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GLOBAL ASYMPTOTIC STABILITY OF A FUNCTIONAL
DIFFERENTIAL MODEL OF AN ANAEROBIC

BIODEGRADATION PROCESS

Milen K. Borisov, Neli S. Dimitrova, Mikhail I. Krastanov

Abstract. We study a nonlinear functional differential model of an anaer-
obic digestion process of wastewater treatment with biogas production. The
model equations of biomass include two different discrete time delays. Math-
ematical analysis of the model is fulfilled including existence and local stabil-
ity of nontrivial equilibrium points, existence and boundedness of the model
solutions as well as global stabilizability towards an admissible equilibrium
point. We propose a numerical extremum seeking algorithm for maximiz-
ing the biogas flow rate in real time. Numerical simulation results are also
included.

1. Introduction. We consider a well-known anaerobic digestion model
for biological treatment of wastewater in a continuously stirred tank bioreactor
described by four nonlinear ordinary differential equations (cf. for example [2, 3]).
We modify the model by introducing discrete time delays in the equations to rep-
resent the delay in the conversion of the consumed substrate to viable biomass,
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i. e. by including delays in the phase variables of substrate and organisms con-
centrations.

Chemostat models involving time delays have been recently studied by
many authors as an attempt to explain observed delay in the growth response of
microorganisms due to environmental changes, see for example [17], [18] and the
references therein.

The studied model is described by the following system of nonlinear ordi-
nary differential equations

d

dt
s1(t) = u(si

1 − s1(t))− k1µ1(s1(t))x1(t)

d

dt
x1(t) = e−αuτ1µ1(s1(t− τ1))x1(t− τ1)− αux1(t)

d

dt
s2(t) = u(si

2 − s2(t)) + k2µ1(s1(t))x1(t)− k3µ2(s2(t))x2(t)

d

dt
x2(t) = e−αuτ2µ2(s2(t− τ2))x2(t− τ2)− αux2(t)

(1)

with gaseous output

(2) Q = k4 µ2(s2) x2.

The phase variables s1, s2 and x1, x2 denote substrate and biomass con-
centrations, respectively: s1 is the organic substrate, characterized by its chemical
oxygen demand (COD), s2 denotes the volatile fatty acids (VFA), x1 and x2 are
the acidogenic and methanogenic bacteria respectively; si

1 and si
2 are the input

substrate concentrations corresponding to s1 and s2. The parameter α ∈ (0, 1)
represents the proportion of bacteria that are affected by the dilution rate u. The
constants k1, k2 and k3 are yield coefficients related to COD degradation, VFA
production and VFA consumption respectively. The constants τj ≥ 0, j = 1, 2,
stand for the time delay in conversion of the corresponding substrate to viable
biomass of the j-th bacterial population. The terms e−αuτjxj(t − τj), j = 1, 2,
represent the biomass of those microorganisms that consume nutrient τj units
of time prior to time t and that survive in the chemostat the τj units of time
necessary to complete the process of converting the substrate to viable biomass
at time t. The output Q describes the methane (biogas) flow rate, where k4 as a
yield coefficient.

The functions µ1(s1) and µ2(s2) model the specific growth rates of the
bacteria x1 and x2 respectively. Following [13] we impose the following general
assumption on µ1 and µ2:
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Assumption A1: For each j = 1, 2 the function µj(sj) is defined for
sj ∈ [0, +∞), µj(0) = 0, and µj(sj) > 0 for each sj > 0; the function µj(sj) is
bounded and Lipschitz continuous for all sj ∈ [0,+∞).

The model (1) with τ1 = τ2 = 0 is one of the “bench-mark” models de-
scribing anaerobic digestion and extensively investigated in the literature in recent
years, see for example [1], [2], [3], [10], [13] and the references therein. The equa-
tions (1) with τ1 = τ2 = 0 have been already investigated by the authors: global
stabilizability analysis via different feedback control laws is presented in [6], [7],
whereas [8] considers the case of global stabilization of the solutions using con-
stant dilution rate u. The latter approach is now extended to model (1) involving
the discrete delays τj > 0, j = 1, 2. The paper [4] is devoted to the same problem
and contains similar results as well as a sketch of the proof for global stabiliz-
ability of the model. Here we present a detailed and more precise proof of the
global asymptotic stability of the solutions. The new moment in this paper is the
development of an extremum seeking algorithm and its application to optimizing
the output of the biogas (methane) production.

The paper is organized as follows. Section 2 is devoted to studying the
local asymptotic stability of admissible equilibrium points with respect to the
time delays τ1 and τ2. In Section 3 we prove existence and boundedness of the
model solutions. The global stability of the dynamics (1) is proved in Section 4.
The model-based extremum seeking algorithm is described shortly in Section 5
and further applied in Section 6 to maximize the methane flow rate in real time.
Numerical experiments are finally reported to confirm the theoretical results.

