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Abstract
We mathematically analyze the solutions to the dynamical system induced by the 
two-step exponential (growth-)decay (2SED) reaction network involving three spe-
cies and two rate parameters. We study the influence of the rate parameters on the 
shape of the solutions. We compare the latter to those of the classic Kermack–McK-
endrick epidemiological SIR model. We then discuss the similarities and differences 
between the 2SED and the SIR models from the perspective of chemical reaction 
network theory (CRNT), as well as from epidemiological modelling view-point. The 
CRNT approach suggests that the classical SIR model, based on the logistic reaction 
mechanism, describes well epidemic events related to diseases spreading via a ‘one-
to-one’ contact pattern between individuals. On the other side, the 2SED model can 
be used to simulate epidemic data coming from non-communicable diseases. Our 
comparative analysis naturally suggests the formulation of a SIR-type model, which 
is situated between the classic SIR model and the 2SED model, such that the logistic 
‘one-to-one’ contact mechanism is replaced by a catalytic (Gompertzian) one. The 
proposed G-SIR model can be considered as an intermediate step between the SIR 
and the 2SED models. We compare the shapes of the solutions to the three discussed 
models and formulate a hypothesis that relates the characteristics of the solution 
shapes to the model reaction mechanism, resp. to the contact patterns of the particu-
lar disease.

Keywords  Reaction networks · Chemical reaction network theory · Exponential 
growth-decay reaction chain · Epidemiological model

Mathematics Subject Classification  92E99 · 92D30

 *	 Milen Borisov 
	 milen_kb@math.bas.bg

	 Svetoslav Markov 
	 smarkov@bio.bas.bg

1	 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



	 Journal of Mathematical Chemistry

1 3

1  Introduction

In his popular book on Mathematical Biology J. D. Murray writes: “Suppose the 
disease is such that the population can be divided into three distinct classes: the 
susceptible, S, who can catch the disease; the infectives, I, who have the disease 
and can transmit it; and the removed class, R, namely, those who have either had 
the disease, or are recovered, immune or isolated until recovered. The progress of 
individuals is schematically represented by S ⟶ I ⟶ R . Such models are often 
called SIR models” [32, Chap. 10.2, p. 320].

The “schematical representation” S ⟶ I ⟶ R of the dynamics of a SIR 
model is mentioned by many authors, some of them calling it “diagram scheme”. 
This “scheme” gives a general idea of the dynamics of a disease, however, it rises 
the natural question: what is the relation between the SIR model and the “dia-
gram scheme” S ⟶ I ⟶ R , if the latter is interpreted as a reaction network in 
the sense of chemical reaction network theory (CRNT) [12, 15, 25], that is as a 
two-step exponential (radioactive decay) chain?

To answer this question, we have to compare the reaction network 
S ⟶ I ⟶ R with the reaction network S + I ⟶ 2I, I ⟶ R inducing the SIR 
model under mass action kinetics. Note that the first reaction in the SIR net-
work is a (self-)catalyzed reaction where species I catalyzes the first-order reac-
tion S ⟶ I . The catalytic action of species I over species S corresponds to the 
requirement on the disease to be communicable (contagious). Otherwise, if the 
disease is not communicable, the logistic type reaction network inducing the SIR 
model, will turn into a first-order exponential reaction.

The aim of this work is to investigate the relation between the two models consid-
ered as reaction networks. To this end we first mathematically analyze the solutions 
to the two-step exponential model in the spirit of the familiar analysis of the solu-
tions to the SIR model [18, 19, 32]. We then focus on some analogies between the 
two models and certain new interpretations of the two-step exponential model.

The two-step exponential chain is a special case of the n-step exponential chain, 
known in the field of nuclear physics as exponential radio-active decay. The n-step 
exponential chain induces a dynamical system of equations, known as Bateman’s 
system of differential equations [4]. Bateman’s equations are extensively used in 
nuclear physics to study radioactive decay chains of particular nuclides. Nuclear 
physicists and chemists are mostly interested in the half-life characteristics of the 
nuclides involved in the reaction chain. The mathematical formulae for the solutions 
of Bateman’s equations in the theory of radioactive decay are usually presented in 
matrix form [31]. Such a compact form is suitable for the description and study of 
reaction chains involving many nuclides—normally 4, 5 and more. In the case of the 
two-step exponential reaction chain the number of species is only three and some 
characteristics of the shape of the solutions, such as extremum and inflection points 
are of significant interest especially when it comes to fitting the solutions to meas-
urement data describing dynamical processes. For the latter purposes one needs a 
detailed knowledge of the properties of the solutions to the two-step exponential 
chain, which we did not find in the available scholarly literature.
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From the perspective of the chemical reaction network theory (CRNT), the 
two-step exponential chain model is tightly related to some of the most familiar 
mathematical models used for fitting life science data, such as the logistic and 
the Gompertz models. This is another motivation to analyze mathematically the 
solutions to the two-step exponential chain.

When studying the properties of the solutions to the two-step system of Bate-
man’s differential equations, we focus our attention on characteristics, such as 
monotonicity, convexity, extremums, inflection points, etc. We examine situa-
tions when one of the chain-links is (much) faster than the other one, that is the 
values of the two rate parameters differ significantly. We formulate and prove 
some new properties of the solutions to the two-step Bateman system of dif-
ferential equations focusing especially on the intermediate function and the 
sigmoidal growth function describing the temporal evolution of the final third 
species in the reaction chain. We consider the limiting cases when the much 
faster chain-link can be eliminated so that the two-step chain can be reduced to 
(approximated with) an one-step growth-decay reaction ( n = 1).

The paper is structured as follows. In the preliminary Sect.  2 we introduce 
the language of chemical reaction network theory recalling the well-known first-
order one-step exponential growth-decay model. The use of CRNT approach 
throughout the paper allows for treating all model networks as two-compartmen-
tal growth-decay processes and to keep an eye on the chemical meaning of all 
variables and parameters of the discussed models.

In Sect.  3 we introduce the two-step exponential decay reaction chain and 
analyze the solutions to the induced dynamical system as functions of time. We 
also study the influence of the rate parameters on the shape of the solutions.

In Sect. 4 we briefly recall the familiar logistic and Gompertz models formu-
lating them as chemical reaction networks. This allows us to demonstrate the 
two-compartmental growth-decay nature of the models as involving two equally 
important parts: a “decaying” part (species, compartment) and a “growing” part. 
We then introduce the classic Kermack–McKendrick SIR model again as reac-
tion network, emphasizing its relation to the logistic model. Our CRNT approach 
suggests a natural “Gompertzian” SIR (G-SIR) variant of the classic SIR model, 
such that the SIR logistic reaction is replaced by a Gompertzian one.

In Sect.  5 we introduce and analyze a so-called G-SIR model, which is a 
SIR-type epidemiological model with Gompertzian disease spread mechanism 
instead of the familiar logistic one.

In Sect.  6 we consider the two-step exponential growth-decay model from 
the perspective of the SIR-type epidemiological models. We conclude that the 
two-step exponential model can be used to simulate epidemic outbreaks related 
to non-communicable diseases caused by environmental factors, whenever the 
spread of the disease is not necessarily due to contacts within the individuals.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



	 Journal of Mathematical Chemistry

1 3

2 � Preliminaries: the one‑step exponential growth‑decay model

Throughout the paper we shall denote (biological) species by uppercase letters, say 
S, P, Q, and shall assume that all species are homogeneously distributed in a fixed 
volume (space, areal). We shall consider the concentrations (masses) of the species 
as functions of time t, and denote them by corresponding lowercase letters, such 
as s = s(t), p = p(t), q = q(t) . We shall also assume that the species are involved in 
a reaction network which is governed by mass action kinetics. Therefore the reac-
tion network induces an unique dynamical system of reaction equations for the rates 
s� = ds(t)∕dt, p� = dp(t)∕dt , ..., of the concentrations.

