (X). The natural

number c is called initial value of the valuation Val. It is often important for
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that Σ-minimal terms minimize the valuations Depth and Len in the sets of

Σ-equal terms.

We need some basic definitions from universal algebra. More detailed back-

ground about these notions can be found in the classic text [1].

Definition 2.4. [1] A set Σ of identities of type τ is D-deductively closed if

it satisfies the following axioms (some authors call them “deductive rules”,

“derivation rules”, “productions”, etc.):

D1 (reflexivity) t ≈ t ∈ Σ for each term t ∈ Wτ (X);

D2 (symmetry) (t ≈ s ∈ Σ) ⇒ s ≈ t ∈ Σ;

D3 (transitivity) (t ≈ s ∈ Σ) & (s ≈ r ∈ Σ) ⇒ t ≈ r ∈ Σ;

D4 (term positional replacement)

(t ≈ s ∈ Σ) & (r ∈ Wτ (X)) & (subr(p) = t) ⇒ r(p; s) ≈ r ∈ Σ;

D5 (variable inductive substitution)

(t ≈ s ∈ Σ) & (r ∈ Wτ (X)) ⇒ t(x ← r) ≈ s(x ← r) ∈ Σ.

For any set Σ of identities, the smallest D-deductively closed set containing

Σ is called the D-closure of Σ and it is denoted by D(Σ).

The first three deductive rules make D(Σ) into an equivalence relation, the

fourth makes it a congruence, and the last rule says D(Σ) is a fully invariant

congruence.

Let Σ be a set of identities of type τ . For t ≈ s ∈ Id(τ), we say Σ proves

t ≈ s and write Σ � t ≈ s if there is a sequence of identities (D-deductions) t1 ≈
s1, . . . , tn ≈ sn, such that each identity belongs to Σ or is a result of applying

any of the derivation rules D1–D5 to previous identities in the sequence and the

last identity tn ≈ sn is t ≈ s. It is well-known that Σ � t ≈ s ⇐⇒ Σ |= t ≈ s.

In [8], a variation of the derivation rules D1–D5 is given which is used to

define a globally invariant congruence.

Definition 2.5. [8] A set Σ of identities is ΣR-deductively closed if it satisfies

the rules D1,D2,D3,D5 and

ΣR1 (Σ replacement)
(

r, t, s, u ∈ Wτ (X) & (t ≈ s ∈ Σ)

& r ∈ SEss(t,Σ) ∩ SEss(s,Σ)

)
⇒ tΣ(r ← u) ≈ sΣ(r ← u) ∈ Σ.

For any set Σ of identities, the smallest ΣR-deductively closed set contain-

ing Σ is called the ΣR-closure of Σ and it is denoted by ΣR(Σ).

ΣR is a closure operator which implies that:

(1) ΣR(ΣR(Σ)) = ΣR(Σ), and

(2) for each ∆ ⊆ Σ, if ∆ � t ≈ s, then t ≈ s ∈ ΣR(Σ).

A set Σ ⊆ Id(τ) is called a globally invariant congruence if it is ΣR-

deductively closed. In [8], it is proved that each globally invariant congruence

is a fully invariant congruence.

A variety V of type τ is called stable if Σ = Id(V ) is ΣR-deductively closed.
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3. Stable varieties of semigroups

We are going to describe all stable varieties of semigroups in analogy to the

solid varieties [5, 6], using some fundamental results in semigroup theory as

presented in [2, 3].

Throughout the rest of the paper, we write f(x1, x2) as (x1x2) or x1x2. The

following identities of type (2) are important for the achievement of our aim:

x1x2x3 ≈ xixj for i, j ∈ {1, 2, 3}. (3.1)

They allow us to define a special class of varieties of semigroups. Let i and j

be two natural numbers from the set {1, 2, 3}. Then we consider the following

variety of semigroups:

Vij = Mod({(x1x2)x3 ≈ x1(x2x3), x1x2x3 ≈ xixj}).

Let t ∈ Wτ (X) be a term and let Wv(t) = xi1 · · ·xis be the word of the

variables in t. We use this notation: first(t) = xi1 , second(t) = xi2 , . . . , s -

th(t) = xis . Often, the last variable xis is denoted by last(t) or rightmost(t).

Also, some authors write first(t) as leftmost(t). For instance, if t = x3x1x2x2

then we have first(t) = leftmost(t) = x3, second(t) = x1, third(t) = x2 and

fourth(t) = last(t) = rightmost(t) = x2.

Lemma 3.1. The varieties LZ (of Left-Zero-semigroups), RZ (of Right-Zero-

semigroups), Z (of Zero-semigroups), and the varieties Vij with 1 � i < j � 3

are stable.

Proof. Let V ∈ {LZ,RZ,Z, V12, V13, V23} and Σ = Id(V). Since Id(V) is a

fully invariant congruence, it satisfies the derivation rules D1, D2, D3, D4, and

D5. We have to prove that ΣR1 is also satisfied in V, i.e.,

Σ |= tΣ(r ← u) ≈ sΣ(r ← u), (3.2)

when Σ |= t ≈ s, r ∈ SEss(t,Σ) ∩ SEss(s,Σ), and u ∈ Wτ (X).

Let t, s, r ∈ Wτ (X) be terms with Σ |= t ≈ s and r ∈ SEss(t,Σ)∩SEss(s,Σ),
and let u ∈ Wτ (X) be a term. To prove (3.2), let us observe the following two

common facts:

First, if P t
r = {ε} or P s

r = {ε}, then r ∈ SEss(t,Σ) ∩ SEss(s,Σ) implies

Σ |= t ≈ r and Σ |= s ≈ r. Thus, we have tΣ(r ← u) = sΣ(r ← u) = u, which

shows that (3.2) is satisfied.

Second, if Depth(t) = 0, then we have t = xi for some variable xi ∈ X, and

hence r ∈ SEss(t,Σ) ∩ SEss(s,Σ) implies Σ |= r ≈ xi. Now, (3.2) is satisfied,

according to D5.

Next, let Σ |= t ≈ s, r ∈ SEss(t,Σ)∩ SEss(s,Σ), 1 � Depth(t) � Depth(s),

and Σ �|= t ≈ r.

Claim 1: LZ and RZ are stable varieties.

Consider the variety V = LZ. Then Σ |= x1x2 ≈ x1 and Σ |= w ≈ first(w)

for all terms w. Consequently, Σ |= t ≈ s and r ∈ SEss(t,Σ)∩SEss(s,Σ) imply
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that Σ-minimal terms minimize the valuations Depth and Len in the sets of

Σ-equal terms.

We need some basic definitions from universal algebra. More detailed back-

ground about these notions can be found in the classic text [1].

Definition 2.4. [1] A set Σ of identities of type τ is D-deductively closed if

it satisfies the following axioms (some authors call them “deductive rules”,

“derivation rules”, “productions”, etc.):

D1 (reflexivity) t ≈ t ∈ Σ for each term t ∈ Wτ (X);

D2 (symmetry) (t ≈ s ∈ Σ) ⇒ s ≈ t ∈ Σ;

D3 (transitivity) (t ≈ s ∈ Σ) & (s ≈ r ∈ Σ) ⇒ t ≈ r ∈ Σ;

D4 (term positional replacement)

(t ≈ s ∈ Σ) & (r ∈ Wτ (X)) & (subr(p) = t) ⇒ r(p; s) ≈ r ∈ Σ;

D5 (variable inductive substitution)

(t ≈ s ∈ Σ) & (r ∈ Wτ (X)) ⇒ t(x ← r) ≈ s(x ← r) ∈ Σ.

For any set Σ of identities, the smallest D-deductively closed set containing

Σ is called the D-closure of Σ and it is denoted by D(Σ).

The first three deductive rules make D(Σ) into an equivalence relation, the

fourth makes it a congruence, and the last rule says D(Σ) is a fully invariant

congruence.

Let Σ be a set of identities of type τ . For t ≈ s ∈ Id(τ), we say Σ proves

t ≈ s and write Σ � t ≈ s if there is a sequence of identities (D-deductions) t1 ≈
s1, . . . , tn ≈ sn, such that each identity belongs to Σ or is a result of applying

any of the derivation rules D1–D5 to previous identities in the sequence and the

last identity tn ≈ sn is t ≈ s. It is well-known that Σ � t ≈ s ⇐⇒ Σ |= t ≈ s.

In [8], a variation of the derivation rules D1–D5 is given which is used to

define a globally invariant congruence.

Definition 2.5. [8] A set Σ of identities is ΣR-deductively closed if it satisfies

the rules D1,D2,D3,D5 and

ΣR1 (Σ replacement)
(

r, t, s, u ∈ Wτ (X) & (t ≈ s ∈ Σ)

& r ∈ SEss(t,Σ) ∩ SEss(s,Σ)

)
⇒ tΣ(r ← u) ≈ sΣ(r ← u) ∈ Σ.

For any set Σ of identities, the smallest ΣR-deductively closed set contain-

ing Σ is called the ΣR-closure of Σ and it is denoted by ΣR(Σ).

ΣR is a closure operator which implies that:

(1) ΣR(ΣR(Σ)) = ΣR(Σ), and

(2) for each ∆ ⊆ Σ, if ∆ � t ≈ s, then t ≈ s ∈ ΣR(Σ).

A set Σ ⊆ Id(τ) is called a globally invariant congruence if it is ΣR-

deductively closed. In [8], it is proved that each globally invariant congruence

is a fully invariant congruence.

A variety V of type τ is called stable if Σ = Id(V ) is ΣR-deductively closed.
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first(t) = first(s) = first(r). Thus, we have Σ |= t ≈ s ≈ r, and hence (3.2)

is satisfied, which shows that LZ is stable. The variety RZ is stable by dual

arguments.