2. Equilibrium points and their local stability. Define

ub = max
{
u : uαeαuτ1 ≤ µ1(si

1), uαeαuτ2 ≤ µ2(si
2)

}

and assume that u ∈ (0, ub).
Let the following assumption be satisfied:

Assumption A2. For each point ū ∈ (0, ub) there exist points s1(ū) =
s̄1 ∈

(
0, si

1

)
and s2(ū) = s̄2 ∈

(
0, si

2

)
, such that the following equalities hold true

ū =
1
α

e−αūτ1µ1(s̄1) =
1
α

e−αūτ2µ2 (s̄2) .

In accordance with [10] we shall call the above equality regulability of the system.
It means that there exists at least one nontrivial (positive) equilibrium of (1).
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Let s̄1 and s̄2 be determined according to Assumption A2. Compute
further

(3) x1(ū) = x̄1 =
si
1 − s̄1

αk1e
αūτ1

, x2(ū) = x̄2 =
si
2 − s̄2 + αk2x̄1e

αūτ1

αk3e
αūτ2

.

Then the point
p(ū) = p̄ = (s̄1, x̄1, s̄2, x̄2)

is a nontrivial equilibrium point for system (1).
In what follows we shall also need the following assumption:
Assumption A3. There exist positive numbers ν1 and ν2 such that the

following inequalities hold true
µ1(s−1 ) < µ1(s̄1) < µ1(s+

1 ), µ2(s−2 ) < µ2(s̄2) < µ2(s+
2 )

for each s−1 ∈ (0, s̄1), s+
1 ∈ (s̄1, s

i
1 + ν1], s−2 ∈ (0, s̄2) and s+

2 ∈ (s̄2, s
i
2 + ν2].

Assumption A3 is always fulfilled when the functions µj(·), j = 1, 2, are
monotone increasing (like the Monod specific growth rate, see Section 6). If at
least one of the functions µj(·) is not monotone increasing (like the Haldane law)
then the points s̄j (or equivalently ū) should be chosen sufficiently small in order
to satisfy Assumption A3.

Proposition 1 The equilibrium point p̄ is locally asymptotically stable for all
values of the delays τ1 ≥ 0 and τ2 ≥ 0.

P r o o f. Denote for simplicity

a = k1µ
′
1(s̄1)x̄1, b = k3µ

′
2(s̄2)x̄2,

where µ′1 and µ′2 mean
d

ds1
µ1 and

d

ds2
µ2 respectively. It follows from Assumption

A3 that a > 0 and b > 0 hold true.
The characteristic equation of the system corresponding to the equilibrium

point p̄ has the form

0 = P (λ; τ1, τ2)

=

∣∣∣∣∣
−(ū + a)− λ −k1αūeαūτ1

µ′1(s̄1)x̄1e
−(λ+αū)τ1 αū(e−λτ1 − 1)− λ

∣∣∣∣∣

×
∣∣∣∣∣

−(ū + b)− λ −k3αūeαūτ2

µ′2(s̄2)x̄2e
−(λ+αū)τ2 αū(e−λτ2 − 1)− λ

∣∣∣∣∣
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= P1(λ; τ1)× P2(λ; τ2),

where λ is a complex number and

P1(λ; τ1) = λ2 + (ū + a + αū)λ + αū(ū + a)− αū(ū + λ)e−λτ1 ,

P2(λ; τ2) = λ2 + (ū + b + αū)λ + αū(ū + b)− αū(ū + λ)e−λτ2 .

First we shall show that if τ1 = τ2 = 0 then there exist no roots λ of
P (λ; τ1, τ2) = 0 with Re(λ) ≥ 0. The equation P1(λ; 0) = 0 is equivalent with
λ2 + (ū + a)λ + αūa = 0. Obviously, the latter quadratic equation has no roots
λ with Re(λ) ≥ 0. The same is true for P2(λ; 0) = 0.

Let τ1 > 0 and τ2 > 0. We shall show that there are no roots of
P (λ; τ1, τ2) = 0 on the imaginary axis. Let λ = iω with ω > 0. For P1(iω; τ1) = 0
we obtain consecutively:

−ω2 + (ū + a + αū)iω + αū(ū + a)− αū(ū + iω)e−iωτ1 = 0,

−ω2 + (ū + a + αū)iω + αū(ū + a)− αū(ū + iω)(cos(τ1ω)− i sin(τ1ω)) = 0.

Separating the real and the imaginary parts of the last equation we obtain the
system

−ω2 + αū(ū + a) = αū2 cos(τ1ω) + αūω sin(ωτ1)

(ū + a + αū)ω = −αū2 sin(τ1ω) + αūω cos(ωτ1).
(4)

Squaring both sides of the equations (4) and adding them together leads to

ω4 + (ū + a)2ω2 + α2ū2a(2ū + a) = 0.