We next recall a familiar example of a growth-decay model induced by a reaction 
network.

2.1 � The one‑step exponential growth‑decay model

The familiar  n-step exponential growth-decay reaction network (chain) 
S1 ⟶ S2 ⟶ ⋯ ⟶ Sn ⟶ P is used in the study of radio-active (nuclear) decay 
phenomena. Under the assumption of mass action kinetics the exponential decay 
chain induces a dynamical system of reactant equations known as Bateman’s differ-
ential equations, named on H. Bateman, who has shown that the dynamical system 
of radioactive decay possesses an exact algebraic solution [4].

In the simplest case of just one step n = 1 , that is: S1 ⟶ P the exponential decay 
reaction is known as “first-order decay reaction” or as “saturation growth model”; 
in the field of marine ecology and fishery the name “von Bertalanffy model” is also 
used [43].

Let us write the one-step first-order reaction (network) as:

where k > 0 is a positive rate parameter. Assuming that reaction (1) is governed by 
mass action kinetics leads to the dynamical system:

System (2) implies the relation s� + p� = 0 which after integration gives the conser-
vation relation

Consider initial values

When equipped with initial conditions (4) dynamical system (2) turns into an ini-
tial value problem (IVP) (2)–(4) and relation (3) becomes s + p = c = s0 + p0 . This 
allows to obtain an autonomous ordinary differential equation for the growth func-
tion p of the form:

(1)S
k

⟶ P,

(2)s� = −ks, p� = ks.

(3)s + p = c = const .

(4)s(0) = s0 > 0, p(0) = p0 ≥ 0.
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with initial condition p(0) = p0.
The differential equations for s and p under initial conditions (4) admit explicit solu-

tions as functions of t ≥ 0:

Function p is also known as saturation growth model, function s is usually known as 
first-order exponential decay model.

The purpose of this example is to suggest that throughout this work all models will 
be formulated as chemical reaction networks involving both growth and decay species 
(functions, compartments) and both species will receive equal attention, moreover spe-
cial consideration will be given to relations between the two functions, such as relation 
(3) in our example.

3 � The two‑step exponential growth‑decay model: properties 
of the solutions

In this section we consider some properties of the solutions to the two-step exponential 
growth-decay model.

3.1 � The two‑step exponential growth‑decay model and its solutions

Definition 1  An exponential growth-decay mechanism involving two sequential 
first order steps in the transformation of three species S, P, Q is presented in the fol-
lowing reaction network:

where k1, k2 are positive rate parameters.

Denote the concentrations (masses) of species S,  P,  Q as functions of time t by 
s = s(t), p = p(t), q = q(t) and their derivatives respectively by s′, p′, q′.

Under the assumption of homogeneity and mass action kinetics, reaction network 
(5) induces the following dynamical system of reaction equations:

Dynamical system (6) induces the following conservation relation

Indeed, dynamical system (6) follows by the general theory of reaction networks 
[25] under the assumption that reaction network (5) is governed by mass action 

p� = k(c − p),

s(t) = s0e
−kt, p(t) = c − s0e

−kt, c = s0 + p0.

(5)S
k1
⟶ P

k2
⟶ Q,

(6)
s� = −k1s,

p� = k1s − k2p,

q� = k2p.

(7)s + p + q = c = const .

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



	 Journal of Mathematical Chemistry

1 3

kinetics. The conservation equation follows from the relation s� + p� + q� = 0 
induced by system (6).

We assume a set of initial value conditions to dynamical system (6) as follows:

Remark 2  The more general assumption p0 ≥ 0 will be discussed in Sect. 4.

Under initial conditions (8) the constant c becomes c = s0 > 0 , hence the conser-
vation relation obtains the form:

Solutions to initial value problem (6)–(8).

Definition 3  Consider the following functions defined in the interval T = [0,∞):

Remark 4  The expression (11) for function q in the case k1 ≠ k2 can be also written 
in the following form:

In order to study the behaviour of functions s, p, q with respect to properties such 
as monotonicity, equilibrium points, asymptotes, extremums, inflection points, etc., 
we need to examine their derivatives.

The first derivatives of functions s, p, q defined by (9), (10), (11) can be presented 
by means of the following expressions:

(8)s(0) = s0 > 0; p(0) = p0 = 0; q(0) = q0 = 0.

s + p + q = s0.

(9)s(t) = s0e
−k1t;

(10)p(t) =

{
s0k1

k2−k1
(e−k1t − e−k2t), k1 ≠ k2,

s0kte
−kt, k1 = k2 = k;

(11)q(t) =

{ s0

k2−k1

(
k2(1 − e−k1t) − k1(1 − e−k2t)

)
, k1 ≠ k2,

s0(1 − (1 + kt)e−kt), k1 = k2 = k.

q(t) = s0

(
1 −

k2e
−k1t − k1e

−k2t

k2 − k1

)
.

(12)s�(t) = −s0k1e
−k1t;

(13)p�(t) =

{
s0k1

k2−k1
(−k1e

−k1t + k2e
−k2t), k1 ≠ k2,

s0ke
−kt(1 − kt), k1 = k2 = k;
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Remark 5  Using expressions (9)–(11), (12)–(14) for functions s, p, q and their deriv-
atives s′, p′, q′ , we can state that functions s, p, q are the unique solutions to initial 
value problem (6)–(8). Indeed, using expressions (9)–(14), it is easy to check that 
functions s, p, q satisfy IVP (6)–(8). For example, to see this for function p, sub-
stitute the expressions for s, p, p′ in the second equation: p� = k1s − k2p of dynami-
cal system (6) to obtain an identity. Similarly identities for s and q can be checked 
and thus the existence part of our statement is validated. Uniqueness of solutions 
s,  p,  q follows from the smoothness of the right-hand sides of dynamical system 
(6) according to the general theory of ODE’s (Picard-Lindelöf theorem). We recall 
that solutions s, p, q can be obtained by integrating dynamical system (6)–(8) using 
Laplace transform as done in [4] or by using algebraic methods as in [31, 35].

3.2 � Properties of the solutions to the two‑step exponential growth‑decay model

We next analyze in some detail the properties of solutions s, p, q to initial value 
problem (IVP) (6)–(8) with respect to monotonicity and extremum points.

Function s defined by (9) already appeared in Sect. 2, see IVP (2)–(4). Solu-
tion s is a positive monotone decreasing function in T = [0,∞) and asymptoti-
cally tends to 0 with t → ∞ . Indeed, property s > 0 follows from expression (9) 
and monotonicity is due to s′ < 0 as seen from expression (12) of the derivative s′ 
and the first equation in system (6), i.e. s� = −k1s < 0.

A practically important characteristics of decay function s is:

known in nuclear physics as half-life (time). The half-life th satisfies the condition 
s(th) = s0∕2 , cf. Fig. 1. From (3.2) the rate parameter k1 can be computed as:

Functions p,  q defined by expressions (10), (11), satisfy in T the properties: 
p ≥ 0, q ≥ 0.

Proposition 6  Function p is unimodal in T = [0,∞) , asymptotically tending to 0 
with t → ∞ and attaining its maximum value at time moment t∗

p
> 0:

The maximum value of function p attained at t∗
p
 is:

(14)q�(t) =

{
s0k1k2

k2−k1

(
e−k1t − e−k2t

)
, k1 ≠ k2,

s0k
2te−kt, k1 = k2 = k.

th = ln 2∕k1,

k1 = ln 2∕th.