Claim 2: Z is a stable variety.

We have Σ |= x1x2 ≈ x3x4. Clearly, P
t
r = P s

r = {ε} for all terms t, s, r with

Σ |= t ≈ s, and r ∈ SEss(t,Σ) ∩ SEss(s,Σ), which proves the stability of Z.

Claim 3: V12, V13 and V23 are stable varieties.

We shall show that the variety V = V12 is stable. Hence, we have

Σ |= (x1x2)x3 ≈ x1(x2x3) and Σ |= x1x2x3 ≈ x1x2.

Since Depth(t) � 1, we have Σ |= t ≈ first(t) second(t). Let us assume, with

no loss of generality, that x1 = first(t) and x2 = second(t).

Next, Σ �|= t ≈ r and r ∈ SEss(t,Σ) ∩ SEss(s,Σ) implies Σ |= r ≈ x1 or

Σ |= r ≈ x2. Without loss of generality, let us assume that Σ |= r ≈ x1.

According to Lemma 2.2, we have Σ |= tΣ(r ← u) ≈ tΣ(x1 ← u). Since x1

is a variable, it is easy to see that Σ |= tΣ(x1 ← u) ≈ t(x1 ← u). Hence,

for satisfaction of (3.2), we need Σ |= t(x1 ← u) ≈ s(x1 ← u), which follows

from D5. Consequently, V12 is a stable variety. The proof that V13 and V23

are stable varieties is left to the reader. �

Remark 3.2. Let us consider the variety V21 = Mod(Σ), where

Σ = {(x1x2)x3 ≈ x1(x2x3), x1x2x3 ≈ x2x1}.

Then we have

Σ |= x1x2 ≈ (x2x1)x3 ≈ ((x1x2)x4)x3 ≈ x1(x2x4)x3

≈ x1((x4x2)x5)x3 ≈ ((x1x4)x2)x5x3 ≈ x4((x1x5)x3)

≈ x4(x5x1) ≈ ((x4x5)x1) ≈ x5x4.

Hence, V21 = Z. Using similar or dual arguments one can show that V31 =

V32 = Z.

Proposition 3.3. The varieties of semigroups Vii, for i ∈ {1, 2, 3} are not

stable.

Proof. We prove that V11 = Mod({(x1x2)x3 ≈ x1(x2x3), x1x2x3 ≈ x1x1}) is
not a stable variety.

Consider the following terms: t = (x1x2)x3, s = (x1x2)x4, and r = x1x2.

Clearly, Σ |= t ≈ s. Then we have t(1;x1) = x1x3, t(1;x3) = x3x3, and

Σ �|= x3x3 ≈ x1x3. Since Σ �|= x1x2 ≈ (x1x2)x3, we have 1 ∈ P t
r . In an

analogous way, we obtain 1 ∈ P s
r . Next, we have tΣ(r ← x3) = x3x3 and

sΣ(r ← x3) = x3x4, which shows that V11 is not stable. In a similar way, one

can prove that V22 and V33 are not stable varieties. �
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Lemma 3.4. The following varieties of semigroups are stable:

V1 = Mod({(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x1x3}),
V3 = Mod({(x1x2)x3 ≈ x1(x2x3), x1x3 ≈ x2x3}).

Proof. We shall prove that V1 is stable. Let t, s and r be terms for which

Σ |= t ≈ s and r ∈ SEss(t,Σ) ∩ SEss(s,Σ).

If Depth(t) = 0, then Depth(s) = 0 and (3.2) is clearly satisfied.

If Depth(t) = 1 and Depth(s) = 1, then first(t) = first(s) and r = first(t)

or Σ |= t ≈ r, and (3.2) is obvious, again.

If Depth(t) � 2, then Σ |= t ≈ s ≈ first(t)x2 for an arbitrary variable

x2 ∈ X. This implies that Σ |= r ≈ first(t) or Σ |= t ≈ r. In both cases, (3.2)

is satisfied.

By dual arguments it follows that V3 is stable. �

Remark 3.5. Since {x1x2 ≈ x1x3} |= x1x2x3 ≈ x1x1, it follows that V1 ⊆ V11

and by dual arguments, we have V3 ⊆ V33.

Lemma 3.6. Let V = Mod(Σ) be a stable variety of semigroups. If we have

Σ |= x1x2x3 ≈ x1x2x4, then Σ proves at least one identity among (3.1) with

1 � i < j � 3.

Proof. Consider the following terms: t = (x1x2)x3, s = (x1x2)x4, r = x1x2,

and u = x1. Clearly, Σ |= t ≈ s.

If r /∈ SEss(t,Σ) ∩ SEss(s,Σ), then we are done because Σ |= (x1x2)x3 ≈
x5x3 and from D5, we have Σ |= (x1x2)x3 ≈ x1x3.

Let r ∈ SEss(t,Σ) ∩ SEss(s,Σ). If Σ |= t ≈ r, then Σ |= s ≈ r, and we are

done again because of Σ |= (x1x2)x3 ≈ x1x2.

Next, assume that Σ �|= t ≈ r. Then Σ �|= s ≈ r, P t
r = {1}, and P s

r = {1}.
From Σ |= t ≈ s and ΣR1, we obtain

Σ |= tΣ(r ← x1) ≈ sΣ(r ← x1), and Σ |= x1x3 ≈ x1x4.

According to D5, we can replace x4 by x2x3 in the last identity, and hence

Σ |= x1x3 ≈ x1(x2x3). �

In a similar way, one can show that if we have Σ |= x1x2x3 ≈ x4x2x3 or

Σ |= x1x2x3 ≈ x1x4x3, then Σ proves at least one identity among (3.1) with

1 � i < j � 3.

Lemma 3.7. If V = Mod(Σ) is a stable variety of semigroups, then we have

Σ |= x1x1x1 ≈ x1x1.

Proof. If Σ proves at least one identity among (3.1) with 1 � i < j � 3, then

Σ |= x1x1x1 ≈ x1x1 is clear.

Assume that Σ does not prove any identity among (3.1) with 1 � i < j � 3.

We shall prove the lemma by considering cases:

Case A: Σ �|= (x1x2)(x1x2) ≈ x1x2.
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first(t) = first(s) = first(r). Thus, we have Σ |= t ≈ s ≈ r, and hence (3.2)

is satisfied, which shows that LZ is stable. The variety RZ is stable by dual

arguments.

Claim 2: Z is a stable variety.

We have Σ |= x1x2 ≈ x3x4. Clearly, P
t
r = P s

r = {ε} for all terms t, s, r with

Σ |= t ≈ s, and r ∈ SEss(t,Σ) ∩ SEss(s,Σ), which proves the stability of Z.

Claim 3: V12, V13 and V23 are stable varieties.

We shall show that the variety V = V12 is stable. Hence, we have

Σ |= (x1x2)x3 ≈ x1(x2x3) and Σ |= x1x2x3 ≈ x1x2.

Since Depth(t) � 1, we have Σ |= t ≈ first(t) second(t). Let us assume, with

no loss of generality, that x1 = first(t) and x2 = second(t).

Next, Σ �|= t ≈ r and r ∈ SEss(t,Σ) ∩ SEss(s,Σ) implies Σ |= r ≈ x1 or

Σ |= r ≈ x2. Without loss of generality, let us assume that Σ |= r ≈ x1.

According to Lemma 2.2, we have Σ |= tΣ(r ← u) ≈ tΣ(x1 ← u). Since x1

is a variable, it is easy to see that Σ |= tΣ(x1 ← u) ≈ t(x1 ← u). Hence,

for satisfaction of (3.2), we need Σ |= t(x1 ← u) ≈ s(x1 ← u), which follows

from D5. Consequently, V12 is a stable variety. The proof that V13 and V23

are stable varieties is left to the reader. �

Remark 3.2. Let us consider the variety V21 = Mod(Σ), where

Σ = {(x1x2)x3 ≈ x1(x2x3), x1x2x3 ≈ x2x1}.

Then we have

Σ |= x1x2 ≈ (x2x1)x3 ≈ ((x1x2)x4)x3 ≈ x1(x2x4)x3

≈ x1((x4x2)x5)x3 ≈ ((x1x4)x2)x5x3 ≈ x4((x1x5)x3)

≈ x4(x5x1) ≈ ((x4x5)x1) ≈ x5x4.

Hence, V21 = Z. Using similar or dual arguments one can show that V31 =

V32 = Z.

Proposition 3.3. The varieties of semigroups Vii, for i ∈ {1, 2, 3} are not

stable.

Proof. We prove that V11 = Mod({(x1x2)x3 ≈ x1(x2x3), x1x2x3 ≈ x1x1}) is
not a stable variety.

Consider the following terms: t = (x1x2)x3, s = (x1x2)x4, and r = x1x2.

Clearly, Σ |= t ≈ s. Then we have t(1;x1) = x1x3, t(1;x3) = x3x3, and

Σ �|= x3x3 ≈ x1x3. Since Σ �|= x1x2 ≈ (x1x2)x3, we have 1 ∈ P t
r . In an

analogous way, we obtain 1 ∈ P s
r . Next, we have tΣ(r ← x3) = x3x3 and

sΣ(r ← x3) = x3x4, which shows that V11 is not stable. In a similar way, one

can prove that V22 and V33 are not stable varieties. �
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Let us put t = ((x1x2)x1)x2, s = (x1x2)(x1x2), r = x1x2, and u = x3.

Clearly, Σ |= t ≈ s. Suppose r /∈ SEss(t,Σ); then Σ |= (x3x1)x2 ≈ (x4x1)x2,

which contradicts Lemma 3.6, and so r ∈ SEss(t,Σ). Suppose r /∈ SEss(s,Σ);

then Σ |= x3x1 ≈ x3x4 ≈ x3(x1x2), a contradiction. Hence, r ∈ SEss(s,Σ).

