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Abstract: This paper is devoted to a mathematical model for phenol and p-cresol mixture degra-
dation in a continuously stirred bioreactor. The biomass specific growth rate is presented as sum
kinetics with interaction parameters (SKIP). A discrete time delay is introduced and incorporated
into the biomass growth response. These two aspects—the mutual influence of the two substrates
and the natural biological time delay in the biomass growth rate—are new in the scientific literature
concerning bioreactor (chemostat) models. The equilibrium points of the model are determined
and their local asymptotic stability as well as the occurrence of local Hopf bifurcations are studied
in dependence on the delay parameter. The existence and uniqueness of positive solutions are
established, and the global stabilizability of the model dynamics is proved for certain values of the
delay. Numerical simulations illustrate the global behavior of the model solutions as well as the
transient oscillations as a result of the Hopf bifurcation. The performed theoretical analysis and
computer simulations can be successfully used to better understand the biodegradation dynamics of
the chemical compounds in the bioreactor and to predict and control the system behavior in real life
conditions.

Keywords: wastewater; phenol and p-cresol mixture biodegradation; bioreactor model; SKIP kinetics;
discrete delay; equilibrium points; stability analysis; Hopf bifurcations; numerical simulation

1. Introduction

Wastewater treatment is essential for public health and environmental protection.
This is a specific process for removing various contaminants from wastewater. The idea
is to safely release treated water into the environment or reuse it. In this regard, practical
research related to the hydraulic efficiency of green–blue flood control scenarios for vege-
tated rivers is currently being expanded [1]. The extent to which wastewater needs to be
treated is determined by government water management standards and the specifics of the
environment [2]. The treatment process takes place in wastewater treatment plants or a
bioreactor. The main methods used for wastewater treatment are mechanical, biological,
and chemical. Biological wastewater treatment is performed under aerobic or anaerobic
conditions for biomass growth depending on the specific microorganisms used as well as
on the nature and concentrations of the contained pollutants [3,4]. The choice of a particu-
lar method depends on the type of polluted water and the nature and concentrations of
the pollutants.

The main pollutants of industrial and domestic wastewater are plant nutrients, indi-
vidual or mixtures of synthetic organic chemicals, inorganic chemicals including heavy
metals, pathogenic organisms, oil, sediments, radioactive substances, etc. [5].

Some of the most toxic and common mixtures of synthetic organic chemicals are phenol
and its derivatives including resorcinol, hydroquinone, 3-nitrophenol, 2,6-dinitrophenol,
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3-chlorophenol, p-cresol (4-methylphenol), benzene, etc. Numerous scientific studies and
practical applications have proven the potential of several microorganisms to biodegrade
mixtures of phenol and its derivatives to environmentally friendly substances [6–8]. It
has been found that very good results in the biodegradation of phenolic compounds
are achieved by the strains Arthrobacter, Aspergillus awamori, Burkholderia, Candida tropi-
calis, Pseudomonas, Rhodococcus, Trametes hirsute, Trichosporon cutaneum, just to mention
a few [9–12].

Generally speaking, the kinetics describing microbial growth and biodegradation of
phenolic components (substrates) are of great importance for studying the peculiarities of
the wastewater treatment process [13]. Kinetic models are developed on the basis of expert
knowledge and laboratory research with specific strains and particular water pollutants.
The kinetic models provide opportunities to study various characteristics of the wastewater
treatment process and support the successful and effective achievement of the prescribed
environmental criteria [14].

Specific microorganisms’ growth rates in a substrate mixture of two or more phenolic
components are known as sum kinetic models (without interaction); multiplication kinetic
models; sum kinetic models which incorporate purely competitive substrate kinetics;
sum kinetics with interaction parameters (SKIP); elimination capacity-sum kinetics with
interaction parameter (EC-SKIP); self-inhibition EC-SKIP (SIEC-SKIP), etc. [15–20].

The SKIP models are a successful extension of the sum kinetics models, because they
take into account the mutual influence of the components in the substrate mixture [21,22].
The SKIP models demonstrate excellent prediction of the biodegradation with different
microbial strains of the mixture of phenol and its derivatives: benzene, toluene, and phenol
biodegradation by Pseudomonas putida F1 [23]; ethylbenzene and styrene by R. pyridinovorans
PYJ-1 [22]; phenol and p-cresol mixture degradation by Aspergillus awamori strain [24], etc.