With v := ω2 we obtain the quadratic equation v2 + (ū + a)2v + α2ū2a(2ū +
a) = 0 which does not possess positive real roots since a > 0 holds according to
Assumption A3.

The same conclusion is valid for P2(iω; τ2) = 0. Therefore, P (λ; τ1, τ2) = 0
does not possess purely imaginary roots for any τ1 > 0 and τ2 > 0.

Applying Lemma 2 from [14] (see also Theorem 3 and Corollary 4 from [14]
as well as [15], [16] for similar results) to the exponential polynomial P (λ; τ1, τ2)
we obtain that the characteristic equation P (λ; τ1, τ2) = 0 does not have roots
with nonnegative real parts. This means that for any τ1 ≥ 0 and τ2 ≥ 0 the
positive equilibrium p̄ is locally asymptotically stable. ¤
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3. Existence and boundedness of the model solutions. Denote
by R+ the set of all non negative real numbers and by C+

τ the cone of continuous
functions ϕ : [−τ, 0] → R+, where τ = max{τ1, τ2}, and set

C4
τ := {ϕ = (ϕs1 , ϕx1 , ϕs2 , ϕx2) ∈ C+

τ × C+
τ × C+

τ × C+
τ }.

Let ū ∈ (0, ub) be chosen in such a way that Assumptions A2 and A3 are
satisfied. Denote by Σ the system obtained from (1) by substituting the control
variable u by ū. Using the Schauder fixed-point theorem it is easy to prove that
for each ϕ ∈ C4

τ there exists % > 0 and a unique solution

Φ(t, ϕ) = (s1(t, ϕs1), x1(t, ϕx1), s2(t, ϕs2), x2(t, ϕx2))

of (1) defined on [−τ, %) such that Φ(t, ϕ) = ϕ(t) for each t ∈ [−τ, 0] (cf. Theorem
2.1 in Chapter 2 of [11]).

We fix an arbitrary ϕ0 ∈ C4
τ with ϕ0(0) > 0. Then there exists % > 0

such that the corresponding solution Φ(t, ϕ0) of Σ is defined on [−τ, %). Denote
for simplicity Φ(t, ϕ0) = Φ(t) = (s1(t), x1(t), s2(t), x2(t)).

Proposition 2 The components of Φ(t) take positive values for each t ∈ [−τ, %).

P r o o f. If s1(t) = 0 for some t ∈ [0, %), then ṡ1(t) > 0. This implies that
s1(t) > 0 for each t ∈ [−τ, %). Analogously one can obtain that s2(t) > 0 for each
t ∈ [−τ, %). The presentation

xj(t) = ϕ0
xj

(0)e−αūt +
∫ t

0
e−αū(t−σ)µj(sj(σ − τj))xj(σ − τj)dσ, j = 1, 2,

implies that xj(t) > 0 for each t ∈ [−τ, %). This completes the proof. ¤

Proposition 3 The solution Φ(t) of Σ is defined for each t ∈ [−τ, +∞) and is
bounded.

P r o o f. Denote

(5) s(t) := e−αūτ1 (k2s1(t) + k1s2(t)) and si := e−αūτ1
(
k2s

i
1 + k1s

i
2

)
.

Then s(t) satisfies the differential equation

(6) ṡ(t) = ū(si − s(t))− k1k3e
−αūτ1µ2(s2(t))x2(t).
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We set

q1(t) := s(t) + k1k3e
−αū(τ1−τ2)x2(t + τ2)− si

α

q2(t) := s(t) + k1k3e
−αū(τ1−τ2)x2(t + τ2)− si.

Then

q̇1(t) = ū[si − s(t)− αk1k3e
−αū(τ1−τ2)x2(t + τ2)]

≤ ū[si − α
(
s(t) + k1k3e

−αū(τ1−τ2)x2(t + τ2)
)
] = −αūq1(t),

and hence

(7) q1(t) ≤ q1(0) · e−αūt.

The latter inequality shows that q1(t) is bounded. Using the fact that the values
of s1(t), s2(t) and x2(t) are positive, it follows that s1(t), s2(t) and x2(t) are
bounded as well. Analogously one can obtain that

(8) q2(t) ≥ q2(0) · e−ūt.

The estimates (7), (8) and the definition of s(·) imply that for each ε > 0 there
exists Tε > 0 such that for each t ≥ Tε the following inequalities hold true

(9) si − ε < s(t) + k1k3e
−αū(τ1−τ2)x2(t + τ2) <

si

α
+ ε.

In the same way as the estimates (9) were obtained one can show that for each
ε > 0 there exists a finite time Tε > 0 such that for all t ≥ Tε the following
inequalities hold

(10) si
1 − ε < s1(t) + k1e

αūτ1x1(t + τ1) <
si
1

α
+ ε.