Then we have tΣ(r ← u) = (x3x1)x2 and sΣ(r ← u) = x3x3. Hence,

Σ |= (x3x1)x2 ≈ x3x3 and after replacing x3 and x2 by x1, we obtain that

Σ |= x1x1x1 ≈ x1x1.

Case B: Σ |= (x1x2)(x1x2) ≈ x1x2.

The associative law and D5 imply

Σ |= ((x1x1)x1)x1 ≈ (x1x1)(x1x1) ≈ x1x1. (3.3)

Let us put t = ((x1x2)x3)(x1x2), s = (((x1x2)x3)x1)x2, r = x1x2, and u = x4.

Clearly, Σ |= t ≈ s.

If Σ |= t ≈ r, then we are done after replacing x2 and x3 by x1 in Σ |= t ≈ s.

If we suppose that r /∈ SEss(t,Σ), then Σ |= (x4x3)x5 ≈ (x6x3)x7, which

contradicts Lemma 3.6. Hence, r ∈ SEss(t,Σ).

Let us assume that r ∈ SEss(t,Σ)∩ SEss(s,Σ). Then from (3.2), we obtain

Σ |= (x4x3)x4 ≈ ((x4x3)x1)x2. Replacing x2, x3, x4 by x1, and using (3.3),

we obtain Σ |= x1x1 ≈ (x1x1)x1.

Assume that r ∈ SEss(t,Σ) \ SEss(s,Σ); then

Σ |= (((x1x2)x3)x1)x2 ≈ ((x4x3)x1)x2.

Replacing x2, x3, x4 by x1, and using (3.3), we obtain Σ |= x1x1 ≈ x1x1x1. �

Theorem 3.8. If a variety V of semigroups is stable, then V ⊆ V12 or V ⊆ V13,

or V ⊆ V23.

Proof. Let V = Mod(Σ) be a stable variety of semigroups.

First, let Σ �|= ((x1x2)x2)x3 ≈ ((x1x2)x2)x4 and let us put t = ((x1x2)x2)x3,

s = (((x1x2)x2)x2)x3, r = (x1x2)x2, and u = x4. Lemma 3.7 implies that

Σ |= t ≈ s.

If r /∈ SEss(t,Σ), then Σ |= x1x3 ≈ x2x3 and according to D5, we have

Σ |= x1x3 ≈ (x1x2)x3.

If r /∈ SEss(s,Σ), then Σ |= (x1x2)x3 ≈ (x4x2)x3, and hence we are done

because of Lemma 3.6.

If we suppose that Σ |= r ≈ t, i.e., Σ |= (x1x2)x2 ≈ ((x1x2)x2)x3, then

D3 implies Σ |= (x1x2)x2 ≈ ((x1x2)x2)x4, which contradicts our assumption.

Hence, Σ �|= r ≈ t, P t
r = {1}, P s

r = {11}, and (3.2) implies Σ |= x4x2 ≈
(x4x2)x3.

Second, assume that Σ |= ((x1x2)x2)x3 ≈ ((x1x2)x2)x4. Lemma 3.7 then

implies Σ |= ((x1x2)x2)x3 ≈ ((x1x2)x2)x2 ≈ (x1x2)x2. Consider the terms

t = (x1x2)x2, s = ((x1x2)x2)x3, r = x1x2, and u = x4. Clearly, Σ |= t ≈ s.

If r /∈ SEss(t,Σ), then Σ |= x1x2 ≈ x3x2, and hence Σ |= x1x2 ≈ (x1x3)x2.

If r /∈ SEss(s,Σ), then Σ |= (x1x2)x3 ≈ (x4x2)x3, and hence we are done

because of Lemma 3.6.
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Let r ∈ SEss(t,Σ) ∩ SEss(s,Σ). If Σ |= t ≈ r, then Σ |= s ≈ r, i.e.,

Σ |= ((x1x2)x2)x3 ≈ x1x2 ≈ (x1x2)x3.

If Σ �|= t ≈ r, then P t
r = {1} and P s

r = {11}. Thus, from (3.2), we obtain

Σ |= x4x2 ≈ (x4x2)x3, which completes the proof. �

Theorem 3.9. Let V be a variety of semigroups. Then V is stable if and only

if V is one of the following ten varieties:

V1 = Mod({(x1x2)x3 ≈ x1(x2x3), x1x2x3 ≈ x1x3}),
V2 = Mod({(x1x2)x3 ≈ x1(x2x3), x1x2x3 ≈ x1x2}),
V3 = Mod({(x1x2)x3 ≈ x1(x2x3), x1x2x3 ≈ x2x3}),
V4 = Mod({(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x1x3}),
V5 = Mod({(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x3x2}),
V6 = RB the variety of rectangular bands,

V7 = LZ the variety of Left-Zero-semigroups,

V8 = RZ the variety of Right-Zero-semigroups,

V9 = Z the variety of Zero-semigroups,

V10 = TR the trivial variety.

All these varieties are pairwise distinct.

Proof. First, assume that V is a stable variety of semigroups. Then from

Theorem 3.8, we have V = Mod(Σ) for some set of identities Σ, which proves

at least one identity among (3.1) with 1 � i < j � 3. Then

V ∈ {V1,V2,V3,V4,V5, RB,LZ,RZ,Z, TR}

follows by the following well-known facts (see [2]):

Fact 1: The non-trivial proper subvarieties of V2 are V4, LZ, and Z.

Fact 2: The non-trivial proper subvarieties of V3 are V5, RZ, and Z.

Fact 3: The non-trivial proper subvarieties of V1 are RB, V4, V5, LZ,

RZ, and Z.

Second, the varieties V1,V2,V3, LZ,RZ, and Z are stable, according to

Lemma 3.1; the varieties V4 and V5 are stable, according to Lemma 3.4. The

stability of RB is proved in [8]. The variety TR is obviously stable.

Finally, it is a well-known fact that all these varieties are pairwise dis-

tinct [2].

All stable varieties of semigroups are shown in Figure 3. �

4. Abstract reduction systems and deduction of identities

A Term Rewriting System (TRS) for deductions of identities is a pair (τ,R)

consisting of a type and a set of reduction (rewrite) rules which are binary

relations on Wτ (X) written as t → r.

Our aim is to use a TRS and apply its well-developed tools to investigate

the stability of several varieties of groupoids. For this purpose, we consider a

TRS as an Abstract Reduction System (ARS).

10 Sl. Shtrakov and J. Koppitz Algebra univers.

Let us put t = ((x1x2)x1)x2, s = (x1x2)(x1x2), r = x1x2, and u = x3.

Clearly, Σ |= t ≈ s. Suppose r /∈ SEss(t,Σ); then Σ |= (x3x1)x2 ≈ (x4x1)x2,

which contradicts Lemma 3.6, and so r ∈ SEss(t,Σ). Suppose r /∈ SEss(s,Σ);

then Σ |= x3x1 ≈ x3x4 ≈ x3(x1x2), a contradiction. Hence, r ∈ SEss(s,Σ).

Then we have tΣ(r ← u) = (x3x1)x2 and sΣ(r ← u) = x3x3. Hence,

Σ |= (x3x1)x2 ≈ x3x3 and after replacing x3 and x2 by x1, we obtain that

Σ |= x1x1x1 ≈ x1x1.

Case B: Σ |= (x1x2)(x1x2) ≈ x1x2.

The associative law and D5 imply

Σ |= ((x1x1)x1)x1 ≈ (x1x1)(x1x1) ≈ x1x1. (3.3)

Let us put t = ((x1x2)x3)(x1x2), s = (((x1x2)x3)x1)x2, r = x1x2, and u = x4.

Clearly, Σ |= t ≈ s.

If Σ |= t ≈ r, then we are done after replacing x2 and x3 by x1 in Σ |= t ≈ s.

If we suppose that r /∈ SEss(t,Σ), then Σ |= (x4x3)x5 ≈ (x6x3)x7, which

contradicts Lemma 3.6. Hence, r ∈ SEss(t,Σ).

Let us assume that r ∈ SEss(t,Σ)∩ SEss(s,Σ). Then from (3.2), we obtain

Σ |= (x4x3)x4 ≈ ((x4x3)x1)x2. Replacing x2, x3, x4 by x1, and using (3.3),

we obtain Σ |= x1x1 ≈ (x1x1)x1.

Assume that r ∈ SEss(t,Σ) \ SEss(s,Σ); then

Σ |= (((x1x2)x3)x1)x2 ≈ ((x4x3)x1)x2.

Replacing x2, x3, x4 by x1, and using (3.3), we obtain Σ |= x1x1 ≈ x1x1x1. �

Theorem 3.8. If a variety V of semigroups is stable, then V ⊆ V12 or V ⊆ V13,

or V ⊆ V23.

Proof. Let V = Mod(Σ) be a stable variety of semigroups.

First, let Σ �|= ((x1x2)x2)x3 ≈ ((x1x2)x2)x4 and let us put t = ((x1x2)x2)x3,

s = (((x1x2)x2)x2)x3, r = (x1x2)x2, and u = x4. Lemma 3.7 implies that

Σ |= t ≈ s.

If r /∈ SEss(t,Σ), then Σ |= x1x3 ≈ x2x3 and according to D5, we have

Σ |= x1x3 ≈ (x1x2)x3.

If r /∈ SEss(s,Σ), then Σ |= (x1x2)x3 ≈ (x4x2)x3, and hence we are done

because of Lemma 3.6.

If we suppose that Σ |= r ≈ t, i.e., Σ |= (x1x2)x2 ≈ ((x1x2)x2)x3, then

D3 implies Σ |= (x1x2)x2 ≈ ((x1x2)x2)x4, which contradicts our assumption.