(15)t∗
p
=

{
ln k2−ln k1

k2−k1
, k1 ≠ k2,

1∕k, k1 = k2 = k.
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Proof  To investigate the maximum of function p we look for a time moment t = t∗
p
 , 

such that the derivative (13) of p annihilates: p�(t∗
p
) = 0 . The latter results in expres-

sions (15), (16). � □

Remark 7  Using an alternative to (15) expression for t∗
p
 for the case k1 ≠ k2 we have:

Note that the maximum value p(t∗
p
) of function p attained at t∗

p
 in the case of equal 

rate parameters k2 = k1 = k does not depend on the value of k as shown in expression 
(16).

Proposition 8  Solution q is a non-negative function in T = [0,∞) , attaining value 
0 if and only if t = 0 . Function q is strictly monotone increasing in T. The steep-
est slope of q is achieved at time moment t∗

p
 given by (15). The value of the steepest 

slope of q is q�(t∗
p
) = k2p(t

∗
p
) , where p(t∗

p
) is given by (16), that is

(16)p(t∗
p
) =

⎧⎪⎨⎪⎩

s0k1

k2−k1

�
(
k2

k1
)

k1

k1−k2 − (
k2

k1
)

k2

k1−k2

�
, k1 ≠ k2,

s0e
−1 ≈ 0.36788 × s0, k1 = k2.

(17)t∗
p
=

{
ln
(
(
k2

k1
)(k2−k1)

−1
)
, k1 ≠ k2,

1∕k, k1 = k2 = k.

Fig. 1   The graph of the decay function s defined by (9) for s0 = 1 , visualized for two values of rate 
parameter k1 : k1 = 1 and k1 = 2 . The half-life is shown on the two graphics
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The value q(t∗
p
) of function q at point t∗

p
 is

Proof  To see that solution q ≥ 0 is a non-negative monotone increasing func-
tion for t ≥ 0 , it is sufficient to note that the third equation of system (6) implies 
q�(t) = k2p ≥ 0 . Assumption q�(t) = 0 implies t = 0 , hence q is (strictly) monotone 
increasing for t > 0 . The derivative q�(t) of q is proportional to p, hence the steep-
est slope of q (that is the largest reaction rate q′ of q), is achieved at time moment t∗

p
 

given by (15). Accordingly, the value of the maximum rate (slope) of q is given by 
(16). � □

According to formulae (16) and (17) the time moment t∗
p
 as well as the values 

p(t∗
p
) and q(t∗

p
) depend on the rate parameters k1, k2 . The next two propositions 

address this kind of dependence.

3.3 � Dependence of the solutions to the two‑step exponential growth‑decay 
model on the rate parameters

Proposition 9  Let (k1, k2) be such that k1 ≥ 1, k2 ≥ 1 , then for any pair (k1, k2) the 
largest value of t∗

p
 is attained at (k1, k2) = (1, 1) , namely

Proof  Geometrically expression (17) says that t∗
p
 is the slope of the secant to the 

graph of the natural logarithm function as function of k, ln(k) , passing through the 
points (k1, ln k1) and (k2, ln k2) . Clearly the secant with largest slope (= 1) is the tan-
gent at the point (1, ln 1) = (1, 0) . � □

Proposition 10  Let pair (k1, k2) be such that either (i) k1 = 1, k2 ⟶ ∞ , or (ii) 
k2 = 1, k1 ⟶ ∞ . Then

(18)q�(t∗
p
) = k2p(t

∗
p
) =

⎧
⎪⎨⎪⎩

s0k1k2

k2−k1

�
(
k2

k1
)

k1

k1−k2 − (
k2

k1
)

k2

k1−k2

�
, k1 ≠ k2,

(s0k)e
−1 ≈ 0.36788 × (s0k), k1 = k2 = k.

q(t∗
p
)∕s0 =

⎧
⎪⎨⎪⎩
1 −

k2(
k2

k1
)

k1
k1−k2 −k1(

k2

k1
)

k2
k1−k2

k2−k1
, k1 ≠ k2,

1 − 2e−1 ≈ 0.2642, k1 = k2 = k.

max
k1≥1,k2≥1

t∗
p
(k1, k2) = t∗

p
(1, 1) = 1.

p(t∗
p
;k1, k2) ⟶

{
0, k1 = 1, k2 ⟶ ∞,

s0, k2 = 1, k1 ⟶ ∞.
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Proof  Follows from expression (16) when substituting alternatively one of the 
rate parameters by 1 and passing to limit the other rate parameter, using the limit 
limn⟶∞(1∕n)

n = 1 . � □

Fig. 2   The graph of solution p of the IVP (6)–(8) for initial conditions s0 = 1, p0 = q0 = 0 and rate 
parameters k1 = k2 = 1 . The maximum point (t∗

p
, p(t∗

p
)) and the inflection point (t∗∗

p
, p(t∗∗

p
)) are shown on 

the graph

Fig. 3   The graph of solution q of IVP (6)–(8) for initial conditions s(0) = 1, p0 = q0 = 0 and two pairs 
of rate parameters: (i) k1 = k2 = 1 , and (ii) k1 = 2, k2 = 1 . The inflection points (t∗

p
, q(t∗

p
)) are shown on 

the graphs
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Figures 1, 2 and 3 visualize the solutions s, p, q of problem (6–8) for fixed 
initial conditions s(0) = 1, p(0) = q(0) = 0 and diverse values of the rate param-
eters k1, k2.

3.4 � More properties of the solutions to the two‑step exponential growth‑decay 
model

In order to analyse the solutions to IVP (6)–(8) with respect to properties, such 
as convexity and inflection points, consider the second derivatives of functions 
s, p, q.

Using expressions (19)–(21) one obtains some additional properties of the solu-
tions to IVP (6)–(8). Note that expression (19) implies s��(t) > 0 , hence function s 
is strictly convex on T, which is clearly observed on Fig. 1. As regard to solution p, 
expression (20) contributes to the following result.

Proposition 11  Solution p has an inflection at point t∗∗
p

= 2t∗
p
> 0:

where t∗
p
 is given by (15). The value p(t∗∗

p
) = p(2t∗

p
) is given by

Expressions (22)–(23) are obtained by elementary calculations, visualize  on 
Fig. 4. 

Proposition 12  Solution q has an inflection at time moment t∗∗
p

= 2t∗
p
 , where t∗

p
 is 

given by (15). The value of function q at time 2t∗
p
 is:

(19)s��(t) = s0 k1
2 e−k1t;

(20)p��(t) =

{
s0k1

k2−k1
(k1

2e−k1t − k2
2e−k2t), k1 ≠ k2,

s0k
2e−kt(kt − 2), k1 = k2 = k;

(21)q��(t) =

{
s0k1k2

k2−k1

(
−k1e

−k1t + k2e
−k2t

)
, k1 ≠ k2,

s0k
2(1 − kt)e−kt, k1 = k2 = k.

(22)t∗∗
p

= 2

{
ln k2−ln k1

k2−k1
, k1 ≠ k2,

1∕k, k1 = k2 = k,

(23)p(2t∗
p
) =

{
s0k1

k2−k1

(
(
k2

k1
)2k1∕(k1−k2) − (

k2

k1
)2k2∕(k1−k2)

)
, k1 ≠ k2,

2s0e
−2 ≈ 0.27067 × s0, k1 = k2 = k;
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Fig. 4   Function p as defined in (10) for s0 = 1 and three pairs of rate parameters 
(k1, k2) = (1, 1), (k1, k2) = (7, 1) , and (k1, k2) = (1, 3) together with maximum points (t∗

p
, p(t∗

p
)) and inflec-

tion points (t∗∗
p
, p(t∗∗

p
))

Fig. 5   Function q as defined in (11) for s0 = 1 , and three pairs of rate parameters 
(k1, k2) = (1, 1), (k1, k2) = (7, 1) , and (k1, k2) = (1, 3) together with inflection points
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Proof  Substitute the argument 2t∗
p
 in expression (11) for q gives:

which gives (24). The graph of function q is visualized on Fig. 5. � □

3.5 � Remarks on the global behaviour of the two‑step exponential growth‑decay 
model

Let us comment on the global behaviour of the solutions s, p, q to the two-step expo-
nential growth-decay model.