In [25], a mathematical model was proposed for phenol and p-cresol mixture degra-
dation in a continuously stirred tank bioreactor. The model was presented by a system of
three nonlinear ordinary differential equations as follows

dX(t)
dt

=
(

µ(Sph, Scr)− D
)

X(t)

dSph(t)
dt

= −kph µ(Sph, Scr)X(t) + D(S0
ph − Sph(t)) (1)

dScr(t)
dt

= −kcr µ(Sph, Scr)X(t) + D(S0
cr − Scr(t)),

where µ(Sph, Scr) is the biomass specific growth rate, described by the SKIP (sum kinetics
with interaction parameters) model in the form

µ(Sph, Scr) =
µmax(ph)Sph

ks(ph) + Sph +
S2

ph
ki(ph)

+ Icr/phScr

+
µmax(cr)Scr

ks(cr) + Scr +
S2

cr
ki(cr)

+ Iph/crSph

. (2)

In the analytic expression of µ(·), the interaction parameters Icr/ph and Iph/cr indicate the
degree to which the substrates p-cresol and phenol affect the biodegradation of phenol and
p-cresol, respectively. Two inhibition parameters, ki(ph) and ki(cr), are also included in the
biomass specific growth rate µ(·).

The state variables X, Sph, Scr, and the model parameters are described in Table 1. The
numerical values in the last column were validated by laboratory experiments using the
Aspergillus awamori strain and given in [24].
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Table 1. Model variables and parameters.

Definitions Values

X biomass concentration [g/dm3] –
Sph phenol concentration [g/dm3] –
Scr p-cresol concentration [g/dm3] –
D dilution rate [h−1] –
S0

ph influent phenol concentration [g/dm3] 0.7
S0

cr influent p-cresol concentration [g/dm3] 0.3
kph metabolic coefficient [Sph/X] 11.7
kcr metabolic coefficient [Scr/X] 5.8
ki(ph) inhibition constant for cell growth on phenol [g/dm3] 0.61
ki(cr) inhibition constant for cell growth on cresol [g/dm3] 0.45
Iph/cr interaction coefficient indicating the degree

to which phenol affects the p-cresol biodegradation 0.3
Icr/ph interaction coefficient indicating the degree

to which p-cresol affects the phenol biodegradation 8.6
µmax(ph) maximum specific growth rate on phenol

as a single substrate [h−1] 0.23
µmax(cr) maximum specific growth rate on p-cresol

as a single substrate [h−1] 0.17
ks(ph) saturation constant for cell growth on phenol [g/dm3] 0.11
ks(cr) saturation constant for cell growth on p-cresol [g/dm3] 0.35

In this paper, we modify model (1) by introducing a discrete time delay incorporated
into the biomass growth response

dX(t)
dt

= e−Dτµ(Sph(t− τ), Scr(t− τ))X(t− τ)− DX(t) (3)

dSph(t)
dt

= −kph µ(Sph(t), Scr(t))X(t) + D(S0
ph − Sph(t)) (4)

dScr(t)
dt

= −kcr µ(Sph(t), Scr(t))X(t) + D(S0
cr − Scr(t)). (5)

The constant τ ≥ 0 stands for the time delay in the conversion of the consumed substrate
into viable biomass. The term e−DτX(t− τ) represents the biomass of microorganisms
that consumes nutrients at time t− τ and survives in the bioreactor for τ units of time,
necessary to complete the conversion of substrate into viable biomass [26,27].

Bioreactor (chemostat) competition models involving time delay, recently, have been
widely discussed and investigated in the literature. According to [28], the conversion
process of nutrients to biomass always requires a fixed length of time and thus the corre-
sponding chemostat model should be described by a system of differential equations with
discrete delays. To our knowledge, the first attempt to introduce a discrete time delay was
in [29], where a linear bioreactor model was discussed. Other early models in this regard
can be found in [30], where the effects of time delay and growth rate inhibition in the
bacterial treatment of wastewater were discussed, as well as in [31], where the appearance
of a time delay was motivated by the existence of a lag phase in the growth response of
microorganisms in the medium. A basic and well known chemostat model incorporating
a time delay was proposed and studied in [32]. This model contained three nonlinear
ordinary differential equations, describing competition of two species on a single nutrient,
and established the validity of the Competitive Exclusion Principle (CEP). CEP means that
the species with the lowest break-even concentration can survive in the chemostat, and
it drives other species to extinction. Two-species competition was also considered in [33],
where CEP was proved as well. On the other hand, introducing a time delay explicitly into
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the model equations can help to explain the transient oscillation behavior of the bioreactor
dynamics often observed in practical experiments. Detailed investigations in this direction
can be found in [34] on a ’single biomass/single substrate’ model.