Hence, Σ �|= r ≈ t, P t
r = {1}, P s

r = {11}, and (3.2) implies Σ |= x4x2 ≈
(x4x2)x3.

Second, assume that Σ |= ((x1x2)x2)x3 ≈ ((x1x2)x2)x4. Lemma 3.7 then

implies Σ |= ((x1x2)x2)x3 ≈ ((x1x2)x2)x2 ≈ (x1x2)x2. Consider the terms

t = (x1x2)x2, s = ((x1x2)x2)x3, r = x1x2, and u = x4. Clearly, Σ |= t ≈ s.

If r /∈ SEss(t,Σ), then Σ |= x1x2 ≈ x3x2, and hence Σ |= x1x2 ≈ (x1x3)x2.

If r /∈ SEss(s,Σ), then Σ |= (x1x2)x3 ≈ (x4x2)x3, and hence we are done

because of Lemma 3.6.
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Figure 3. Stable varieties of semigroups.

An ARS is a structure W = 〈Wτ (X), (→i)i∈I ,Σ〉, where (→i)i∈I is a family

of binary relations on Wτ (X), called reductions or rewrite relations. For a

reduction →i, the transitive and reflexive closure is denoted by �i. A term

r ∈ Wτ (X) is a normal form if there is no v ∈ Wτ (X) such that r →i v.

TRSs, and in particular ARSs, play an important role in various areas

such as abstract data type specification, functional programming, automated

deductions, etc. For more detailed information about TRSs, we refer to J. W.

Klop and Roel de Vrijer [4]. The concepts and properties of ARSs also apply

to other rewrite systems such as string rewrite systems (Thue systems), tree

rewrite systems, graph grammars, etc.

Many computations, constructions, processes, translations, mappings and

so on, can be modeled as stepwise transformations of objects known as rewrit-

ing systems. In all different branches of rewriting, two basic concepts occur,

known as termination (guaranteeing the existence of normal forms) and con-

fluence (securing the uniqueness of normal forms).

Let us consider the ARS W = 〈W(2)(X), {→R},Σ〉 determined by the fol-

lowing reduction:

t →R r
def⇐⇒ r = t(p;u)

where s = subt(p), Σ |= s ≈ u, and u is Σ-minimal. According to D4, we have

that if t →R r, then Σ |= t ≈ r.

Our intention is to reduce the terms in an identity to normal forms and

then implement the deductive rules on these normal forms, preferably with

low complexity terms. First, we are interested in existence and uniqueness of

normal forms for the reduction →R.

A reduction → has the unique normal form property (UN) if whenever

t, r ∈ Wτ (X) are normal forms and Σ |= t ≈ r then t = r. We are going to

prove that →R is UN when Σ determines the variety of idempotent groupoids

or consists of identities as from (3.1). This we shall do using Newman’s Lemma

(Theorem 1.2.1. [4]).
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A reduction → is terminating (or strongly normalizing SN) if every reduc-

tion sequence t → t1 → t2 · · · eventually must terminate. A reduction → is

weakly confluent (or has weakly Church-Rosser property WCR) if t → r and

t → v imply that there is w ∈ Wτ (X) such that r � w and v � w.

Theorem 4.1. The reduction →R is SN and WCR.

Proof. (SN): Clearly, if t →R r, then Len(t) � Len(r) or St(t) ≺lex St(r)

when Len(t) = Len(r). Since the lengths Len(z) of the terms z in any reduc-

tion sequence decrease and strings St(z) strongly decrease, it follows that the

sequence eventually must terminate, i.e., the reduction is terminating.

(WCR): Let t be a term, p, q ∈ Pos(t), s = subt(p), w = subt(q), r = t(p;u),

and v = t(q; z), where u and z are Σ-minimal. If p ≺ q, then we have t →R

r →R w. If q ≺ p, then t →R w →R r, which shows that reduction →R is

WCR in these two cases.

Let p �≺ q and q �≺ p, and let y be the Σ-minimal term with Σ |= t ≈ y.

Then we have

t →R w →R r �R y and t →R r →R w �R y. �

Corollary 4.2. The reduction →R is UN.

Proof. This follows from Newman’s Lemma, which states that WCR & SN

⇒ UN (see Theorem 1.2.1. [4]). �

For each term t ∈ Wτ (X), we denote by Red(t) the normal form obtained

from t under the reduction →R.

Corollary 4.3. Σ |= t ≈ Red(t) for any term t ∈ Wτ (X).

It is easy to see that the normal form operator Red minimizes the valuations

Len and Depth.

5. Stable varieties of groupoids

We are going to study stable varieties of groupoids. Let us note that if

Σ = ∅, then Mod(Σ) is a stable variety.

First, we consider the variety of idempotent groupoids. Note that if t ∈
Wτ (X) and s ∈ Sub(Red(t)), then there is r ∈ Sub(t) such that Σ |= r ≈ s,

and if t = t1t2, then Σ |= Red(t) ≈ Red(t1)Red(t2).

Lemma 5.1. If Σ = {x1x1 ≈ x1}, then

Σ |= Red(tΣ(r ← u)) ≈ Red(t)Σ(r ← u) (5.1)

for every r, t, u ∈ Wτ (X).

Proof. Let t, r, u ∈ Wτ (X) be three terms. We shall proceed by induction on

Depth(t). If Depth(t) = 0, then t = xi for some natural number i. Then

Red(t) = xi and it is obvious that (5.1) is satisfied.
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An ARS is a structure W = 〈Wτ (X), (→i)i∈I ,Σ〉, where (→i)i∈I is a family

of binary relations on Wτ (X), called reductions or rewrite relations. For a

reduction →i, the transitive and reflexive closure is denoted by �i. A term

r ∈ Wτ (X) is a normal form if there is no v ∈ Wτ (X) such that r →i v.

TRSs, and in particular ARSs, play an important role in various areas

such as abstract data type specification, functional programming, automated

deductions, etc. For more detailed information about TRSs, we refer to J. W.

Klop and Roel de Vrijer [4]. The concepts and properties of ARSs also apply

to other rewrite systems such as string rewrite systems (Thue systems), tree

rewrite systems, graph grammars, etc.

Many computations, constructions, processes, translations, mappings and

so on, can be modeled as stepwise transformations of objects known as rewrit-

ing systems. In all different branches of rewriting, two basic concepts occur,

known as termination (guaranteeing the existence of normal forms) and con-

fluence (securing the uniqueness of normal forms).

Let us consider the ARS W = 〈W(2)(X), {→R},Σ〉 determined by the fol-

lowing reduction:

t →R r
def⇐⇒ r = t(p;u)

where s = subt(p), Σ |= s ≈ u, and u is Σ-minimal. According to D4, we have

that if t →R r, then Σ |= t ≈ r.

Our intention is to reduce the terms in an identity to normal forms and

then implement the deductive rules on these normal forms, preferably with

low complexity terms. First, we are interested in existence and uniqueness of

normal forms for the reduction →R.

A reduction → has the unique normal form property (UN) if whenever

t, r ∈ Wτ (X) are normal forms and Σ |= t ≈ r then t = r. We are going to

prove that →R is UN when Σ determines the variety of idempotent groupoids

or consists of identities as from (3.1). This we shall do using Newman’s Lemma

(Theorem 1.2.1. [4]).
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Let us assume that for some natural number k � 2, if Depth(t) < k, then

(5.1) is satisfied for t. Let Depth(t) = k and t = t1t2. Let r ∈ Sub(t). If

Σ |= r ≈ t, then Σ |= r ≈ Red(t) and we have Σ |= r ≈ Red(t). Hence,

Red(tΣ(r ← u)) = u and Red(t)Σ(r ← u) = u, which proves (5.1).

Let r ∈ Sub(t) and Σ �|= r ≈ t. If ΣSt
r = ∅, then clearly ΣS

Red(t)
r = ∅ and

(5.1) is obviously satisfied in this case.

Assume that ΣSt
r �= ∅. By the inductive assumption we have

Σ |= Red(tΣi (r ← u)) ≈ Red(ti)
Σ(r ← u)

for i = 1, 2 and r, u ∈ Wτ (X). Hence,

Σ |= Red(tΣ1 (r ← u))Red(tΣ2 (r ← u)) ≈ Red(t1)
Σ(r ← u)Red(t2)

Σ(r ← u).

Thus, we have

Σ |= Red(tΣ1 (r ← u))Red(tΣ2 (r ← u))

≈ Red((tΣ1 (r ← u)tΣ2 (r ← u))) ≈ Red(tΣ(r ← u)).

Let us assume that Σ �|= t1 ≈ t and Σ �|= t2 ≈ t. Then

Σ |= Red(t1)
Σ(r ← u)Red(t2)

Σ(r ← u)

≈ (Red(t1)Red(t2))
Σ(r ← u) = Red(t)Σ(r ← u),

which proves (5.1) in this case.

Let Σ |= t1 ≈ t. Then {1, 2} ⊆ PEss(t,Σ) implies Σ |= t1 ≈ t2. Then

Σ |= Red(t1) ≈ Red(t2) and Σ |= Red(t1t2) ≈ Red(t1)Red(t2) ≈ Red(t1).

Hence,

Σ |= Red(t1)
Σ(r ← u)Red(t2)

Σ(r ← u)

≈ Red(t1)
Σ(r ← u) ≈ Red(t)Σ(r ← u). �

Theorem 5.2. The variety IG = Mod({x1x1 ≈ x1}) of idempotent groupoids

is stable.

Proof. We put Σ = Id(Mod({x1x1 ≈ x1}). We have to prove (3.2) when

Σ |= t ≈ s and r ∈ SEss(t,Σ) ∩ SEss(s,Σ). Without loss of generality, let us

assume that Depth(t) � Depth(s). We shall proceed by induction on Depth(t).