As seen above the shape of the solutions to dynamical system (6) varies relative 
to the variation of the values of the two rate parameters (k1, k2).

In the case of equal parameter rates k1 = k2 = k the point t∗
p
= 1∕k tends to zero 

with k → ∞ , i.e. limk→∞ t∗
p
→ 0 . Hence, in the limit no inflection takes place for 

the intermediate p. The maximum value of function p in the case of equal param-
eter rates does not depend on the value k of the rates, but just on s0 , namely 
(100∕e)%s0 ≈ 36.7879% × s0 . For the value of p at the inflection point 2/t we have 
2(100∕e2)%s0 ≈ 0.27067 × s0.

We also wish to know how the solutions behave when one of the rate parameters 
k1, k2 is kept fixed to a certain value, while the other one is growing up to infinity.

Without loss of generality, we can fix the minimum value of the two rate parame-
ters to be min(k1, k2) = 1 . Consider then separately the two possible cases as follows.

Special case k1 = 1, k2 > 1 . In the case k1 = 1, k2 > 1 formula (15) becomes

Substituting (25) in: p(t)|k1≠k2 = s0
k1

k2−k1
(e−k1t − e−k2t) , we obtain

(24)q(2t∗
p
) =

⎧
⎪⎪⎨⎪⎪⎩

s0

k2−k1

�
k2

�
1 −

�
(
k2

k1
)

2k1

k1−k2

��

−k1

�
1 −

�
(
k2

k1
)

2k2

k1−k2)

���
, k1 ≠ k2,

s0(1 − 3e−2) ≈ 0.59399 × s0, k1 = k2 = k.

q(2t∗
p
) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

s0

k2−k1

�
k2

�
1 − e

ln

�
(
k2

k1
)

2k1
k1−k2

��

−k1

�
1 − e

ln

�
(
k2

k1
)

2k2
k1−k2)

���
, k1 ≠ k2,

s0(1 − 3e−2), k1 = k2 = k,

(25)

t∗
p
=

ln k2 − ln k1

k2 − k1

= ln(k2)∕(k2 − 1)

= ln

(
(k2)

1

k2−1

)
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From expression (26) one concludes that if k1 = 1 is fixed and k2 increases to infinity 
k2 → ∞ , then lim p(t∗)|k1=1,k2→∞ = 0 , and therefore function p globally tends to zero 
in [0,∞).

Remark 13  Since the maximum of the intermediate function p tends to zero with 
k2 → ∞ , then function p vanishes globally in [0,∞) . Moreover, the derivative of 
p also vanishes globally: p� = k1s − k2p → 0 , hence in the limit k1s → k2p with 
k2 → ∞ . This implies that system (6)–(8) can be “approximated” by the following 
reduced system:

with initial conditions s(0) = s0, q(0) = q0 = 0 , which is identical to the saturated 
first-order system (2) induced by reaction S ⟶ Q.

Special case k2 = 1, k1 > 1 . In this case we have

We thus obtain:

From expression (27) one concludes that if k2 = 1 is fixed and k1 increases k1 → ∞ , 
then lim p(t∗

p
)|k2=1,k1→∞ = s0∕e . On the other side function s tends globally to zero 

with k1 → ∞ in [�,∞) for any 𝜖 > 0 . Hence the variable s can be eliminated from 
system (6) and the latter can be reduced (approximately) to the following system:

with initial conditions p(0) = s0, q(0) = q0 = 0 , which is identical to the first-order 
system (2) induced by reaction P ⟶ Q.

Remark 14  The discussed reduction of the three-dimensional dynamical system (6) 
into a two-dimensional one can be formulated in terms of chemical reaction network 
theory, cf. [37, 38].

(26)
p(t∗

p
)|k1≠k2 = p

(
ln(k

1

k2−1

2
)

)

=
s0

k2−1

(
k

1

1−k2

2
− k

k2

1−k2

2

)
.

s� = −k1s,

q� = k1s,

t∗
p
= ln(k2∕k1)∕(k2 − k1) = ln(1∕k1)∕(1 − k1) = ln(k1)∕(k1 − 1).

(27)
p(t∗

p
)|k1≠k2 = s0

k1

k1−1
(e−k1t − e−t)|t=t∗

= s0
k1

k1−1
(e−k1 ln(k1)∕(k1−1) − e− ln(k1)∕(k1−1)).

p� = −k2p,

q� = k2p,
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4 � The epidemiological SIR model from the perspective of CRNT: 
relation to logistic and Gompertz growth‑decay mechanisms

In this section we discuss the relations between the epidemiological SIR model and 
the logistic and Gompertz growth-decay models. These relations are clearly eluci-
dated when the models are formulated in terms of chemical reaction network theory 
(CRNT).

We first briefly recall the logistic model which is a substantial ingredient part of 
the classic SIR model. We shall then consider the Gompertz model as tightly related 
to the logistic one and often used as a substitute of the logistic model when describ-
ing and simulating growth-decay evolutionary processes.

The main purpose of this section is to prepare the background for Sect. 5, where 
we replace the logistic reaction in the SIR reaction network by the Gompertzian 
reaction, obtaining thus a meaningful modification of the classic SIR model.

4.1 � The logistic and the Gompertz growth‑decay mechanisms

In the mathematical literature the logistic and Gompertz models are mostly consid-
ered as growth models, see e.g. [46], however, each of these two models consists of 
two closely related ingredients, a growth function and a decay function. This fact 
has been noticed by several authors who formulate the two models in the form of 
two-compartmental dynamical systems, such as s� = −ksx, x� = kxs for the logistic 
model, and s� = −�s, x� = ksx for the Gompertz model. Such a “recasting” of the 
logistic and the Gompertz growth models is discussed by several authors, see e.g. 
[13, 44].

We next formulate the logistic and the Gompertz models in terms of CRNT. This 
allows to show the close relation between the two models and to elucidate their 
chemical mechanisms from an unified perspective. The knowledge of the logistic 
mechanism is needed for the discussion of the SIR model; the Gompertz mechanism 
will be used when introducing a Gompertzian type SIR (G-SIR) model in Sect. 5.

The logistic growth-decay model [42] is generated by the following reaction net-
work involving species S and X [22, 23, 27]:

wherein k is a positive rate parameter. Under the assumption of mass action kinetics 
reaction network (28) induces the following dynamical system for the masses (con-
centrations, densities) s, x of species S, X, resp.:

Assuming initial conditions

initial value problem (29)–(30) implies s� + x� = 0 generating thus the conservation 
relation

(28)S + X
k

⟶ 2X,

(29)s� = −ksx, x� = kxs.

(30)s(0) = s0 > 0, x(0) = x0 > 0,
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In addition, problem (29)–(30) implies the following autonomous differential equa-
tions for the growth function x and the decay function s:

Equations (32) show that function s monotonically decreases approaching zero, 
whereas function x monotonically increases approaching the number c, known as 
(environmental) carrying capacity. Equations (32) possess explicit solutions for 
t ∈ (−∞,∞) . For instance, assuming carrying capacity c = 1 and initial conditions 
x(0) = x0 = 1∕2 , s0 = x0 = 1∕2 , we have:

Function x is referred as logistic growth, whereas function s is logistic decay.
Reaction network (28) exhibits a close relation between species S and X, math-

ematically expressed in equation (31). Roughly speaking, X consumes species S and 
grows for the expenses of S, which decays. We shall next see a rather distinct mecha-
nism in the Gompertzian growth-decay model.