The inequalities (10) imply that x1(t) is also bounded. Thus the trajectory Φ(t)
of Σ is well defined and bounded for all t ≥ −τ (cf. also Theorem 3.1 in Chapter
2 of [11]). This completes the proof. ¤

4. Global stability of the model solutions. The main result of
the paper is presented in next theorem, which states that the equilibrium point p̄
is globally asymptotically stable for system Σ for all values of the delays τ1 ≥ 0
and τ2 ≥ 0.
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Theorem 1 Let Assumptions A1, A2 and A3 be fulfilled and let ϕ0 be an ar-
bitrary element of C4

τ with ϕ0(0) > 0. Then the corresponding solution Φ(t, ϕ0)
converges asymptotically towards p̄.

The proof of Theorem 1 is based on Propositions 1, 2 and 3 as well as on
the following Lemmas.
Barbălat’s Lemma (cf. [9]). If f : (0,∞) → R is Riemann integrable and
uniformly continuous, then lim

t→∞ f(t) = 0.

Fluctuation Lemma (cf. [12]). Let f : [0, +∞) → R be a differentiable function.
If lim inf

t→∞ f(t) < lim sup
t→∞

f(t) then there exist sequences {tm} ↑ ∞ and {sm} ↑ ∞
such that for all m the following relations hold true:

f(tm) → lim sup
t→∞

f(t) as m ↑ ∞ and f ′(tm) = 0,

f(sm) → lim inf
t→∞ f(t) as m ↑ ∞ and f ′(sm) = 0.

Lemma 1 There exists T0 > 0 such that s1(t) < si
1 and s2(t) < si

2 +
k2

k1
si
1 for

each t ≥ T0.

P r o o f. Let us assume that there exists t̄ > 0 such that s1(t) ≥ si
1 for

all t ≥ t̄. Then

ṡ1(t) = ū(si
1 − s1(t))− k1µ1(s1(t))x1(t) < 0,

and hence s1(·) is a strictly decreasing function. It follows from Proposition 3
that s1(·) and x1(·) are bounded differentiable functions defined on [−τ, +∞),
thus ṡ1(·) is a uniformly continuous function. Applying Barbălat’s Lemma we
obtain

0 = lim
t→∞ ṡ1(t) = lim

t→∞[ū(si
1 − s1(t))− k1µ1(s1(t))x1(t)].

Because si
1 − s1(t) ≤ 0 and x1(t) > 0, the above equalities imply that s1(t) ↓ si

1

and x1(t) ↓ 0 as t ↑ ∞. Define (cf. Lemma 2.2 in [18])

z1(t) := x1(t) +
∫ t

t−τ1

e−αūτ1µ1(s1(σ))x1(σ)dσ.

It follows then from Assumption A3 (because si
1 + ν1 > s1(t) ≥ si

1 > s̄1 for
sufficiently large t) that

ż1(t) = x1(t)
(
e−αūτ1µ1(s1(t))− αū

)
= x1(t)

(
e−αūτ1µ1(s1(t))− e−αūτ1µ1(s̄1)

)
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= x1(t)e−αūτ1(µ1(s1(t))− µ1(s̄1)) > 0 for all sufficiently large t ≥ t̄,

and so there exists z∗1 > 0 such that z1(t) ↑ z∗1 as t ↑ ∞. But this is impossible
according to the definition of z1(·) and because we have already shown that x1(t) ↓
0 as t ↑ ∞.

Hence, there exists a sufficiently large T0 > 0 with s1(T0) ≤ si
1. Moreover,

if the equality s1(t̄) = si
1 holds true for some t̄ ≥ T0, then we have

ṡ1(t̄) = ū(si
1 − s1(t̄))− k1µ1(s1(t̄))x1(t̄) = −k1µ1(s1(t̄))x1(t̄) < 0.

The last inequality shows that s1(t) < si
1 for each t ≥ T0.

Further with s(t) and si from (5), and ṡ(t) from (6) one can show in the
same way as above that s(t) < si for each t ≥ T0 (if necessary T0 can be enlarged),
i. e.

e−αūτ1 (k2s1(t) + k1s2(t)) ≤ e−αūτ1
(
k2s

i
1 + k1s

i
2

)
.

Since 0 < s1(t) < si
1, it follows that s2(t) < si

2 +
k2

k1
si
1. The proof of Lemma 1 is

completed. ¤

Lemma 2 Denote

γ1 := lim sup
t↑∞

x1(t), δ1 := lim inf
t↑∞

x1(t),

v1(t) := e−αūτ1s1(t) + k1x1(t + τ1),

α1 := lim sup
t↑∞

v1(t), β1 := lim inf
t↑∞

v1(t).