Our inductive basis is Depth(t) � 1. Then clearly t = s or s = x1x2, and (3.2)

is satisfied.

Assume that (3.2) is satisfied when Depth(t) < k for some natural number

k � 2. Let Depth(t) = k. Then t = t1t2 and s = s1s2. Lemma 5.1 allows us

to think that terms t and s are presented in their normal forms under →R,

i.e., t = Red(t) and s = Red(s). Hence, 1, 2 ∈ PEss(t,Σ) ∩ PEss(s,Σ) and

Σ �|= ti ≈ t, and Σ �|= si ≈ s for i = 1, 2. This shows that Σ �|= t1 ≈ t2 and

Σ �|= s1 ≈ s2. Hence, Σ |= ti ≈ si for i = 1, 2. Now Depth(ti) < k, so our

inductive assumption and Lemma 5.1 prove (3.2). �

Theorem 5.3. The variety CG = Mod({x1x2 ≈ x2x1}) of all commutative

groupoids is stable.
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Proof. Let Σ = {x1x2 ≈ x2x1}. Let us note that Σ |= u ≈ v implies Len(u) =

Len(v), Depth(u) = Depth(v), and | Pos(u) | = | Pos(v) |, for all v, u ∈
Wτ (X).

We shall prove (3.2) by induction on the depth of terms t and s. Let

Depth(t) = Depth(s) = 0. Then t = s = x1 for some variable x1 ∈ X and

(3.2) is obvious.

Assume that (3.2) is satisfied when Depth(t) = Depth(s) < k for some

natural number k, k > 1. Let Depth(t) = Depth(s) = k, Σ |= t ≈ s, and

r ∈ SEss(t,Σ) ∩ SEss(s,Σ). Let n be a natural number such that t, s, r, u ∈
Wτ (Xn) and let us denote by zn+1, . . . , zn+p ∈ Wτ (Xn) all subterms of t, s or

r with depths equal to 1 which are distinguished by Σ, i.e., Σ �|= zn+i ≈ zn+j

when i �= j. Using inductive composition, we obtain three new terms, namely:

t′ = t(zn+1 ← xn+1, . . . , zn+p ← xn+p),

s′ = s(zn+1 ← xn+1, . . . , zn+p ← xn+p), and

r′ = r(zn+1 ← xn+1, . . . , zn+p ← xn+p).

Thus, we have t′, s′, r′ ∈ Wτ (Xn+p) and Depth(t′) = Depth(s′) = k − 1 < k.

It is easy to see that Σ |= t′ ≈ s′ and r′ ∈ SEss(t′,Σ) ∩ SEss(s′,Σ). Our

inductive assumption implies Σ |= t′Σ(r′ ← u) ≈ s′Σ(r′ ← u). Let us put

t′′ = t′Σ(r′ ← u) and s′′ = s′Σ(r′ ← u). Then from D5 it follows that

t′′(xn+1 ← zn+1, . . . , xn+p ← zn+p) ≈ s′′(xn+1 ← zn+1, . . . , xn+p ← zn+p).

Now, the equations

tΣ(r ← u) = t′′(xn+1 ← zn+1, . . . , xn+p ← zn+p), and

sΣ(r ← u) = s′′(xn+1 ← zn+1, . . . , xn+p ← zn+p)

complete the proof. �

Remark 5.4. (i) It is surprising that the variety CG of all commutative

groupoids is stable, but the analogous variety of commutative semigroups is

not stable, as shown by Theorem 3.8. Hence, stability is not inherited by

subvarieties of groupoids.

(ii) Theorem 3.9 and the description of the lattice of the varieties of semi-

groups given in [2] show that if a variety V of semigroups is stable, then all

subvarieties of V are stable.

Next, we consider the following varieties of groupoids:

V ijk
lm = Mod({(xixj)xk ≈ xlxm}) and W ijk

lm = Mod({xi(xjxk) ≈ xlxm}),

where i, j, k, l,m ∈ {1, 2, 3}.

Theorem 5.5. The varieties of groupoids V ijk
lm and W ijk

lm for i, j, k, l,m ∈
{1, 2} are stable.
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Let us assume that for some natural number k � 2, if Depth(t) < k, then

(5.1) is satisfied for t. Let Depth(t) = k and t = t1t2. Let r ∈ Sub(t). If

Σ |= r ≈ t, then Σ |= r ≈ Red(t) and we have Σ |= r ≈ Red(t). Hence,

Red(tΣ(r ← u)) = u and Red(t)Σ(r ← u) = u, which proves (5.1).

Let r ∈ Sub(t) and Σ �|= r ≈ t. If ΣSt
r = ∅, then clearly ΣS

Red(t)
r = ∅ and

(5.1) is obviously satisfied in this case.

Assume that ΣSt
r �= ∅. By the inductive assumption we have

Σ |= Red(tΣi (r ← u)) ≈ Red(ti)
Σ(r ← u)

for i = 1, 2 and r, u ∈ Wτ (X). Hence,

Σ |= Red(tΣ1 (r ← u))Red(tΣ2 (r ← u)) ≈ Red(t1)
Σ(r ← u)Red(t2)

Σ(r ← u).

Thus, we have

Σ |= Red(tΣ1 (r ← u))Red(tΣ2 (r ← u))

≈ Red((tΣ1 (r ← u)tΣ2 (r ← u))) ≈ Red(tΣ(r ← u)).

Let us assume that Σ �|= t1 ≈ t and Σ �|= t2 ≈ t. Then

Σ |= Red(t1)
Σ(r ← u)Red(t2)

Σ(r ← u)

≈ (Red(t1)Red(t2))
Σ(r ← u) = Red(t)Σ(r ← u),

which proves (5.1) in this case.

Let Σ |= t1 ≈ t. Then {1, 2} ⊆ PEss(t,Σ) implies Σ |= t1 ≈ t2. Then

Σ |= Red(t1) ≈ Red(t2) and Σ |= Red(t1t2) ≈ Red(t1)Red(t2) ≈ Red(t1).

Hence,

Σ |= Red(t1)
Σ(r ← u)Red(t2)

Σ(r ← u)

≈ Red(t1)
Σ(r ← u) ≈ Red(t)Σ(r ← u). �

Theorem 5.2. The variety IG = Mod({x1x1 ≈ x1}) of idempotent groupoids

is stable.

Proof. We put Σ = Id(Mod({x1x1 ≈ x1}). We have to prove (3.2) when

Σ |= t ≈ s and r ∈ SEss(t,Σ) ∩ SEss(s,Σ). Without loss of generality, let us

assume that Depth(t) � Depth(s). We shall proceed by induction on Depth(t).

Our inductive basis is Depth(t) � 1. Then clearly t = s or s = x1x2, and (3.2)

is satisfied.

Assume that (3.2) is satisfied when Depth(t) < k for some natural number

k � 2. Let Depth(t) = k. Then t = t1t2 and s = s1s2. Lemma 5.1 allows us

to think that terms t and s are presented in their normal forms under →R,

i.e., t = Red(t) and s = Red(s). Hence, 1, 2 ∈ PEss(t,Σ) ∩ PEss(s,Σ) and

Σ �|= ti ≈ t, and Σ �|= si ≈ s for i = 1, 2. This shows that Σ �|= t1 ≈ t2 and

Σ �|= s1 ≈ s2. Hence, Σ |= ti ≈ si for i = 1, 2. Now Depth(ti) < k, so our

inductive assumption and Lemma 5.1 prove (3.2). �

Theorem 5.3. The variety CG = Mod({x1x2 ≈ x2x1}) of all commutative

groupoids is stable.
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Proof. Since Id(V ijk
lm ) and Id(W ijk

lm ) are fully invariant congruences, they sat-

isfy rules D1 – D5. Thus, we have to prove that ΣR1 is satisfied in Id(V ijk
lm )

and Id(W ijk
lm ), i.e., that (3.2) is satisfied in V ijk

lm and W ijk
lm .

Let t, s, r ∈ Wτ (X) be three terms for which r ∈ SEss(t,Σ)∩SEss(s,Σ) and

Σ |= t ≈ s. Suppose, with no loss of generality, that Depth(t) � Depth(s). If

Σ |= t ≈ r then (3.2) is obvious. Thus, we assume that Σ �|= t ≈ r.

Claim 1: The varieties V ijk
11 and W ijk

11 for i, j, k ∈ {1, 2} are stable.

In [8], it is proved that V 121
11 is stable (see Proposition 3.1 of [8]). In a

similar way, one can prove that V ijk
11 and W ijk

11 for i, j, k ∈ {1, 2} are stable.

Claim 2: The varieties V ijk
12 and W ijk

12 for i, j, k ∈ {1, 2} are stable.

We shall show that V 121
12 is stable by induction on Depth(t). If Depth(t) =

0, then (3.2) is clearly satisfied. Let Depth(t) = 1. Then, with no loss of

generality, we can assume that t = x1x1 or t = x1x2. Hence, Σ |= r ≈ x1 or

Σ |= r ≈ x2. Then (3.2) follows from D5.

Assume that (3.2) is satisfied when Depth(t) < k for some natural number

k, k > 2. Let Depth(t) = k. Then we have t = t1t2 with 1 � Depth(ti) < k

for i = 1, 2. Then Σ |= t ≈ s implies that s = s1s2 or s = (s1s2)s1 with

Σ |= t1 ≈ s1 and Σ |= t2 ≈ s2. Since Σ �|= t ≈ r, we then have that

r ∈ SEss(t1,Σ) ∩ SEss(s1,Σ) or r ∈ SEss(t2,Σ) ∩ SEss(s2,Σ). Thus, we have

tΣ(r ← u) = tΣ1 (r ← u)tΣ2 (r ← u),

sΣ(r ← u) = sΣ1 (r ← u)sΣ2 (r ← u), and

sΣ(r ← u) = (sΣ1 (r ← u)sΣ2 (r ← u))sΣ1 (r ← u),

which proves (3.2), according to our inductive assumption.