4.2 � The Gompertz growth‑decay model

The Gompertz growth function [14] initially designed for insurance purposes, and 
later used more generally as a growth function [46], is usually presented as solution 
to a differential equation, having an explicite algebraic expression. In the sequel we 
shall deduce the Gompertz function starting from a reaction network using CRNT 
terminology. This will allow us to obtain the Gompertz growth function together 
with its related decay function, giving us a general view on the Gompertzian 
growth-decay process, as well as a transparent physicochemical interpretation of the 
variables and rate parameters involved. To this end consider the following reaction 
network:

wherein �, k are positive rate parameters. From reaction S + X
k

⟶ 2X + S of reac-
tion network (33) we see that X is growing species autocatalizing itself (as in the 
logistic case) and S is a second catalyst in this reaction. As a catalyst species S does 
not change, however S decays as result of reaction S

�

⟶ Q . Species Q is an external 
species for the model system and can be ignored, in which case we use the symbol ∅ 
instead of Q: S

�

⟶ ∅ . Denoting by s, x the mass-related mathematical characteris-
tics (like concentrations, masses, densities, etc.) of species S, X, resp., we formulate 
the following:

Proposition 15  Cf. [27]. Under the assumption of mass action kinetics, reaction 
network (33) induces the following dynamical system:

(31)s + x = c, c = s0 + x0 = const .

(32)x� = kx(c − x), s� = −ks(c − s), c = s0 + x0.

x = 1∕(1 + e−kt), s = e−kt∕(1 + e−kt).

(33)S
�

⟶ Q, S + X
k

⟶ 2X + S,
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Assuming initial conditions (30), initial value problem (34)–(30) induces the relation

resp., the autonomous differential equation for the Gompertz growth function x:

Under the choice c = 1 , resp. ln c = 0 , the solution to (36) can be presented as

Proof  Dynamical system (34) implies the relation:

Using initial value conditions (30) the integration of (38) yields the “conserva-
tion” relation (35), resp. the Gompertz equation (36). Let us fix c = 1 , so that 
ln c = 0 = �s + ln x , and, in particular �s0 + ln x0 = 0 , � = k∕� . Substituting c = 1 in 
differential equation (36) yields

The solution s = s(t) of IVP (34)–(30) is the exponential decay function s = s0e
−�t , 

t ∈ (−∞,∞) , hence the solution x = x(t) can be computed from relation (35) 
expressing x in terms of function s. Assuming c = 1 , so that ln x0 = −�s0 , we have 
for x = x(t) the following expression:

resp.

This proves expression (37) and the proposition. � □

Remarks 

1.	 The integration constant c in relation (35) is conveniently accepted to be c = 1 , so 
that ln c = ln 1 = 0 . Such a choice limits the range of values of ln x to the negative 
half-line (−∞, 0] (since 𝛾s = − ln x > 0 ), and hence the range of x is limited to 
the interval (0, 1]. In other words, the integration constant ln c = ln 1 = 0 , resp. 
c = 1 , limits the growth of solution x up to asymptotic value 1. So, function x 
monotonically increases from some initial value x0 < 1 approaching the “carrying 
capacity” asymptote c = 1 . In simulation studies, fixing the value of c = 1 is a 
recommended normalization procedure. After fixing the carrying capacity c = 1 
and choosing an initial value x0 , we have to calculate the value of s0 as a function 

(34)s� = −�s, x� = kxs.

(35)�s + ln x = ln c = const , ln c = �s0 + ln x0, � = k∕�,

(36)x� = �x(ln c − ln x).

(37)x = x0
e−�t .

(38)s�∕� + x�∕(kx) = 0.

x� = �x(− ln x) = �x ln
1

x
.

ln x = −�s = −�s0e
−�t,

x = e−�s = e−�s0e
−�t

= (e−�s0 )e
−�t

= (eln x0 )e
−�t

= x0
e−�t .
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of x0 according to relation (35), namely: 0 = �s0 + ln x0 , that is: s0 = − ln x0∕� . 
Such an approach allows the computations with various initial conditions x0 to 
be uniformly scaled. However, note that, differently to the logistic case, where 
s0 = 1 − x0 < 1 , now the values of s0 can be (much) larger than 1 for small values 
of x0 . Note that the physicochemical meaning of S is a catalyst, and not a (food) 
resource as in the logistic case.

2.	 In modelling and computer simulation of a particular real-world situations we 
choose first the scaling constant c (usually as c = 1 ), then the initial condition x0 
for the growth function using available empirical (experimental) data, then we 
determine s0 from the conservation relation (35), and then we fit the Gompertz 
growth curve to empirical data varying the remaining free parameters in the 
model. The relation between S and X in the logistic case is ’purely’ conservative: 
s + x = c = 1 , in contrast to the Gompertzian case, where the sum s + x is not 
constant, rather we have �s + � ln x = 0 . Respectively, in the Gompertzian case 
the variable s is proportional to ln x , and not to x as in the logistic case, showing 
the specific role of the catalyst species S. More specifically, the growing species 
X is (much) less sensitive to changes of the catalyst values s in comparison to 
the logistic case, where x detains its growing “linearly” with the exhaust of the 
resource species s: x = 1 − s.

3.	 Reaction network (33), resp., dynamical system (34) involves two rate param-
eters �, k . Without loss of generality any one of these parameters can be fixed 
to 1 leaving the other parameter free, as done by several authors, see e.g. [13], 
where � = 1 , or [44], where k = 1 . Equivalently the ratio � can be used instead 
of the two rate parameters. This explains why some basic expressions, such as 
(35), involve just the ratio � and not any of the single rate parameters �, k . The 
derivation of the Gompertz equations from relation (35), such as the expression 
(37) contributes to a physicochemical interpretation of the participating variables 
and rate parameters.

The solution x to the Gompertz equation (36), resp. function (37) is further 
referred to as Gompertz growth function (model, mechanism).

4.3 � Relation between the logistic and the Gompertz models

A detailed mathematical comparison analysis of the logistic and the Gompertz 
growth functions, as defined by their algebraic expressions, is presented already in 
the early work by Winsor [46]. The present use of a CRNT approach contributes 
to an additional comparison between the two models emphasizing both their dual 
growth-decay nature, as well as the physicochemical meaning of the variables and 
parameters of the two models. In both models species X reproduces by a doubling 
mechanism, being constrained by a species S which declines with time until vanish-
ing. However, both models adopt distinct reaction mechanisms for the time evolu-
tion of the two reacting species. Formally, the logistic dynamical system (29) differs 
from the Gompertz dynamical system (34) by the form of the differential equation 
for the decaying variable s. More specifically, equation s� = −ksx, in the logistic 
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model (29) turns to equation s� = −�s in the Gompertz model (34), so that vari-
able s becomes independent on the growth variable x (including the rate parameter 
of the latter). This is a consequence of the different roles of species S in the two 
models, namely a reactant (resource, food) in the logistic case and a catalyst in the 
Gompertzian case. The specific role of the catalyst is determined in each particu-
lar real-world natural phenomenon application of the model. For example, in cancer 
research, when modelling solid tumour growth, some authors relate the variable s 
to the functional activity of the non-proliferating cells in tumours, cf. [13, 44]. As 
another example, the suitability of the logistic and Gompertz functions to modelling 
of microbial growth is discussed in a number of articles, cf. [47].