Recently, various mathematical delayed models involving different numbers of species
growing on one or more substrates and involving different kinds of specific growth rates
(monotone, such as the Monod law, or nonmonotone, such as the Haldane law, etc.) have
been discussed, see [26,27,35] and the references therein. The latter papers consider compe-
tition of n species of microorganisms on a single substrate. In [26], sufficient conditions are
presented which enhance the CEP and thus the global asymptotic stability of the model
solutions. This was calculated for general nonmonotone response (specific growth rate)
functions. The same time delayed model was modified in [27] by introducing specific
species death rates, different from the dilution rate in the chemostat. Under certain condi-
tions, it was shown that the single species survival equilibrium is globally asymptotically
stable. It was demonstrated numerically that the differential removal rates can lead to
damped oscillation in the solutions. Similar results were established for the same model
in [35]. There, the competitive exclusion was established by applying the method of Lia-
punov functionals under some technical assumptions on the biomass response functions.

In this paper, we perform mathematical analysis of the time delayed model (3)–(5).
In Section 2, we find the equilibrium points of the model and investigate their local
asymptotic stability and occurrence of Hopf bifurcations with respect to the delay τ. The
basic properties of the model solutions as well as the global stabilizability of the model
dynamics are presented in Section 3. Section 4 includes numerical examples, supporting
the theoretical results. Concluding remarks are presented in Section 5.

2. Equilibrium Points, Local Stability, and Bifurcations

In the mathematical analysis of the model (3)–(5), we assume that the influent con-
centrations S0

ph and S0
cr are constant and consider the dilution rate D and the delay τ as

varying parameters.
The equilibrium points of (3)–(5) are obtained as solutions of the following system of

transcendental equations

e−Dτµ(Sph, Scr)X− DX = 0 (6)

−kph µ(Sph, Scr)X + D(S0
ph − Sph) = 0 (7)

−kcr µ(Sph, Scr)X + D(S0
cr − Scr) = 0. (8)

Obviously, E0 = (0, S0
ph, S0

cr) (with X = 0) is an equilibrium point of the model for all
D > 0 and τ ≥ 0 and is called the boundary or washout equilibrium.

In what follows, we look for solutions of (6)–(8) such that X > 0.
Similar to [25], multiplying Equation (7) by −kcr, Equation (8) by kph, and summing

them together leads to

− kcr(S0
ph − Sph) + kph(S0

cr − Scr) = 0. (9)

Denoting

K =
kph

kcr
, S0 = S0

ph − KS0
cr, (10)

we obtain

Sph = S0
ph −

kph

kcr

(
S0

cr − Scr

)
= (S0

ph −
kph

kcr
S0

cr) +
kph

kcr
Scr = S0 + KScr. (11)

The latter expression is biologically relevant if and only if S0 ≥ 0. Using the numerical
values in the last column of Table 1, it follows that this is satisfied: S0 ≈ 0.09483.



Water 2021, 13, 3266 5 of 30

Now, we substitute Sph from (11) into the expression of µ(Sph, Scr) and obtain the
specific growth rate µ(·) as a function of Scr only. Denote for simplicity

µcr(Scr) = µ(S0 + KScr, Scr), (12)

or explicitly

µcr(Scr) =
µmax(ph)

(
S0 + KScr

)
ks(ph) + S0 + KScr +

1
ki(ph)

(S0 + KScr)2 + Icr/phScr

+
µmax(cr)Scr

ks(cr) + Scr +
1

ki(cr)
S2

cr + Iph/cr(S0 + KScr)
.

(13)

Figure 1 shows the graph of the function µcr(Scr) for Scr ≥ 0, using the numerical
values in the last column of Table 1.

Figure 1. Graph of the function µcr(Scr) for Scr ≥ 0. The vertical dot line passes through S0
cr.

From Equation (6), we learn that the steady state component with respect to Scr is the
solution of the equation

µcr(Scr) = DeDτ . (14)

If there exists a root S∗cr of the latter, such that 0 < S∗cr < S0
cr, then the equilibrium

components with respect to X and Sph are determined by the formulae

S∗ph = S0 + KS∗cr, X∗ =
S0

cr − S∗cr
kcreDτ

=
S0

ph − S∗ph

kpheDτ
(15)

Denote E∗ = (X∗, S∗ph, S∗cr). Obviously, all components of E∗ depend on the control
parameter D and on the delay τ.

The graph of µcr(Scr) suggests the following properties of the latter, which are used in
the further investigations.
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Properties of µcr(Scr)

(P1) µcr(Scr) > 0 for all Scr ≥ 0, and µcr(0) =
µmax(ph)S

0

ks(ph)+S0+ S02

ki(ph)

> 0.