Then the following relations hold true: γ1 = δ1 > 0 and α1 = β1.

P r o o f. Let us assume that δ1 = 0. Choose an arbitrary ε ∈ (0, (si
1 −

s̄1)/(1+ k1e
αūτ1)). According to Proposition 3 (see (10)) there exists Tε > 0 such

that for all t ≥ Tε the following inequalities hold true

(11) si
1 − ε < s1(t− τ1) + k1e

αūτ1x1(t) <
si
1

α
+ ε.

Since δ1 = 0 there exists t0 > max(Tε, T0) such that x1(t0) < ε. We set (cf. Lemma
3.5 in [18])

σ := min{x1(t) : t ∈ [t0 − τ1, t0]}
t̄ := sup{t ≥ t0 − τ1 : x1(τ) ≥ σ for all τ ∈ [t0 − τ1, t]}.
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Clearly σ ∈ (0, ε], t̄ ∈ [t0, +∞), x1(t) ≥ σ for all t ∈ [t0 − τ1, t̄] and

(12) x1(t̄) = σ and ẋ1(t̄) ≤ 0.

Taking into account Assumption A3, (11) and the choice of ε, we obtain consecu-
tively

si
1 > s1(t̄− τ1) ≥ si

1 − k1e
αūτ1x1(t̄)− ε ≥ si

1 − (1 + eαūτ1k1)ε > s̄1,

ẋ1(t̄) = e−αūτ1µ1(s1(t̄− τ1))x1(t̄− τ1)− αūx1(t̄) > αūσ − αūσ = 0.

The last inequality contradicts (12) which means that δ1 > 0.
Let us assume that γ = γ1 = δ1 > 0, i. e. the limit of x1(t) exists as

t →∞. We shall show that α1 = β1 holds true. Applying Barbălat’s Lemma, we
obtain that lim

t→∞ ẋ1(t) = 0, i. e.

e−αūτ1µ1(s1(t− τ1))x1(t− τ1)− αūx1(t) → 0 as t →∞.

From here it follows that µ1(s1(t)) → αū as t → ∞. Applying Assumption A3
leads to s1(t) → s̄1 as t →∞. But then

v1(t) = e−αūτ1s1(t) + k1x(t + τ1) → e−αūτ1 s̄1 + k1γ for t →∞.

Hence α1 = β1 in this case.
Assume now that α1 = β1, i. e. the limit of v1(t) exists as t → ∞. We

shall show that γ1 = δ1 is fulfilled. Applying again Barbălat’s lemma, we obtain
that lim

t→∞ v̇1(t) = 0, i. e.

v̇1(t) = ūe−αūτ1si
1 − ūv1(t) + (1− α)k1ūx1(t + τ1) → 0 as t →∞.

From here it follows that there exists the limit of x1(t) as t → ∞ and we can
continue as in the previous case to obtain that γ1 = δ1.

Assume that α1 > β1 and γ1 > δ1 hold true. We study this case using
some ideas from the proofs of Lemma 4.3 of [18] and Theorem 3.1 of [17].

Let ε > 0 be an arbitrary fixed number. Applying the Fluctuation Lemma,
there exists a sequence {tm}∞m=1 →∞ such that for each m we have

lim
m↑∞

x1(tm) = γ1, ẋ1(tm) = 0 and x1(tm − τ1) ≤ γ1 + ε.
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The equality ẋ1(tm) = 0 implies

e−αūτ1µ1(s1(tm − τ1)) = e−αūτ1µ1

(
v1(tm − τ1)− k1x1(tm)

e−αūτ1

)

=
αūx1(tm)

x1(tm − τ1)
≥ αūx1(tm)

γ1 + ε
,

lim inf
m↑∞

e−αūτ1µ1

(
v1(tm − τ1)− k1x1(tm)

e−αūτ1

)
≥ αūγ1

γ1 + ε
,

and since ε > 0 can be arbitrarily small, it follows that

lim inf
m↑∞

e−αūτ1µ1

(
v1(tm − τ1)− k1x1(tm)

e−αūτ1

)
≥ αū.

Using Assumption A2 this inequality implies that

lim inf
m↑∞

v1(tm − τ1)− k1x1(tm)
e−αūτ1

∈ [s̄1, s
i
1),

and hence

(13) α1 ≥ e−αūτ1 s̄1 + k1γ1.

Similarly one can show that β1 ≤ e−αūτ1 s̄1 + k1δ1. This and (13) imply

(14) α1 − β1 ≥ k1(γ1 − δ1) ≥ 0.

Let ε > 0 be an arbitrary fixed number. Applying the Fluctuation Lemma,
there exists a sequence {tk}∞k=1 →∞ such that for each k we have

(15) lim
k↑∞

v1(tk) = α1, v̇1(tk) = 0 and x1(tk + τ1) ≤ γ1 + ε.