On Fig. 6 both the decay and growth solutions to the logistic and the Gompertz 
models for same carrying capacity c = 1 and equal initial conditions x0 = 0.001 
are graphically presented. The rate parameters k = 1 are also equal, however the 
values of the rate parameter � in the Gompertz model are chosen differently: 

Fig. 6   The solutions to the logistic and the Gompertz models for same carrying capacity c = 1 , equal 
initial conditions x0 = 0.001 and equal rate parameters k = 1 for the growth function. The rate parameters 
for the Gompertzian decay function s are: � = 0.2 in (a), � = 0.9 in (b), � = 0.3 in (c) and � = 0.6 in (d)
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� = 0.2 in the left upper part (A), � = 0.6 in the right upper part (B), � = 0.3 in the 
left lower part (C), and � = 0.6 in the right lower part (D). The differences of the 
shapes of the logistic and the Gompertz solutions are apparent—the symmetry 
of the logistic solutions versus the “skewness” of the Gompertzian ones. As it is 
often underlined, cf. [46], the inflection of the Gompertzian growth curve is at 
appr. 37% of the carrying capacity whereas the inflection of the logistic growth 
curve is at 50% of the carrying capacity.

We shall next briefly discuss the classic SIR model from the perspective of 
CRNT, emphasizing the involvement of the logistic reaction in the SIR model. In 
the next Sect. 5 we shall show that the logistic reaction in the SIR model can be 
naturally replaced by the Gompertzian one and shall discuss on possible applica-
tions of the resulting model.

4.4 � The epidemiological SIR model as based on the logistic reaction mechanism

The classic Kermack–McKendrick epidemiological SIR model is usually formulated 
as a dynamical system and is discussed in a huge number of references, e.g. [11, 
17–21, 32]. Here we propose a brief presentation of the SIR model in the spirit of 
mathematical chemistry.

The classic SIR model can be formulated as a chemical reaction network in the 
following way:

where S, I, R denote three classes (compartments) of individuals (populations, spe-
cies): susceptibles S, infectives I and removed R, and k, a > 0 are rate parameters. 
More specifically, k > 0 is called the “infection” rate parameter and a > 0 is the 
“removal” rate parameter. Obviously, reaction network (39) combines two reactions: 
a logistic reaction (28) and an one-step exponential first-order growth-decay reaction 
(1).

It is supposed that the three classes of species S,  I,  R are homogeneously dis-
tributed in a certain space (area) and their densities (masses) as functions of time 
are denoted resp. s = s(t), i = i(t), r = r(t) . Assuming that reaction network (39) is 
governed by the mass action law, we obtain the familiar dynamical system for the 
variables s, i, r:

The initial value conditions associated to the SIR dynamical system (40) are of the 
form

(39)S + I
k

⟶ 2I,

I
a

⟶ R,

(40)
s� = −ksi,

i� = ksi − ai,

r� = ai.

(41)s(0) = s0 > 0; i(0) = i0 > 0; r(0) = r0 = 0.
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Adding up the reaction equations of SIR dynamical system (40) we obtain the rela-
tion s� + i� + r� = 0 , which after integration and taking into account initial condi-
tions (41) yields the conservation equation:

A visualization of an epidemic outbreak is shown on Fig. 7 parts (A), (B), (C); on 
part (D) the absence of an outbreak is presented. Note the logistic decay form of 
solution s and the wave-like form of the intermediate solution i that can be seen in 
a number of research articles on the classic SIR model, e.g. [19, 26]. We especially 
emphasize the following two features of solutions s, i: (i) an well-expressed (“logis-
tic-type”) inflection of function i between 0 and the maximum (better observed 
on Fig. 7a, and (ii) that function s tends to some strictly positive value s∞ > 0 as 
t ⟶ ∞ (better observed on Fig. 7b.

A situation when there is no epidemic outbreak is visualized on Fig. 7 (D), where 
the value of rate parameter a is sufficiently large (in this case a = 2.5).

Analogously to dynamical system (6), system (40) does possess an exact alge-
braic expressions for the solutions s, i, r, as recently shown in [16].

(42)s + i + r = s0 + i0.

Fig. 7   The solutions to the SIR model
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Remark  The SIR model (39)–(40) involves an auto-catalytic action exercised by 
species I over the one-step exponential reaction S ⟶ I , turning the latter into a 
logistic reaction of the form S + I ⟶ I + I . Such a logistic autocatalytic reaction is 
typical for models of infectious diseases that are transmitted via one-to-one contacts 
between individuals in a more or less dense population. Note the similarity with 
the reaction mechanism in the Lotka-Volterra predator-prey model [8], where the 
contacts between the pray and the predator are modelled also by means of a logistic 
reaction. In the classic SIR model the susceptibles play the role of the prey, and the 
infectives are the predators.

For an epidemic outbreak threshold of the SIR model we have:

so, if s0 > 𝜌 = a∕k , then i�|t=0 > 0 , leading to an epidemic outbreak. The epidemic 
outbreak threshold is usually expressed in terms of the reproduction number R0 , 
which in the case of the classic SIR model is given by:

Using the reproduction number (43), the threshold condition for an epidemic out-
break is expressed as Rsir

0
> 1 , which is equivalent to condition s0 > 𝜌 , cf. [6].

5 � The G‑SIR model: a SIR‑type epidemiological model 
with Gompertzian disease spread mechanism

The first reaction in the classic SIR reaction network (39), namely S + I
k

⟶ 2I , 
describes an infection dynamics of logistic type (28) which is characterized by a dis-
ease spread mechanism based on the one-to-one contacts between individuals. The 
close relation between the logistic and the Gompertz growth-decay mechanisms [27] 
suggests to examine the behaviour of a SIR-type model when the logistic reaction is 
replaced by a Gompertzian one (33). To this end we introduce the following reaction 
network:

wherein S, I, R denote the classes analogous to the respective compartments in the 
classic SIR reaction network (39). More specifically, I is the class of infective indi-
viduals and R is the class of removed ones. The class S corresponds to susceptibles 
that exercise catalytic action on the disease spread process. Class Q is an “exter-
nal” class of species, could be written as ∅ . The constants k, �, a are positive rate 
parameters.

i�|t=0 = ks0i0 − ai0 = i0(ks0 − a) = 0,

(43)Rsir
0

= (k∕a)s0 = s0∕�, � = a∕k.

(44)
S

�

⟶ Q,

S + I
k

⟶ 2I + S,

I
a

⟶ R,
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Assuming that classes S,  I,  R are homogeneously distributed in a fixed space, 
denote their densities as functions of time t, resp. s = s(t), i = i(t), r = r(t).

Proposition 16  Assuming mass action kinetics, reaction network (44) generates 
the following dynamical system for functions s, i, r:

Initial value problem (45)–(41) admits an exact solution for functions 
s = s(t), i = i(t) , namely s = s0e

−�t , and

Proof  Dynamical system (45) follows by general CRNT considerations [25]. 
The first uncoupled differential equation in dynamical system (45) s� = −�s 
has the solution s = s0e

−�t . In the second differential equation of system (45): 
i� = ksi − ai = (ks − a)i we replace s by −s�∕� to obtain:

Integrating (47) yields an equation for solutions i and s:

resp.

Relation (48) yields expression (46) for the solution i as function of t. � □

Reaction network (44), resp. dynamical system (45), will be further referred as 
Gompertz-type SIR model, briefly: G-SIR model.

5.1 � Analysis of solution i

From expression (46) we can compute the asymptote for solution i when t ⟶ ∞ . To 
this end we write solution i in the form

Using that the multiplier exp
(
�(s0 − s)

)
 is bounded, whereas exp (−at) tends to 0, 

we obtain i(∞) = 0.
The condition for an epidemic disease outbreak of the G-SIR model is i�|i=0 > 0 , 

that is ks0 − a > 0 . So, the reproduction number for the G-SIR model is given by the 
same expression (43) as the one for the SIR model, that is:

(45)
s� = −�s,

i� = ksi − ai,

r� = ai.

(46)i = i0 exp
(
�(s0 − s) − at

)
= i0 exp

(
�s0(1 − e−�t) − at

)
, � =

k

�
.