(P2) There exists a point Smin
cr ∈ (0, S0

cr) such that d
dScr

µcr(Scr) < 0 if Scr ∈ [0, Smin
cr ) ∪

(S0
cr,+∞), and

d
dScr

µcr(Scr) > 0 if Scr ∈ (Smin
cr , S0

cr).

(P3) The following inequalities hold true: µcr(Smin
cr ) < µcr(S0

cr) < µcr(0).
For any D > 0 define

τmin = τmin(D) =
1
D

ln
µcr(Smin

cr )

D
,

τmax = τmax(D) =
1
D

ln
µcr(0)

D
,

τ0 = τ0(D) =
1
D

ln
µcr(S0

cr)

D
.

(16)

Obviously, τ = τ(D) is a decreasing function of D > 0. Moreover, for any D > 0, the
following inequalities are fulfilled:

τmin < τ0 < τmax.

Based on the above considerations we draw the following conclusions:

• If τ ∈ (τmin, τ0), then there exist two positive roots S(1)
cr = S(1)

cr (τ), S(2)
cr = S(2)

cr (τ) of

Equation (14) such that S(1)
cr < S(2)

cr < S0
cr , and d

dτ S(1)
cr (τ) < 0, d

dτ S(2)
cr (τ) > 0.

• If τ ∈ (τ0, τmax], then there is only one positive root S(1)
cr (τ) < S0

cr of Equation (14)

such that d
dτ S(1)

cr (τ) < 0 and S(1)
cr (τmax) = 0.

Therefore, the model (3)–(5) possesses up to two interior (with positive components)
equilibrium points depending on the values of τ and D. Denote them by

E1 = E1(D; τ) =
(

X(1), S(1)
ph , S(1)

cr

)
, τ ∈ (τmin, τmax);

E2 = E2(D; τ) =
(

X(2), S(2)
ph , S(2)

cr

)
, τ ∈ (τmin, τ0), with S(2)

cr > S(1)
cr ,

where X(i) and S(i)
ph , i = 1, 2, are determined according to (15) after replacing the ∗ with (1)

and (2), respectively.
In what follows, we study the local asymptotic stability of the model equilibrium

points. Here, we use the linearization technique for differential equations with a discrete
time delay (see [36]).

The characteristic polynomial corresponding to the Jacobian matrix J of (3)–(5) is de-
fined by det(J− λI3), where λ is any complex number, and I3 is the (3× 3)–identity matrix:

det(J − λI3) =∣∣∣∣∣∣∣∣∣∣∣

e−(λ+D)τµ(Sph, Scr)− D− λ e−(λ+D)τ ∂µ
∂Sph

X e−(λ+D)τ ∂µ
∂Scr

X

−kphµ(Sph, Scr) −kph
∂µ

∂Sph
X− D− λ −kph

∂µ
∂Scr

X

−kcrµ(Sph, Scr) −kcr
∂µ

∂Sph
X −kcr

∂µ
∂Scr

X− D− λ

∣∣∣∣∣∣∣∣∣∣∣
.
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The following presentation holds true

det(J − λI3) =

(D + λ)2
[(

D + λ + X
(

kph
∂µ

∂Sph
+ kcr

∂µ
∂Scr

))
− e−(λ+D)τµ(Sph, Scr)

]
.

(17)

Obviously, λ1,2 = −D < 0 are always solutions of det(J(Ei)− λI3) = 0, i.e., eigenvalues
of the Jacobian matrix J(Ei) evaluated at the equilibrium point Ei, i = 0, 1, 2. The third
eigenvalue λ3 of (17) is the root of the equation

λ + D + X

(
kph

∂µ

∂Sph
+ kcr

∂µ

∂Scr

)
− e−Dτµ(Sph, Scr)e−λτ = 0, (18)

the latter being evaluated at the components of Ei, i = 0, 1, 2.
Straightforward calculations show that(

kph
∂µ

∂Sph
+ kcr

∂µ

∂Scr

)∣∣∣∣∣
Sph=S0+KScr

= kcr
d

dScr
µcr(Scr)

=
µmax(ph)

A2

[
kph

(
ks(ph) −

(S0 + KScr)2

ki(ph)

)
− kcr Icr/phS0

]

+
µmax(cr)kcr

B2

[
ks(cr) −

S2
cr

ki(cr)
+ Icr/phS0

]
,

where

A = ks(ph) + S0 + KScr +
1

ki(ph)
(S0 + KScr)

2 + Icr/phScr,

B = ks(cr) + Scr +
S2

cr
ki(cr)

+ Iph/cr(S0 + KScr).