The equality v̇1(tk) = 0 implies that

0 = v̇1(tk) = ūe−αūτ1si
1 − ūv1(tk) + (1− α)k1ūx1(tk + τ1).

From here and from (15) we obtain

ūe−αūτ1si
1 − ūv1(tk) + (1− α)k1ū(γ1 + ε) ≥ 0,

e−αūτ1si
1 ≥ α1 − (1− α)k1(γ1 + ε).

Because ε > 0 can be arbitrarily small, it follows that

(16) e−αūτ1si
1 ≥ α1 − (1− α)k1γ1.
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In the same way one can show that e−αūτ1si
1 ≤ β1− (1−α)k1δ1, and thus

α1 − β1 ≤ (1− α)k1(γ1 − δ1). Using (14), we obtain the inequalities

(17) α1 − β1 ≤ (1− α)k1(γ1 − δ1) ≤ (1− α)(α1 − β1),

which are impossible because α ∈ (0, 1). The contradiction shows that α1 = β1.
Using again (14), we obtain that γ1 = δ1. This completes the proof. ¤

Lemma 3 Denote

γ2 := lim sup
t↑∞

x2(t), δ2 := lim inf
t↑∞

x2(t),

v2(t) := s(t) + k1k3e
−αū(τ1−τ2)x2(t + τ2),

α2 := lim sup
t↑∞

v2(t), β2 := lim inf
t↑∞

v2(t).

Then the following relations hold true: α2 = β2 and γ2 = δ2.

P r o o f. The proof of Lemma 3 is similar to the proof of the previous
Lemma 2. We consider only the case when α2 > β2 and γ2 > δ2. Using (5) and
(6) it is straightforward to see that

v̇2(t) = ṡ(t) + k1k3e
−αū(τ1−τ2)x2(t + τ2)

= ū(si − s(t))− k1k3αūe−αū(τ1−τ2)x2(t + τ2)

= ū
(
e−αūτ1si − v2(t) + (1− α)k1k3x2e

−αū(τ1−τ2)(t + τ2)
)

.

Let ε > 0 be an arbitrary fixed number. Applying the Fluctuation Lemma, there
exists a sequence {tm}∞m=1 tending to ∞ such that for each m we have

lim
m↑∞

x2(tm) = γ2, ẋ2(tm) = 0 and x2(tm − τ2) ≤ γ2 + ε.

The equality ẋ2(tm) = 0 implies

e−αūτ2µ2(s2(tm − τ2))

= e−αūτ2µ2

(
v2(tm − τ2)− k2e

−αūτ1s1(tm)− k1k3e
−αū(τ1−τ2)x2(tm)

k1e
−αūτ1

)

=
αūx2(tm)

x2(tm − τ2)
≥ αūx2(tm)

γ2 + ε
.
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From here we obtain

lim inf
m↑∞

e−αūτ2µ2

(
v2(tm − τ2)− k2e

−αūτ1s1(tm)− k1k3e
−αū(τ1−τ2)x2(tm)

k1e
−αūτ1

)

≥ αūγ2

γ2 + ε
,

and since ε > 0 can be arbitrarily small, it follows that

lim inf
m↑∞

e−αūτ2µ2

(
v2(tm − τ2)− k2e

−αūτ1s1(tm)− k1k3e
−αū(τ1−τ2)x2(tm)

k1e
−αūτ1

)
≥ αū.

This inequality implies

lim inf
m↑∞

v2(tm − τ2)− k2e
−αūτ1s1(tm)− k1k3e

−αū(τ1−τ2)x2(tm)
k1e

−αūτ1
≥ s̄2,

and hence
α2 ≥ e−αūτ1 (k2s̃1 + k1s̄2) + k1k3e

−αū(τ1−τ2)γ2,

where s̃1 = lim
t→∞ s1(t) according to Lemma 2. In the same way one can obtain

that
β2 ≤ e−αūτ1 (k2s̃1 + k1s̄2) + k1k3e

−αū(τ1−τ2)δ2.

The last two inequalities imply

(18) α2 − β2 ≥ k1k3e
−αū(τ1−τ2)(γ2 − δ2).

Let ε > 0 be an arbitrary fixed number. Applying the Fluctuation Lemma,
one can conclude that there exists a sequence {tk}∞k=1 tending to ∞ such that for
each k we have

lim
k↑∞

v2(tk) = α2, v̇2(tk) = 0 and x2(tk + τ2) ≤ γ2 + ε.

The equality v̇2(tk) = 0 leads to

0 = v̇2(tk) = ūe−αūτ1si − ūv2(tk) + (1− α)ūk1k3e
−αū(τ1−τ2)x2(tk + τ2).