(47)i�

i
= −�s� − a, � =

k

�
.

ln i = −�s − at + c, c = �s0 + ln i0,

(48)ln
i

i0
= �(s0 − s) − at.

(49)i = i0 exp
(
�(s0 − s) − at

)
= i0 exp

(
�(s0 − s)

)
exp (−at).
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Using the reproduction number (50), the threshold condition for an epidemic out-
break can be expressed as RG−SIR

0
> 1.

To find a maximum value of function i in the case of an outbreak ( 𝜌 < s0 ), we have 
to solve for t > 0 the equation i� = (ks − a)i = 0 , that is ks − a = 0 . Let t∗

i
 be the solu-

tion to the latter equation, so that

Using the expression for s = s(t) we have s(t∗
i
) = s0e

−�t∗
i = � , which yields

hence for the time moment of the maximum of function i we obtain

(50)RG-SIR
0

= s0∕�, � = a∕k.

(51)s(t∗
i
) = a∕k = �.

−�t∗
i
= ln(�∕s0) = − ln(s0∕�),

Fig. 8   Solutions to the G-SIR model
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The value of function i at time t∗
i
 is computed by substituting expression (52) in 

equation (46). Using (51), we obtain for i∗ = i(t∗
i
) the following expression:

Assuming c = �s0 + ln i0 = 0 , we have

The above results characterizing solution i are summarized in the following:

Proposition 17  In the case of an epidemic outbreak RG−SIR
0

= s0∕𝜌 > 1, 𝜌 = a∕k , 
the maximum value of function i of the G-SIR model is attained at time moment t∗

i
 

given by (52). The value of function i at time t∗
i
 is given by expression (54).

A visualization of the solutions of the G-SIR model is shown on Fig. 8. A typical 
epidemic outbreak is graphically presented on part (A). Note the wave-like form of 
the intermediate solution i and the sigmoidal form of function r. Both solutions have 
there inflections at (much) lower positions than those for the SIR model. Note also 
the exponential decay form of solution s tending to zero. The different shapes of the 
solutions of the SIR and the G-SIR models are clearly expressed on Fig. 9a.

(52)t∗
i
= (1∕𝜈) ln(s0∕𝜌) = ln(s0∕𝜌)

(1∕𝜈), 𝜌 < s0.

(53)ln i∗ = −
k

�

a

k
− at∗

i
+ c = −

a

�
− a ln(s0∕�)

(1∕�) + �s0 + ln i0.

(54)i∗ = exp
(
−
a

�
− ln(s0∕�)

(a∕�)
)
= exp

(
−
a

�

)
(s0∕�)

(�∕a).

Fig. 9   Comparison between the SIR, G-SIR and the 2SED models
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6 � The two‑step exponential chain as an epidemiological model

Let us examine the two-step exponential chain S ⟶ I ⟶ R with respect to pos-
sible applications to modelling epidemic outbreaks. Coming back to J. D. Murray’s 
definition of a SIR epidemiological model, consider a situation when the infectives 
are not necessarily capable to transmit the disease in a one-to-one contact pattern to 
healthy susceptible individuals (possibly due to restrictions imposed). We then ask 
how to formulate a SIR three-compartmental model so that it is not necessarily sub-
ject to the logistic assumption for the disease transmission. Indeed certain diseases 
are capable to spread independently on one-to-one contacts between susceptible and 
diseased individuals. There are so-called “noncommunicable” diseases (NCD’s), 
that can be catched without contacts between healthy and diseased individuals. The 
spread of such NCD’s is facilitated by various factors, such as certain environmental 
factors, e.g. contaminated water, air pollution, socio-economic factors, etc., cf. [3, 5, 
7, 36, 39].

Recall that reaction network (39) inducing the classic SIR model (40) involves 
an (auto-)catalytic action of species I over the reaction S ⟶ I . In contrast, the two-
step reaction chain S ⟶ I ⟶ R does not presume any catalytic action.

We are going to comparatively study the two-step exponential model as based on 
a reaction network closely related to those of the SIR model. Furthermore, we shall 
examine to what extent the two-step exponential model can be applied to simulate 
epidemiological data.

6.1 � The two‑step exponential chain: epidemic outbreaks

In order to compare the two-step exponential decay (2SED) model to the classic SIR 
and the G-SIR models, we shall consider species S, P, Q as having similar mean-
ing as species S, I, R in the SIR model, resp., that is: susceptible S, diseased P, and 
removed Q classes of individuals. Further, in the initial value conditions (8) we 
shall allow for the initial value of diseased population p(0) = p0 to be positive, as 
accepted in the SIR model, cf. (41). We thus assume in the sequel:

Under initial value conditions (55) the number c > 0 from relation (7) giving the 
(constant) total population becomes:

In accordance to assumption (56), expression (10) for p becomes:

Differentiating expression (57) we obtain for the derivative of p:

(55)s(0) = s0 > 0; p(0) = p0 ≥ 0; q(0) = q0 = 0.

(56)c = s0 + p0.

(57)p(t) =

{
s0k1

k2−k1
(e−k1t − e−k2t) + p0e

−k2t, k1 ≠ k2,

s0kte
−kt + p0e

−kt, k1 = k2 = k.
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Let us check whether the two-step exponential IVP (6)–(55) is capable to simulate 
an epidemic outbreak. To this end we need to find out the sign of function p�(t) at 
t = 0.

Denote for brevity � = k2 − k1 , � = k2∕k1 , �i = �i(t) = e−kit, i = 1, 2 . Note that 
conditions � = 0 and � = 1 are equivalent. We also have �2∕�1 = e−�t.

Consider first the case: � = k2 − k1 ≠ 0 . Then, from (58) we can write equation 
p�(t) = 0 for t as:

hence

Substituting t = 0 in (59), we obtain −k1 + k2 =
p0

s0
�� , that is � =

p0

s0
�� . So, we have 

1 =
p0

s0
� , or the threshold expression:

using relation (56).
Consider now the case: � = k2 − k1 = 0, k2 = k1 = k . Then, using (58), 

we can write the equation p�(t) = 0 for t as: s0ke−kt(1 − kt) − p0ke
−kt = 0 , or 

s0(1 − kt) − p0 = 0 , that is

For t = 0 we obtain the threshold condition 1 =
p0

s0
 or p0 = s0 . Note that this result 

can be considered as a consequence of the case � ≠ 0 : 1 − p0

s0
� = 0 when � = 1 , 

which is identical to � = 0.
We summarize the two cases in the following:

Proposition 18  For the IVP (6)–(55) we have

that is, in the first and third cases � ≥
s0

p0
 there is no epidemic outbreak, whereas in 

the second case 𝜌 <
s0

p0
 there is an outbreak. The threshold condition is � =

s0

p0
.

(58)p�(t) =

{
s0k1

k2−k1
(−k1e

−k1t + k2e
−k2t) − p0k2e

−k2t, k1 ≠ k2,

s0ke
−kt(1 − kt) − p0ke

−kt, k1 = k2 = k.

s0k1

�
(−k1�1 + k2�2) − p0k2�2 = 0,

(59)−k1�1 + k2�2 =
p0

s0
���2.

� =
s0

p0
=

s0

c − s0
,

1 − kt =
p0

s0
.

p�(t)�t=0 is:

⎧⎪⎨⎪⎩

< 0, 𝜌 >
s0

p0
,

> 0, 𝜌 <
s0

p0
,

= 0, 𝜌 =
s0

p0
,

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



	 Journal of Mathematical Chemistry

1 3

Analogously to expression (43) for the SIR reproduction number, we compute:

According to expression (60) the threshold condition R2SED
0

> 1 ensues an epidemic 
outbreak.