Therefore, the characteristic Equation (18) can be rewritten in the form

λ + D + Xkcrµ′cr(Scr)− e−Dτµcr(Scr)e−λτ = 0, (19)

where µ′cr(Scr) means
d

dScr
µcr(Scr).

In the next subsections, we study the local asymptotic stability and existence of Hopf
bifurcations of the equilibrium points with respect to the delay τ > 0.

2.1. The Interior Equilibrium E2

The interior equilibrium E2 = E2(τ) = (X(2), S(2)
ph , S(2)

cr ) exists for τ ∈ (τmin, τ0) and

S(2)
cr is a solution of µcr(Scr) = DeDτ ,

S(2)
ph = S0 + KS(2)

cr , X(2) =
S0

cr − S(2)
cr

kcreDτ
=

S0
ph − S(2)

ph

kpheDτ
.

Proposition 1. For the model (3)–(5), the equilibrium point E2 is locally asymptotically stable for
all τ ∈ (τmin, τ0).

Proof. The characteristic Equation (19) evaluated at E2 = (X(2), S(2)
ph , S(2)

cr ) is

λ + D + X(2)kcrµ′cr(S
(2)
cr )− e−Dτµcr(S

(2)
cr )e−λτ = 0.
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Using the fact that µcr(S
(2)
cr ) = DeDτ , we obtain

λ + D + X(2)kcrµ′cr(S
(2)
cr )− De−λτ = 0. (20)

We have in this case µ′cr(S
(2)
cr ) > 0, so that β := D + X(2)kcrµ′cr(S

(2)
cr ) > 0 holds true. Denote

γ := −D < 0. Then the characteristic Equation (20) takes the form

λ + β + γe−λτ = 0 with β + γ = X(2)kcrµ′cr(S
(2)
cr ) > 0.

Applying Theorem 1.4, Chapter 3 in [37], it is enough to show that there are no purely
imaginary roots λ = iω, ω > 0, of the latter equation. Indeed, using the presentation
e−iωτ = cos ωτ − i sin ωτ we obtain

iω + β + γ(cos ωτ − i sin ωτ) = 0.

Separating the real and the imaginary parts leads to

β = −γ cos ωτ, ω = γ sin ωτ.

Squaring both sides in the latter equations and adding them implies

γ2 = ω2 + β2 =⇒ ω2 = γ2 − β2 = (γ− β)(γ + β) < 0.

The last inequality shows that there are no pure imaginary roots of (20). This means that
the interior equilibrium E2 is locally asymptotically stable whenever it exists, i.e., m for all
τ ∈ (τmin, τ0). The proof is completed.

2.2. The Interior Equilibrium E1

The equilibrium E1 = E1(τ) = (X(1), S(1)
ph , S(1)

cr ) exists for τ ∈ (τmin, τmax) and

S(1)
cr is a solution of µcr(Scr) = DeDτ , S(1)

cr < S(2)
cr ,

S(1)
ph = S0 + KS(1)

cr , X(1) =
S0

cr − S(1)
cr

kcreDτ
=

S0
ph − S(1)

ph

kpheDτ
.

Since µcr(S
(1)
cr ) = DeDτ , the characteristic Equation (19) has the form

D + λ + X(1)kcrµ′cr(S
(1)
cr )− De−λτ = 0. (21)

Proposition 2. For the model (3)–(5), the equilibrium point E1 is locally asymptotically unstable
for all τ ∈ (τmin, τmax).

Proof. Using (21), denote

f1(λ) = D + λ + X(1)kcrµ′cr(S
(1)
cr )− De−λτ

Since f1(0) = kcrµ′cr(S
(1)
cr ) < 0 and limλ→+∞ f1(λ) = +∞, this implies that f1(λ) possesses

at least one positive real root, and therefore E1 is locally asymptotically unstable.

Below, we study conditions under which the coexistence equilibrium E1 is nonhy-
perbolic and undergoes local Hopf bifurcations with respect to the delay τ > 0. The
investigations use the same techniques as in [34]. We present them here in the notations of
our model (3)–(5) for completeness and the reader’s convenience. The proofs of the results
can be found in Appendix A.
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Denote for convenience

F(τ) = −X(1)(τ)kcrµ′cr(S
(1)
cr (τ)) = −e−Dτ S0

cr − S(1)
cr (τ)

kcr
kcrµ′cr(S

(1)
cr (τ))

= −e−Dτ(S0
cr − S(1)

cr (τ))µ′cr(S
(1)
cr (τ)).