From here we obtain that

ūe−αūτ1si − ūv2(t) + (1− α)ūk1k3e
−αū(τ1−τ2)(γ2 + ε) ≥ 0,
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and hence
e−αūτ1si ≥ α2 − (1− α)k1k3e

−αū(τ1−τ2)(γ2 + ε).

Since ε > 0 can be arbitrarily small, it follows that

(19) e−αūτ1si ≥ α2 − (1− α)k1k3e
−αū(τ1−τ2)γ2.

In the same way one can obtain that

e−αūτ1si ≤ β2 − (1− α)k1k3e
−αū(τ1−τ2)δ2,

and hence α2 − β2 ≤ (1− α)k1k3e
−αū(τ1−τ2)(γ2 − δ2). From here and (18) we get

the inequalities

(20) α2 − β2 ≤ (1− α)k1k3e
−αū(τ1−τ2)(γ2 − δ2) ≤ (1− α)(α2 − β2),

which are impossible because α ∈ (0, 1). The contradiction shows that α2 = β2.
Using again (18) it follows that δ2 = γ2. This completes the proof. ¤

P r o o f o f T h e o r em 1. Lemmas 2 and 3 imply that the solution
Φ(t, ϕ0) = Φ(t) = (s1(t), x1(t), s2(t), x2(t)) is convergent as t ↑ ∞. Let

lim
t↑∞

s1(t) = s̃1, lim
t↑∞

x1(t) = x̃1, lim
t↑∞

s2(t) = s̃2, lim
t↑∞

x2(t) = x̃2.

Applying Barbălat’s Lemma, we obtain from Σ that

0 = lim
t→∞

d

dt
s1(t) = lim

t→∞
(
ū(si

1 − s1(t))− k1µ1(s1(t))x1(t)
)

0 = lim
t→∞

d

dt
x1(t) = lim

t→∞
(
e−αūτ1µ1(s1(t− τ1))x1(t− τ1)− αūx1(t)

)

0 = lim
t→∞

d

dt
s2(t) = lim

t→∞
(
ū(si

2 − s2(t)) + k2µ1(s1(t))x1(t)− k3µ2(s2(t))x2(t)
)

0 = lim
t→∞

d

dt
x2(t) = lim

t→∞
(
e−αūτ2µ2(s2(t− τ2))x2(t− τ2)− αūx2(t)

)
,

and hence
0 =

(
ū(si

1 − s̃1)− k1µ1(s̃1)x̃1

)

0 =
(
e−2αūτ1µ1(s̃1)x̃1 − αūx̃1

)

0 =
(
ū(si

2 − s̃2) + k2µ1(s1(t))x̃1 − k3µ2(s̃2)x̃2

)

0 =
(
e−2αūτ2µ2(s̃2)x̃2 − αūx̃2

)
.

From here it follows that

p̄ = (s̄1, x̄1, s̄2, x̄2) = (s̃1, x̃1, s̃2, x̃2).
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Finally, the attractivity of the positive equilibrium p̄ together with the local sta-
bility of p̄, means that p̄ is globally asymptotically stable for all values of τ1 ≥ 0
and τ2 ≥ 0. The proof of Theorem 1 is completed. ¤

5. Maximizing the biogas production via extremum seeking.
Consider the model (1) with the output (2). Let Assumptions A1, A2 and A3
hold true for the dynamics (1). Denote by u ∈ (0, ub) some value of the dilution
rate and consider the equilibrium point p(u) = (s1(u), x1(u), s2(u), x2(u)) where
s1(u), x1(u), s2(u) and x2(u) are computed according to Assumption A2 and to
(3). Denote further by

Q(u) = Q(p(u)) = k4 µ2(s2(u)) x2(u)

the output, computed on the set of all steady states p(u), parameterized on the
input u. Q(u) is called input-output static characteristic of the model.

Assumption A4. The function u 7→ Q(u), u ∈ (0, ub), is strictly uni-
modal, i. e. there exists a unique point umax ∈ (0, ub) where Q(u) takes a max-
imum, Qmax = Q(umax) = Q(p(umax)), the function strictly increases in the
interval (0, umax) and strictly decreases in (umax, ub).

Denote further

p(umax) = (s1(umax), x1(umax), s2(umax), x2(umax)) = (smax
1 , xmax

1 , smax
2 , xmax

2 ).

Our goal is to stabilize the system (1) towards the (unknown) equilibrium
point p(umax) and therefore to the maximum methane flow rate Qmax. This is
realized by applying a numerical model-based extremum seeking algorithm (ESA).
The algorithm is presented in details in [5] for the model (1) within τ1 = τ2 = 0
and used in [6], [7] and [8]. The ESA is now adapted to system (1) with discrete
delays τ1 > 0, τ2 > 0 and in accordance with the requirements of Theorem 1.