Let us find out the time moment t∗ when the 2SED model epidemic outbreak 
attains its maximum value. To this end we have to solve the equation p�(t) = 0 with 
respect to t, whenever p0 > 0 and R2SED

0
> 1 , that is 𝜌 < s0∕p0 . Using expression 

(59) and the abbreviate notations we obtain

(60)R2SED
0

=
s0

p0

k1

k2
=

s0

p0
�−1 =

s0

c − s0
�−1.

e�t =
1

k1

(
k2 −

p0

s0
��

)
= �

(
1 −

p0

s0
�
1

k1

)
,

Fig. 10   Graphical presentation of of the solutions to the two-step exponential model (6)–(55)
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hence

So, the maximum value of solution p is attained at point t∗ given by (61).

6.2 � The 2SED model: graphical comparison with the SIR and the G‑SIR models

Figure 10 shows the solutions to the 2SED model for four different parameter sets. 
Figure 10a, b present an outbreak, whereas Fig. 10c, d show an absence of an out-
break. The solutions of the 2SED model on Fig. 10a are compared with the solutions 
of the G-SIR model on Fig. 8a by a common plot on Fig. 9b. Looking at Fig. 9b we 
clearly see the differences in the shapes of the solutions p, i, modelling the infective 
individuals resp. in the 2SED model and the G-SIR model.

Comparing the shapes of the solutions i to both SIR type models—the classic 
(logistic type) SIR and the (Gompertzian type) G-SIR model—and the solution p to 
the 2SED model, we can distinguish three types (modes) of shapes regarding out-
breaks during the initial interval [0, t∗] as follows: 

	 (i)	 a “logistic mode” (L-mode): a strongly expressed inflection at a height appr. 
50% of the carrying capacity c in the initial interval [0, t∗] , as in the classic 
SIR model;

	 (ii)	 a “Gompretzian mode” (G-mode): a mildly expressed inflection at a height 
appr. 37% of the carrying capacity c leasing to an almost linear shape, in the 
initial interval [0, t∗] , as in the G-SIR model;

	 (iii)	 an “exponential mode” (E-mode): a lack of inflection in the initial interval 
[0, t∗] ; as in the case of the 2SED model.

As we see, the G-SIR model is situated between the two extreme cases of a high 
positioned inflection point and no inflection point.

It seems remarkable that from the perspective of CRNT the G-SIR model takes 
an intermediate place between the SIR and the 2SED models with respect to disease 
spread patterns: 

	 (i)	 an explicit strongly expressed one-to-one “logistic mode” , resulting from the 
logistic reaction mechanism as in the case of the classic SIR model;

	 (ii)	 an implicit “catalytic mode” as result of the Gompertzian growth-decay mech-
anism as in the case of the G-SIR model;

	 (iii)	 the spontaneous disease transmission due to a exponential “radioactive decay” 
mechanism as in the 2SED model.

Particular epidemiological events depend both on the spread contact patterns of the 
infective agents (bacteria, viruses, transmission vectors, etc.) as well as on the social 
behaviour of the involved population (hygienic precautions, contact restrictions, 

(61)t∗ = (1∕�) ln

(
�

(
1 −

p0

s0
�
1

k1

))
.
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etc). It is to be expected that the epidemiological characteristics of a particular epi-
demic outbreak reflect on the shape of the collected measurement date of the epi-
demic event.

The parallelism between the three characteristic graph shapes and their generat-
ing reaction mechanisms suggest the following:

6.3 � Hypothesis

The shape of the measurement data series of a particular epidemic outbreak is indic-
ative for the disease spread pattern of the epidemic event and may be helpful for the 
choice of a mathematical model possessing the appropriate reaction mechanism.

Future work should be performed in order to validate or disvalidate the above 
hypothesis by testing the discussed three models on various available measurement 
data series. If necessary the presented models should be modified in order to take 
into consideration various demographic, social, environmental, etc. factors.

7 � Concluding remarks

We analyze mathematically in some detail the solutions to the two-step exponen-
tial (radioactive) decay (2SED) reaction chain involving three species and two 
rate parameters. We study the influence of the rate parameters on the shape of the 
solutions. We compare the 2SED model solutions with those to the classic Ker-
mack–McKendrick SIR model [7, 11, 17–19, 21, 26].

The chemical reaction network theory (CRNT) approach suggests that the 
2SED model turns into the classic epidemiological SIR model whenever the first 
reaction in the 2SED reaction chain is catalyzed by the intermediate (second) spe-
cies in the chain. The CRNT approach also suggests that the SIR and the 2SED 
reaction chains can be modified in order to simulate various epidemiological phe-
nomena. The present work is a step into this direction by proposing a modifica-
tion of the classic SIR model by replacing the first (logistic) SIR reaction with 
a Gompertzian growth-decay catalytic reaction. We thus obtain a variant of the 
classic logistic SIR model denoted as Gompertzian or G-SIR model.

The G-SIR model finds an intermediate place between the SIR and the 2SED 
models. Based on its characteristics we hypothesize that the G-SIR model might 
be suitable to simulate epidemic outbreaks related to diseases that are not neces-
sarily communicable according to the one-to-one contact spread pattern.

The similarities and differences between the discussed three epidemiological 
models (SIR, G-SIR and 2SED) are clearly elucidated using the CRNT approach. 
The three models are similar in that they involve three spices variables with 
roughly similar solution shapes: a monotonically decreasing (decaying) variable, 
an unimodal wave-like (in case of an outbreak) variable and a monotonically 
increasing (sigmoidally growing) solution. The differences are in the specific 
characteristics of the solution shapes. The SIR model possesses two distinctive 
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features with respect to the unimodal (outbreak) solution: (i) a strongly expressed 
highly situated inflection (before the maximum), and (ii) the decaying variable 
does not tend to zero at infinity ( s∞ > 0 ). The G-SIR model possesses modestly 
expressed first feature of the SIR model (initial inflection) and does not have the 
second feature (since s∞ = 0 ). The 2SED model does not have either of the two 
features characteristic for the SIR outbreaks. However, the CRNT approach sug-
gests that the 2SED model will be appropriate for simulation epidemiological 
phenomena with particular disease spread contact patterns, such as NCD’s.

We conclude that the 2SED model can be used to simulate epidemic outbreaks 
related to diseases caused by environmental factors, where the spread of the dis-
ease does not depend significantly on one-to-one contacts between the suscepti-
ble (healthy) and diseased individuals. Particular epidemic outbreaks of NCDs, 
induced by environmental factors, such as contaminated air/water, socio-eco-
nomic disturbances, etc., are reported in a number of research articles, cf. [1, 3, 
5, 7, 9, 33, 34, 36, 39–41, 45]. Epidemiological models implementing various 
disease transmission contact patterns are discussed in [10].

In the literature on mathematical modelling there exist a large number of math-
ematical models involving the logistic mechanism; for some of these models it is 
a challenge to be reformulated as models based on the Gompertz mechanism. The 
simplest way to perform the transition of a model with logistic mechanism into 
a model with Gompertzian mechanism, is to formulate the models in terms of 
reaction networks, cf., models (28) and (33). The the logistic-to-Gompertz transi-
tion can be also done on the level of growth-decay dynamical systems as well, 
cf. the level of systems (29) and (34). In the latter case we formally eliminate 
the growth function variable from the right-hand side of the differential reaction 
equation for the decay function. In effect, the rate of the decay function does not 
depend on the value of the growth function any more. In addition the decay func-
tion becomes a second catalyst for the autocatalytic reaction that reproduces the 
growth function. However, such a logistic-to-Gompertz transition of a model is 
not easily possible if the logistic part concerns only the growth function as is 
often the case in practice.

Growth-decay functions that are solutions to dynamical systems (possibly 
induced by reaction networks), are of considerable interest for modelling and simu-
lation of various natural growth-decay processes, cf. [2, 22–24, 27–30].
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