In a similar way, one can show that V 211
12 and V 112

12 are stable varieties. By

dual arguments, we obtain that W 121
12 , W 211

12 and W 112
12 are stable varieties.

Claim 3: The varieties V 111
ii and W 111

ii for i ∈ {1, 2} are stable.

We shall prove that V 111
11 is stable by induction on Depth(t). If Depth(t) = 0

or Depth(t) = 1, then (3.2) can be proved as in the previous case.

Assume that (3.2) is satisfied when Depth(t) < k for some natural number

k, k > 2. Let Depth(t) = k. Then we have t = t1t1 or t = t1t2 with

1 � Depth(ti) < k for i = 1, 2.

If t = t1t1, then Σ |= t ≈ s implies that s = s1s1 or s = (s1s1)s1 with

Σ |= t1 ≈ s1. Since Σ �|= t ≈ r, it follows that r ∈ SEss(t1,Σ) ∩ SEss(s1,Σ).

Thus, we have

tΣ(r ← u) = tΣ1 (r ← u)tΣ1 (r ← u),

sΣ(r ← u) = sΣ1 (r ← u)sΣ1 (r ← u), and

sΣ(r ← u) = (sΣ1 (r ← u)sΣ1 (r ← u))sΣ1 (r ← u),

which proves (3.2), according to our inductive assumption.
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If t = t1t2, then Σ |= t ≈ s implies that s = s1s2 with Σ |= t1 ≈ s1 and

Σ |= t2 ≈ s2. Since Σ �|= t ≈ r, it follows that r ∈ SEss(t1,Σ) ∩ SEss(s1,Σ) or

r ∈ SEss(t2,Σ) ∩ SEss(s2,Σ). Thus, we have

tΣ(r ← u) = tΣ1 (r ← u)tΣ2 (r ← u), and

sΣ(r ← u) = sΣ1 (r ← u)sΣ2 (r ← u)

which proves (3.2) again, according to our inductive assumption.

The varieties V 111
22 and W 111

22 are clearly stable. �

6. S-stable varieties

Let us go back to the identities (3.1). These identities guarantee stability

of a variety of semigroups that satisfies one of them. It is natural to expect

that the identities (3.1) will provide for stability of a variety of groupoids. The

next proposition is a counterexample to that expectation.

Proposition 6.1. The varieties V ijk
lm and W ijk

lm are not stable when {i, j, k} =

{1, 2, 3} and l,m ∈ {1, 2, 3} with l �= m.

Proof. Without loss of generality, we shall prove that V 123
23 = Mod(Σ) is not

stable, where Σ = {(x1x2)x3 ≈ x2x3}. Let us put t = (x3(x1x2))(x2(x1x2)),

s = x2(x2(x1x2)), r = x1x2, and u = x4. Clearly, Σ |= t ≈ s. Since

PFic(t,Σ) = {11, 121} and PFic(s,Σ) = ∅, it follows that P t
r = {12, 22}

and P s
r = {22}. Thus, we have tΣ(r ← u) = (x3x4)(x2x3) and sΣ(r ← u) =

x2(x2x4). Clearly, Σ �|= tΣ(r ← u) ≈ sΣ(r ← u). Hence, the variety Mod(Σ)

is not stable. �

Our aim in this section is to define additional sufficient conditions for sta-

bility such that if a variety of groupoids satisfies an identity among (3.1), then

it is stable under these conditions. Also, we expect the varieties V11, V22 and

V33 of semigroups to be included in this new concept of stability. We are going

to define an s-stable variety for an arbitrary type τ .

For two terms t, r, let EP t
r = {p ∈ P t

r | p � q ∈ Pos(t) ⇒ q ∈ PEss(t,Σ)}
be the set of all the minimal elements in ΣP t

r whose successors are Σ-essential

in t.

Definition 6.2. Let r, s, t ∈ Wτ (X) be terms of type τ . The Σ-essential

composition of the terms t and r by s is defined as follows:

(i) t(r ∗ s) = t if EP t
r = ∅;

(ii) t(r ∗ s) = t(EP t
r ; s) if EP t

r �= ∅.

Example 6.3. Let us consider the terms t = (x3(x1x2))(x2(x1x2)) and r =

x1x2 from the Proposition 6.1 and let s = x4. Then we have EP t
r = {22}

and t(r ∗ s) = (x3(x1x2))(x2x4). On the other hand, P t
r = {12, 22} implies

tΣ(r ← s) = (x3x4)(x2x4). Clearly, Σ �|= t(r ∗ s) ≈ tΣ(r ← s).

16 Sl. Shtrakov and J. Koppitz Algebra univers.

Proof. Since Id(V ijk
lm ) and Id(W ijk

lm ) are fully invariant congruences, they sat-

isfy rules D1 – D5. Thus, we have to prove that ΣR1 is satisfied in Id(V ijk
lm )

and Id(W ijk
lm ), i.e., that (3.2) is satisfied in V ijk

lm and W ijk
lm .

Let t, s, r ∈ Wτ (X) be three terms for which r ∈ SEss(t,Σ)∩SEss(s,Σ) and

Σ |= t ≈ s. Suppose, with no loss of generality, that Depth(t) � Depth(s). If

Σ |= t ≈ r then (3.2) is obvious. Thus, we assume that Σ �|= t ≈ r.

Claim 1: The varieties V ijk
11 and W ijk

11 for i, j, k ∈ {1, 2} are stable.

In [8], it is proved that V 121
11 is stable (see Proposition 3.1 of [8]). In a

similar way, one can prove that V ijk
11 and W ijk

11 for i, j, k ∈ {1, 2} are stable.

Claim 2: The varieties V ijk
12 and W ijk

12 for i, j, k ∈ {1, 2} are stable.

We shall show that V 121
12 is stable by induction on Depth(t). If Depth(t) =

0, then (3.2) is clearly satisfied. Let Depth(t) = 1. Then, with no loss of

generality, we can assume that t = x1x1 or t = x1x2. Hence, Σ |= r ≈ x1 or

Σ |= r ≈ x2. Then (3.2) follows from D5.

Assume that (3.2) is satisfied when Depth(t) < k for some natural number

k, k > 2. Let Depth(t) = k. Then we have t = t1t2 with 1 � Depth(ti) < k

for i = 1, 2. Then Σ |= t ≈ s implies that s = s1s2 or s = (s1s2)s1 with

Σ |= t1 ≈ s1 and Σ |= t2 ≈ s2. Since Σ �|= t ≈ r, we then have that

r ∈ SEss(t1,Σ) ∩ SEss(s1,Σ) or r ∈ SEss(t2,Σ) ∩ SEss(s2,Σ). Thus, we have

tΣ(r ← u) = tΣ1 (r ← u)tΣ2 (r ← u),

sΣ(r ← u) = sΣ1 (r ← u)sΣ2 (r ← u), and

sΣ(r ← u) = (sΣ1 (r ← u)sΣ2 (r ← u))sΣ1 (r ← u),

which proves (3.2), according to our inductive assumption.

In a similar way, one can show that V 211
12 and V 112

12 are stable varieties. By

dual arguments, we obtain that W 121
12 , W 211

12 and W 112
12 are stable varieties.

Claim 3: The varieties V 111
ii and W 111

ii for i ∈ {1, 2} are stable.

We shall prove that V 111
11 is stable by induction on Depth(t). If Depth(t) = 0

or Depth(t) = 1, then (3.2) can be proved as in the previous case.

Assume that (3.2) is satisfied when Depth(t) < k for some natural number

k, k > 2. Let Depth(t) = k. Then we have t = t1t1 or t = t1t2 with

1 � Depth(ti) < k for i = 1, 2.

If t = t1t1, then Σ |= t ≈ s implies that s = s1s1 or s = (s1s1)s1 with

Σ |= t1 ≈ s1. Since Σ �|= t ≈ r, it follows that r ∈ SEss(t1,Σ) ∩ SEss(s1,Σ).

Thus, we have

tΣ(r ← u) = tΣ1 (r ← u)tΣ1 (r ← u),

sΣ(r ← u) = sΣ1 (r ← u)sΣ1 (r ← u), and

sΣ(r ← u) = (sΣ1 (r ← u)sΣ1 (r ← u))sΣ1 (r ← u),

which proves (3.2), according to our inductive assumption.
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Definition 6.4. A set Σ of identities is SR-deductively closed if it satisfies

the rules D1,D2,D3,D5 and

SR1 (Star Replacement)
(

r, t, s, u ∈ Wτ (X) & (t ≈ s ∈ Σ)

& (EP t
r �= ∅) & (EP s

r �= ∅)

)
⇒ t(r ∗ u) ≈ s(r ∗ u) ∈ Σ.

For any set of identities Σ, the smallest SR-deductively closed set containing

Σ is called the SR-closure of Σ, and is denoted by SR(Σ). For t ≈ s ∈ Id(τ),

we say Σ �SR t ≈ s (“Σ SR-proves t ≈ s”) if there is a sequence of identities

t1 ≈ s1, . . . , tn ≈ sn, such that each identity belongs to Σ or is a result

of applying any of the derivation rules D1,D2,D3,D5, or SR1 to previous

identities in the sequence and the last identity tn ≈ sn is t ≈ s.

Let t ≈ s be an identity and let A be an algebra of type τ . A |=SR t ≈ s

means that A |= t(r ∗ v) ≈ s(r ∗ v) for every r ∈ SEss(t,Σ) ∩ SEss(s,Σ) and

v ∈ Wτ (X). For t, s ∈ Wτ (X), we say Σ |=SR t ≈ s (read: “Σ SR-yields

t ≈ s”) if, given any algebra A, A |=SR Σ ⇒ A |=SR t ≈ s.