(22)

According to Property (P2) of µcr(Scr), it follows that F(τ) > 0 for τ ∈ (τmin, τmax) holds
true. Then the characteristic Equation (21) is presented by

D + λ− F(τ)− De−λτ = 0. (23)

We are looking for solutions of (23) with respect to τ of the form λ = iω, ω > 0. For
λ = iω, ω > 0, and using the equality e−iωτ = cos ωτ − i sin ωτ, we obtain

D + iω− F(τ)− D cos ωτ + Di sin ωτ = 0.

Separating the real and the imaginary part of the latter leads to

D− F(τ)− D cos ωτ = 0 =⇒ cos ωτ =
D− F(τ)

D
= 1− F(τ)

D
,

ω + D sin ωτ = 0 ⇒ sin ωτ = −ω

D
< 0 ⇔ ωτ ∈ ((2n− 1)π, 2nπ), n = 1, 2, . . .

(24)

Further, the equalities

1 = cos2 ωτ + sin2 ωτ =
D2 − 2DF(τ) + F2(τ) + ω2

D2 = 1 +
F2(τ)− 2DF(τ) + ω2

D2

imply

ω =
√

F(τ)(2D− F(τ)) > 0 ⇐⇒ F(τ) < 2D. (25)

Then we have from (24)

cos
(

τ
√

F(τ)(2D− F(τ))
)
= 1− F(τ)

D
,

sin
(

τ
√

F(τ)(2D− F(τ))
)
= −

√
F(τ)(2D− F(τ))

D
.

(26)

We are looking for positive solutions with respect to τ of equations (26). As in [34],
we first investigate solutions of

sin ξ = − ξ

Dτ
, ξ ∈ ((2i− 1)π, 2iπ), i = 1, 2, . . . , (27)

where ξ = τ
√

F(τ)(2D− F(τ)) = τω. For any fixed i ≥ 1 there will be a unique solution

of (27) if the line η = − ξ

Dτ
is tangent to the curve η = sin ξ. Denote by ωi this unique

solution in the interval
(
(2i− 1)π, (4i− 1)π

2
)
, see Figure 2. Using the equality 1 = sin2 ωi +

cos2 ωi =
ω2

i + 1
D2τ2 and solving for τ, we obtain τ =

√
ω2

i + 1

D
. Clearly, if τ <

√
ω2

i + 1

D

then (27) has no solutions in the interval ((2i− 1)π, 2iπ), and if τ >

√
ω2

i + 1

D
then there

are exactly two solutions of (27) in the interval ((2i− 1)π, 2iπ), one less than ωi and one
larger than ωi (cf. Figure 2).
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Figure 2. Solutions of sin ξ = − ξ
Dτ . The lines are l1 : η = − ξ

Dτ1
, l2 : η = − ξ

Dτ2
, and l3 : η = − ξ

Dτ3
.

Assume that τ ≥

√
ω2

i + 1

D
for some integer i ≥ 1. Let δ2i−1 = δ2i−1(τ) be the unique

solution of sin ξ = − ξ

Dτ
for ξ ∈ ((2i− 1)π, ωi] and δ2i = δ2i(τ) be the unique solution

of sin ξ = − ξ

Dτ
for ξ ∈ [ωi, 2iπ). Then δ2i−1(τ) is strictly decreasing, δ2i(τ) is strictly

increasing, and (cf. [34])

δ2i−1


√

ω2
i + 1

D

 = δ2i


√

ω2
i + 1

D

 = ωi, (28)

lim
τ→+∞

δ2i−1(τ) = (2i− 1)π, lim
τ→+∞

δ2i(τ) = 2iπ. (29)

Differentiating, with respect to τ, the equality

sin δ2i−1(τ) = −
δ2i−1(τ)

Dτ

and using the implicit function theorem, we obtain consecutively
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cos δ2i−1(τ) δ′2i−1(τ) = −
δ′2i−1(τ) · Dτ − δ2i−1(τ) · D

(Dτ)2

(Dτ)2 cos δ2i−1(τ)δ
′
2i−1(τ) = −Dτ · δ′2i−1(τ) + δ2i−1(τ) · D

δ′2i−1(τ)
(

D2τ2 · cos δ2i−1(τ) + Dτ
)
= δ2i−1(τ) · D

δ′2i−1(τ) · τ(Dτ cos δ2i−1(τ) + 1) = δ2i−1(τ)

δ′2i−1(τ) =
δ2i−1(τ)

τ(1 + Dτ cos δ2i−1(τ))
. (30)

Similarly, one obtains

δ′2i(τ) =
δ2i(τ)