The main idea of the algorithm is the following: we construct in a proper
way a sequence of points u(1), u(2), . . . , u(n), . . . from the interval (0, ub) which
approaches umax; Theorem 1 guarantees that the dynamics is globally asymp-
totically stabilizable for each u = u(j), i. e. the solution approaches the equi-
librium p(u(j)), j = 1, 2, . . .. Then by computing and comparing the values
Q(p(u(1))), Q(p(u(2))), . . . , Q(p(u(n))), . . ., the desired equilibrium point p(umax)
and thus Qmax are achieved.

In the computer implementation the algorithm is carried out in two stages.
In the first stage, “rough” intervals [U ] and [Q] are found which enclose umax

and Qmax respectively; in the second stage, the interval [U ] is refined using an
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elimination procedure based on the golden mean value strategy. The second
stage produces the final intervals [umax] = [u−max, u

+
max] and [Qmax] such that

umax ∈ [umax], Qmax ∈ [Qmax] and u+
max − u−max ≤ ε, where the tolerance ε > 0 is

specified by the user.
ESA is implemented in a web-based software environment, see [19].

6. Computer simulation. The following specific growth rate functions
are considered in the model (1), taken from [1], [2] and [3]:

µ1(s1) =
m1s1

ks1 + s1
(Monod law), µ2(s2) =

m2s2

ks2 + s2 + (s2/kI)2
(Haldane law).

In the simulation process we use the following numerical values for the model
coefficients, which are obtained by laboratory experiments and given in [1]:

k1 = 10.53 k2 = 28.6 k3 = 1074 k4 = 675 si
1 = 7.5 si

2 = 75
m1 = 1.2 ks1 = 7.1 m2 = 0.74 ks2 = 9.28 kI = 16 α = 0.5

To demonstrate the theoretical results and the facilities of ESA we consider two
numerical examples corresponding to different values of the delays. Let the initial
conditions be

ϕs1(t) = 2, ϕx1(t) = 0.1, ϕs2(t) = 10, ϕx2(t) = 0.05.

Example 1 τ1 = 2, τ2 = 7.

For these values of the delays the input-output static characteristic u 7→
Q(u), u ∈ (0, ub), satisfies Assumption A4, see Figure 1 (left).

ESA produces the following numerical values:

umax ≈ 0.299019, Qmax ≈ 14.646,

smax
1 ≈ 1.434, xmax

1 ≈ 0.854, smax
2 ≈ 13.546, xmax

2 ≈ 0.051.

Figure 2 (left) and Figure 3 visualize the numerical outputs resulting from ESA.

Example 2 τ1 = 5, τ2 = 3

For these values of the delays the input-output static characteristic u 7→
Q(u), u ∈ (0, ub), satisfies Assumption A4, see Figure 1 (right).
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Figure 1: The input-output static characteristic Q(u) with τ1 = 2, τ2 = 7 (left),
and τ1 = 5, τ2 = 3 (right). The vertical dot lines pass through ub

Figure 2: Time evolution of Q(t) towards Qmax corresponding to Example 1 (left)
and Example 2 (right)

In this case we obtain the following numerical values:

umax ≈ 0.386966, Qmax ≈ 17.701,

smax
1 ≈ 5.231, xmax

1 ≈ 0.164, smax
2 ≈ 8.378, xmax

2 ≈ 0.076.

The numerical outputs resulting from ESA are visualized in Figure 2 (right) and
Figure 4.

7. Conclusion. In this paper we investigate a bioreactor model for
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Figure 3: Example 1. Time evolution of s1(t), s2(t) (left), x1(t) and x2(t) (right)
towards smax

1 , smax
2 , xmax

1 and xmax
2 respectively

Figure 4: Example 2. Time evolution of s1(t), s2(t) (left), x1(t) and x2(t) (right)
towards smax

1 , smax
2 , xmax

1 and xmax
2 respectively

wastewater treatment by anaerobic digestion involving two different discrete de-
lays to describe the time delay in substrate conversion to viable biomass. To
authors’ knowledge, such kind of investigations have not been yet fulfilled for this
bioreactor model. Using a properly chosen admissible value for the dilution rate
ū we prove in Theorem 1 the global asymptotic convergence of the solutions to-
wards an equilibrium point, corresponding to ū. Moreover, the global stability is
proved under general assumptions of the specific growth rates, without knowing
the particular forms of these functions. Analytic expressions for the latter are
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introduced to carry out the computer simulations. It is interesting to note that
the qualitative behavior of the solutions of (1) with τ1 > 0, τ2 > 0 is the same
as the solutions behavior of the model without delays, i. e. when τ1 = τ2 = 0,
see [8]. A model-based extremum seeking algorithm is applied to stabilize the
dynamics towards the equilibrium point where maximum production of methane
is achieved. Numerical simulation is included to illustrate the theoretical results.
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