As in [8] (see Theorem 3.4 and Theorem 3.6), one can prove that SR is a

closure operator, and prove a completeness theorem that Σ |=SR t ≈ s ⇐⇒
Σ �SR t ≈ s.

Theorem 6.5. For each set of identities Σ, the closure SR(Σ) is a fully in-

variant congruence.

Proof. It is enough to prove that SR(Σ) satisfies the rule D4. Let r ∈ Wτ (X),

t ≈ s ∈ Σ, and p ∈ Pos(r). If p /∈ PEss(r,Σ), then we have r(p; v) ≈
r(p;w) ∈ SR(Σ) for all terms v, w ∈ Wτ (X). Let p ∈ PEss(r,Σ) and let

n be a natural number such that r, t, s ∈ Wτ (Xn). Write v = r(p;xn+1) and

u = xn+1. Clearly, u ∈ Sub(v) and EP v
u = {p}. We have v(u ∗ t) = r(p; t) and

v(u ∗ s) = r(p; s). Now from SR1, we obtain v(u ∗ t) ≈ v(u ∗ s) ∈ SR(Σ), i.e.,

r(p; t) ≈ r(p; s) ∈ SR(Σ). �

As EP t
r ⊆ P t

r for all t, s ∈ Wτ (X), so t ≈ s ∈ SR(Σ) ⇒ t ≈ s ∈ ΣR(Σ),

for each identity t ≈ s ∈ Id(τ). Thus, we obtain the following inclusions,

D(Σ) ⊆ SR(Σ) ⊆ ΣR(Σ) for each Σ ⊆ Id(τ). Hence, each stable variety is an

s-stable one.

Definition 6.6. A set of identities Σ is called an s-globally invariant congru-

ence if it is SR-deductively closed. A variety V of type τ is called s-stable if

Id(V ) is an s-globally invariant congruence.

Proposition 6.7. There exist sets Σ1 and Σ2 of identities such that D(Σ1) �
SR(Σ1) and SR(Σ2) � ΣR(Σ2).

Proof. First, let Σ1 = {x1(x2x3) ≈ (x1x2)x3} be the set of identities which

define the variety SG = Mod(Σ1) of semigroups. Clearly, Id(SG) = D(Σ1).

Let us set t = ((x1x2)x1)x2, s = (x1x2)(x1x2), r = x1x2, and u = x3. Clearly,

Σ1 |= t ≈ s. Since EP t
r = {11} and EP s

r = {1, 2}, we obtain t(r∗u) = (x3x1)x2
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and s(r ∗ u) = x3x3. Hence, Σ1 �|= t(r ∗ u) ≈ s(r ∗ u). Consequently, D(Σ1) is

a proper subset of SR(Σ1) and Mod(SR(Σ1)) is a proper subvariety of SG.

Second, let Σ2 = {(x1x2)x3 ≈ x2x3}. Recall the terms t, s, and r considered

in Proposition 6.1. It is easy to see that EP t
r = EP s

r = {22}. Thus, we have

t(r ∗ u) = (x3(x1x2))(x2x3), s(r ∗ u) = x2(x2x3), so Σ2 |= t(r ∗ u) ≈ s(r ∗ u),
but Σ2 �|= tΣ2(r ← u) ≈ sΣ2(r ← u). �

Lemma 6.8. Let xi ∈ X be a Σ-essential variable which occurs once in the

term t ∈ Wτ (X). Then the variable xi is Σ-essential in Red(t) with a unique

occurrence.

Proof. According to Theorem 4.1, it is enough to prove that xi ∈ X is Σ-

essential in r with unique occurrence when t →R r. Corollary 3.8 of [7] and

Corollary 4.3 imply xi ∈ Ess(r,Σ).

Let t →R r, r = t(p;u), s = subt(p), and Σ |= s ≈ u, where u is Σ-minimal.

Let q be the unique position on which xi occurs in t. Since q is a position of

a variable, it follows that q �≺ p.

If p ≺ q, then the unique occurrence of xi in r follows by the Σ-minimality

of u. If p �≺ q, then xi occurs once on the position q ∈ Pos(r) in r. �

Lemma 6.9. If Σ = {x1(x2x3) ≈ xixj} with 1 � i � j � 3, then

Σ |= t(r ∗ u) ≈ Red(t)Σ(r ← u)

for all t, r, u ∈ Wτ (X).

Proof. Let n be a natural number such that r, t, u ∈ Wτ (Xn). If EP t
r =

∅, then P t
r = ∅ and we are done. Let EP t

r = {p1, . . . , pm} and let us put

s = t(p1, . . . , pm;xn+1 · · ·xn+m). Clearly, xn+1 · · ·xn+m ∈ Ess(s,Σ) and xn+i

occurs only once in s for i = 1, . . . ,m. From Lemma 6.8, it follows that

xn+1 · · ·xn+m ∈ Ess(Red(s),Σ) and xn+i occurs only once in Red(s) for i =

1, . . . ,m. If we suppose that there is a term v such that Σ |= r ≈ v and

v ∈ Sub(Red(s)), then there is w ∈ Sub(s) such that Σ |= v ≈ w. Since

Ess(v,Σ) ⊆ Ess(Red(s),Σ), it follows that Ess(v,Σ) ⊆ Ess(s,Σ). Then from

Theorem 2.13 of [8], it follows that v ∈ EP s
r ⊆ EP t

r , which is a contradiction.

Hence, Σ �|= r ≈ v for all v ∈ Sub(Red(s)). Consequently, EP s
r = P s

r = ∅ and

we obtain t(r ∗ u) = s(xn+1 ← u, . . . , xn+m ← u) and

Red(s)Σ(r ← u) = Red(s)(xn+1 ← u, . . . , xn+m ← u).

From Corollary 4.3, we have

Σ |= s(xn+1 ← u, . . . , xn+m ← u) ≈ Red(s)(xn+1 ← u, . . . , xn+m ← u),

which completes the proof. �

Lemma 6.10. If Σ = {(x1x2)x3 ≈ xixj} with 1 � i � j � 3, then the

normal form under the reduction →R of a term t ∈ Wτ (X) is presented in the

following form:

Red(t) = xi1(xi2(· · · (xin−1
xin) · · · )), (6.1)

where xim ∈ var(t) for m = 1, . . . , n.

18 Sl. Shtrakov and J. Koppitz Algebra univers.

Definition 6.4. A set Σ of identities is SR-deductively closed if it satisfies

the rules D1,D2,D3,D5 and

SR1 (Star Replacement)
(

r, t, s, u ∈ Wτ (X) & (t ≈ s ∈ Σ)

& (EP t
r �= ∅) & (EP s

r �= ∅)

)
⇒ t(r ∗ u) ≈ s(r ∗ u) ∈ Σ.

For any set of identities Σ, the smallest SR-deductively closed set containing

Σ is called the SR-closure of Σ, and is denoted by SR(Σ). For t ≈ s ∈ Id(τ),

we say Σ �SR t ≈ s (“Σ SR-proves t ≈ s”) if there is a sequence of identities

t1 ≈ s1, . . . , tn ≈ sn, such that each identity belongs to Σ or is a result

of applying any of the derivation rules D1,D2,D3,D5, or SR1 to previous

identities in the sequence and the last identity tn ≈ sn is t ≈ s.

Let t ≈ s be an identity and let A be an algebra of type τ . A |=SR t ≈ s

means that A |= t(r ∗ v) ≈ s(r ∗ v) for every r ∈ SEss(t,Σ) ∩ SEss(s,Σ) and

v ∈ Wτ (X). For t, s ∈ Wτ (X), we say Σ |=SR t ≈ s (read: “Σ SR-yields

t ≈ s”) if, given any algebra A, A |=SR Σ ⇒ A |=SR t ≈ s.

As in [8] (see Theorem 3.4 and Theorem 3.6), one can prove that SR is a

closure operator, and prove a completeness theorem that Σ |=SR t ≈ s ⇐⇒
Σ �SR t ≈ s.

Theorem 6.5. For each set of identities Σ, the closure SR(Σ) is a fully in-

variant congruence.

Proof. It is enough to prove that SR(Σ) satisfies the rule D4. Let r ∈ Wτ (X),

t ≈ s ∈ Σ, and p ∈ Pos(r). If p /∈ PEss(r,Σ), then we have r(p; v) ≈
r(p;w) ∈ SR(Σ) for all terms v, w ∈ Wτ (X). Let p ∈ PEss(r,Σ) and let

n be a natural number such that r, t, s ∈ Wτ (Xn). Write v = r(p;xn+1) and

u = xn+1. Clearly, u ∈ Sub(v) and EP v
u = {p}. We have v(u ∗ t) = r(p; t) and

v(u ∗ s) = r(p; s). Now from SR1, we obtain v(u ∗ t) ≈ v(u ∗ s) ∈ SR(Σ), i.e.,

r(p; t) ≈ r(p; s) ∈ SR(Σ). �

As EP t
r ⊆ P t

r for all t, s ∈ Wτ (X), so t ≈ s ∈ SR(Σ) ⇒ t ≈ s ∈ ΣR(Σ),

for each identity t ≈ s ∈ Id(τ). Thus, we obtain the following inclusions,

D(Σ) ⊆ SR(Σ) ⊆ ΣR(Σ) for each Σ ⊆ Id(τ). Hence, each stable variety is an

s-stable one.

Definition 6.6. A set of identities Σ is called an s-globally invariant congru-

ence if it is SR-deductively closed. A variety V of type τ is called s-stable if

Id(V ) is an s-globally invariant congruence.

Proposition 6.7. There exist sets Σ1 and Σ2 of identities such that D(Σ1) �
SR(Σ1) and SR(Σ2) � ΣR(Σ2).