τ(1 + Dτ cos δ2i(τ))
. (31)

Since cos ξ is increasing for ξ ∈ ((2i− 1)π, 2iπ), i ≥ 1, using the relations

cos δ2i−1(τ)|
τ=

√
ω2

2i−1+1
D

= cos ω2i−1 = − 1
Dτ

∣∣∣∣
τ=

√
ω2

2i−1+1
D

= − 1√
ω2

2i−1 + 1
,

we find that cos δ2i−1(τ) < cos ω2i−1 for τ >

√
ω2

i + 1

D
. Similarly, one can show that

cos δ2i(τ) > cos ω2i for τ >

√
ω2

i + 1

D
holds true. Therefore,

δ′2i−1


√

ω2
i + 1

D

 = −∞, δ′2i


√

ω2
i + 1

D

 = +∞. (32)

Define the function

G(τ) = τ
√

F(τ)(2D− F(τ)) for τ ∈ [τmin, τmax]. (33)

Obviously, G(τ) is defined and nonnegative for all τ ∈ [τmin, τmax] if and only if F(τ) ≤ 2D
holds true. If F(τ) > 2D for some values of τ ∈ (τmin, τmax), then G(τ) is not defined on
the whole interval [τmin, τmax].

The function G(τ) plays a significant role in investigating the existence of Hopf
bifurcations of E1 (cf. [34]). However, since G(τ) = τω, it can be used to detect other types
of bifurcations of E1. Indeed,

• If there exists τ̄ ∈ (τmin, τmax) such that F(τ̄) = 2D, then G(τ̄) = 0, i.e., ω̄ = ω(τ̄) = 0.
This means that λ = 0 is eventually a root of the characteristic Equation (23), so that
the equilibrium E1 becomes nonhyperbolic at τ̄ leading to some kind of bifurcation.

• Since µ′cr(Smin
cr ) = 0 (see (16) and (22)), it follows that F(τmin) = 0, and so G(τmin) = 0.

Thus, τ = τmin can serve as another bifurcation value for the equilibrium E1.

Theorem 1. [34] Let N > 0 be the largest integer such that

√
ω2

N + 1

D
< τmax holds true. Then

the following assertions are valid:
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(i) If τ = τ∗ ∈ (τmin, τmax) is a solution of (26), then the curve η = G(τ) intersects one of
the curves η = δ2i−1(τ), η = δ2i(τ), 1 ≤ i ≤ N, at τ = τ∗.

(ii) Let η = G(τ) intersects η = δ2i−1(τ) or η = δ2i(τ) at τ = τ∗ ∈ (τmin, τmax) for some
i = 1, 2, . . . , N. Then τ = τ∗ is a solution of (26), if and only if

F(τ∗) ≥ D for j = 2i− 1,(
δj(τ

∗)− (4i−1)π
2

)
(D− F(τ∗)) ≥ 0 for j = 2i.

(34)

(iii) If the solutions of

(D− F(τ))(τF′(τ) + G(τ)G′(τ)) = 0, τ ∈ (τmin, τmax) (35)

are isolated, then (26) possesses a finite number of positive solutions.

The proof can be found in Appendix A.
Theorem 1(i) implies that if η = G(τ) and η = δj(τ), 1 ≤ j ≤ 2N, do not intersect

for τ ∈ (τmin, τmax), then, the equilibrium E1 is hyperbolic, i.e., E1 does not undergo any
bifurcation with respect to τ.

Theorem 2. [34] Let λ(τ) = R(τ) + iI(τ) be a root of the characteristic Equation (23) such that
R(τ∗) = 0, I(τ∗) = ω > 0. Then

sign
d

dτ
R(τ∗) = sign

(
τ∗F′(τ∗) + G(τ∗)G′(τ∗)

)
. (36)

The proof is given in Appendix A.

Corollary 1. [34] Let the assumptions of Theorem 1(i) be satisfied. Then the following assertions
are valid:

(i) There exists a unique integer j, 1 ≤ j ≤ 2N, j = 2i− 1, or j = 2i for some 1 ≤ i ≤ N,
such that the curves η = G(τ) and η = δj(τ) intersect at τ = τ∗.

(ii) If τ 6=

√
ω2

i + 1

D
or τ 6= (4i− 1)π

2D
, then

sign
(

d
dτ

R(τ∗)
)
=


sign

(
δ′j(τ

∗)− G′(τ∗)
)

, i f τ∗ ∈


√

ω2
i + 1

D
,
(4i− 1)π

2D


sign

(
G′(τ∗)− δ′j(τ

∗)
)

, otherwise.