Proof. First, let Σ1 = {x1(x2x3) ≈ (x1x2)x3} be the set of identities which

define the variety SG = Mod(Σ1) of semigroups. Clearly, Id(SG) = D(Σ1).

Let us set t = ((x1x2)x1)x2, s = (x1x2)(x1x2), r = x1x2, and u = x3. Clearly,

Σ1 |= t ≈ s. Since EP t
r = {11} and EP s

r = {1, 2}, we obtain t(r∗u) = (x3x1)x2
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Proof. Let V be the variety defined by Σ, i.e., V = Mod(Σ). We shall prove

the lemma when Σ |= (x1x2)x3 ≈ x1x2. The other cases follow by similar

arguments.

So, let us consider the term t = (x1x2)x3. Then we have 2 /∈ PEss(t,Σ).

Hence, Red(t) = x1x2 and we are done.

Assume that if Depth(t) < k, for some natural number k with k > 2, then

Red(t) is presented in the form of (6.1).

Let Depth(t) = k. Then we have t = t1t2 with t1, t2 ∈ Wτ (X) and with

0 � Depth(ti) < k for i = 1, 2. Clearly, Σ |= Red(t) ≈ Red(t1)Red(t2). From

the inductive assumption, we know that Red(t1) and Red(t2) are presented in

the form of (6.1). If Red(t1) = xi1 , then we are done. Let Depth(Red(t1)) � 1

and Red(t1) = xi1t12 for some t12 ∈ Wτ (X). Then

Σ |= Red(t) ≈ (xi1t12)Red(t2) ≈ xi1t12 = Red(t1),

which completes the proof. �

By dual arguments one can prove the following lemma.

Lemma 6.11. If Σ = {x1(x2x3) ≈ xixj} with 1 � i � j � 3, then the

normal form under the reduction →R of a term t ∈ Wτ (X) is presented in the

following form:

Red(t) = (· · · ((xi1xi2)xi3) · · · )xin ,

where xim ∈ var(t) for m = 1, . . . , n.

Theorem 6.12. The varieties of semigroups V11, V22, and V33 are s-stable

(see Proposition 3.3).

Proof. We shall prove that V11 is an s-stable variety. To show that Σ = Id(V11)

is SR-deductively closed, i.e., SR(Σ) = Σ, we let r, s, t be three terms such that

t ≈ s ∈ Σ, EP t
r �= ∅, and EP s

r �= ∅. We have to prove

Σ |= t(r ∗ u) ≈ s(r ∗ u). (6.2)

If Depth(t) � 1, then we have

Σ |= t ≈ s =⇒ t = s

and (6.2) is obviously satisfied.

Let Depth(t) � 2 and Depth(s) � 2. Since x1x2x3 ≈ x1x1 ∈ Σ, the set

of Σ-essential positions in each term w consists of all strings over {1} which

belong to Pos(w), including the empty string ε. Consequently, for each term

r, we have EPw
r = ∅ or EPw

r = {pw}, where pw is the longest string over {1}
in Pos(w).

Next, EP t
r �= ∅ and EP s

r �= ∅ imply EP t
r = {pt} and EP s

r = {ps}. Since

pt and ps are the longest strings in Pos(t) and Pos(s), respectively, it follows

that r is a variable and r = first(t) = first(s). Thus, (6.2) follows by D5.

In a similar way, one can prove that V33 is an s-stable variety. The proof

that V22 is an s-stable variety is left to the reader. �
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Proof. Let V be the variety defined by Σ, i.e., V = Mod(Σ). We shall prove

the lemma when Σ |= (x1x2)x3 ≈ x1x2. The other cases follow by similar

arguments.

So, let us consider the term t = (x1x2)x3. Then we have 2 /∈ PEss(t,Σ).

Hence, Red(t) = x1x2 and we are done.

Assume that if Depth(t) < k, for some natural number k with k > 2, then

Red(t) is presented in the form of (6.1).

Let Depth(t) = k. Then we have t = t1t2 with t1, t2 ∈ Wτ (X) and with

0 � Depth(ti) < k for i = 1, 2. Clearly, Σ |= Red(t) ≈ Red(t1)Red(t2). From

the inductive assumption, we know that Red(t1) and Red(t2) are presented in

the form of (6.1). If Red(t1) = xi1 , then we are done. Let Depth(Red(t1)) � 1

and Red(t1) = xi1t12 for some t12 ∈ Wτ (X). Then

Σ |= Red(t) ≈ (xi1t12)Red(t2) ≈ xi1t12 = Red(t1),

which completes the proof. �

By dual arguments one can prove the following lemma.

Lemma 6.11. If Σ = {x1(x2x3) ≈ xixj} with 1 � i � j � 3, then the

normal form under the reduction →R of a term t ∈ Wτ (X) is presented in the

following form:

Red(t) = (· · · ((xi1xi2)xi3) · · · )xin ,

where xim ∈ var(t) for m = 1, . . . , n.

Theorem 6.12. The varieties of semigroups V11, V22, and V33 are s-stable

(see Proposition 3.3).

Proof. We shall prove that V11 is an s-stable variety. To show that Σ = Id(V11)

is SR-deductively closed, i.e., SR(Σ) = Σ, we let r, s, t be three terms such that

t ≈ s ∈ Σ, EP t
r �= ∅, and EP s

r �= ∅. We have to prove

Σ |= t(r ∗ u) ≈ s(r ∗ u). (6.2)

If Depth(t) � 1, then we have

Σ |= t ≈ s =⇒ t = s

and (6.2) is obviously satisfied.

Let Depth(t) � 2 and Depth(s) � 2. Since x1x2x3 ≈ x1x1 ∈ Σ, the set

of Σ-essential positions in each term w consists of all strings over {1} which

belong to Pos(w), including the empty string ε. Consequently, for each term

r, we have EPw
r = ∅ or EPw

r = {pw}, where pw is the longest string over {1}
in Pos(w).

Next, EP t
r �= ∅ and EP s

r �= ∅ imply EP t
r = {pt} and EP s

r = {ps}. Since

pt and ps are the longest strings in Pos(t) and Pos(s), respectively, it follows

that r is a variable and r = first(t) = first(s). Thus, (6.2) follows by D5.

In a similar way, one can prove that V33 is an s-stable variety. The proof

that V22 is an s-stable variety is left to the reader. �
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Theorem 6.13. The varieties of groupoids V ijk
lm and W ijk

lm for i, j, k, l,m ∈
{1, 2, 3} are s-stable.

Proof. If i, j, k, l,m ∈ {1, 2}, we are done because of Theorem 5.5.

Claim 1: V 123
lm and W 123

lm with 1 � l � m � 3 are s-stable varieties.

We are going to prove that V 123
12 = Mod(Σ) is an s-stable variety, where

Σ = {(x1x2)x3 ≈ x1x2}. Lemma 6.9 implies t(r ∗ u) = Red(t)Σ(Red(r) ← u)

and it is enough to prove

Σ |= Red(t)Σ(Red(r) ← u) ≈ Red(s)Σ(Red(r) ← u) (6.3)

when Σ |= t ≈ s, r ∈ SEss(t,Σ) ∩ SEss(s,Σ) and u ∈ Wτ (X).

Let t, s, r ∈ Wτ (X) be terms with Σ |= t ≈ s and r ∈ SEss(t,Σ)∩SEss(s,Σ).
Suppose with no loss of generality that Depth(t) � Depth(s). We argue by

induction on Depth(t). If Σ |= t ≈ r then (6.3) is obvious.

Assume that Σ �|= t ≈ r. Let Depth(t) = 1. Then, without loss of generality,

we can assume that t = x1x2. Hence, Σ |= r ≈ x1 or Σ |= r ≈ x2, and (6.3)

follows from D5.

Assume for some natural number k � 2 that if Depth(t) < k, then (6.3) is

satisfied. Let Depth(t) = k. From Lemma 6.10, it follows that

Red(t) = xi1(xi2(· · · (xin−1xin) · · · )), and

Red(s) = xj1(xj2(· · · (xjm−1
xjm) · · · )),

where xil ∈ var(t) and xjk ∈ var(s) for l = 1, . . . , n and k = 1, . . . ,m. Clearly,

xi1 = xj1 because Σ |= t ≈ s and 1 ∈ PEss(t,Σ) ∩ PEss(s,Σ).

If Red(r) = xi1 , then we are done because of D5. If Red(r) �= xi1 , then

r ∈ SEss(t2,Σ) ∩ SEss(s2,Σ) where

t2 = xi2(· · · (xin−1
xin) · · · ) and s2 = xj2(· · · (xjm−1

xjm) · · · ).

Clearly, Σ |= t2 ≈ s2 and we have

Red(t)Σ(Red(r) ← u) = xi1 Red(t2)
Σ(Red(r) ← u), and

Red(s)Σ(Red(r) ← u) = xi1 Red(s2)
Σ(Red(r) ← u)

for each u ∈ Wτ (X), which together with our inductive assumption proves

(6.3).

Claim 2: V 123
lm and W 123

lm with 1 � m < l � 3 are s-stable varieties.

We shall show that V 123
31 is s-stable. Thus, we have

Σ |= x1x3 ≈ (x3(x4x5))x1 ≈ (x1x2)(x3(x4x5))

≈ ((x2x6)x1)(x3(x4x5)) ≈ (x3(x4x5))(x2x6)

≈ (x2x6)x3 ≈ x3x2.

Hence, Σ |= x1x3 ≈ x3x2 ≈ x2x4. So, if Depth(t) � 1, then without loss of

generality, we can assume that Σ |= t ≈ Red(t) = x1x2 with PEss(Red(t)) = ε.

Consequently, for each term r, we have EP t
r = ∅.

This completes the proof of the theorem. �
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