(37)

The proof is presented in Appendix A.

The next theorem reports the final result on the existence of local Hopf bifurcations of
the interior equilibrium E1.

Theorem 3. [34] Let τ∗ > τmin be a solution of (26). Then the following assertions hold true:
(i) There exists a unique integer n ≥ 1 such that G(τ∗) = δn(τ∗).
(ii) If τ∗F′(τ∗) + G(τ∗)G′(τ∗) 6= 0, G′(τ∗) 6= δ′n(τ

∗) where n = 2i− 1 or n = 2i for some

integer i, 1 ≤ i ≤ N, and τ∗ 6=

√
ω2

i + 1

D
or τ∗ 6= (4i− 1)π

2D
, then the equilibrium E1 undergoes

a Hopf bifurcation at τ = τ∗. All bifurcating periodic solutions are positive and unstable and have
periods in the intervals
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(
4τ∗

2n + 1
,

2τ∗

n

)
, if n is odd; and (38)(

2τ∗

n
,

2τ∗

n− 1

)
, if n is even. (39)

The proof can be found in Appendix A.

2.3. The Washout Equilibrium E0

For E0 = (0, S0
ph, S0

cr) (with X = 0), we obtain from (19) the following characteristic
equation

D + λ− e−Dτµcr(S0
cr) e−λτ = 0. (40)

Proposition 3. For the model (3)–(5), the equilibrium point E0 is locally asymptotically stable for
τ > τ0 and locally asymptotically unstable for τ ∈ (0, τ0).

Proof. Consider the characteristic Equation (40), and define the function

f0(λ) = D + λ− e−Dτµcr(S0
cr)e
−λτ .

First, let τ > τ0, or equivalently, D > e−Dτµcr(S0
cr). We have

f0(0) = D− e−Dτµcr(S0
cr) > 0, lim

λ→−∞
f0(λ) = −∞.

This means that there is at least one negative root of the characteristic Equation (40), thus
E0 is locally asymptotically stable.

In the case when τ < τ0, i.e., when D < e−Dτµcr(S0
cr), we have

f0(0) < 0, lim
λ→+∞

f0(λ) = +∞,

so there is at least one positive root of the characteristic Equation (40), which means that E0
is locally asymptotically unstable. This completes the proof.

Although the washout equilibrium E0 is not of practical interest, in Section 3 we shall
prove that it is also globally asymptotically stable if τ > τ0. Global stability of E0 means
total washout of biomass in the reactor and breakdown of the degradation process.

In the same way as in [34], one can show existence of Hopf bifurcations of E0 = (0, S0
ph, S0

cr)

when it is locally unstable, i.e., for τ ∈ (0, τ0). In this case, due to the zero X-component,
the periodic solutions bifurcating from E0 cannot be nonnegative. Any periodic solution
surrounding E0 will involve negative and positive values, i.e., the X-component of any such
periodic solution will have a zero in the interval [t, t + τ] for certain τ > 0 and for any t ≥ 0
and will change sign there. Such kinds of periodic solutions are not biologically relevant,
and we skip the corresponding investigations. The interested reader can consult [34], as
well as [38], for more information.

3. Global Properties of the Time-Delayed Model Solutions

Consider the time-delayed model (3)–(5). Denote by R+ the set of all nonnegative real
numbers and by C+

τ the Banach space of continuous functions ϕ : [−τ, 0]→ R+. Define

C3
τ = {ϕ = (ϕX , ϕph, ϕcr) ∈ C+

τ × C+
τ × C+

τ }

and assume that the initial data for model (3)–(5) belong to C3
τ .
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According to the theory of functional differential equations (cf. [36,37,39]), for each
ϕ ∈ C3

τ there exists a unique solution

Φ(ϕ; t) = (X(ϕ; t), Sph(ϕ; t), Scr(ϕ; t))

of (3)–(5) defined on [−τ,+∞) such that Φ(ϕ; t) = ϕ(t) for each t ∈ [−τ, 0].

Denote Σ1(t) = Sph(t) − KScr(t) − S0, where K and S0 are defined by (10). After

multiplying Equation (5) by −
kph

kcr
= −K and adding it to Equation (4) we obtain

d
dt

Σ1(t) =
d
dt

(
Sph(t)− KScr(t)

)
= D

(
S0

ph − Sph(t)− KS0
cr + KScr(t)

)
= D

(
(S0

ph − KS0
cr)− (Sph(t)− KScr(t))

)
= D

(
−Sph(t) + KScr(t) + S0

)
= −DΣ1(t).

The latter equality means that Σ1(t) = e−DtΣ1(0), Σ1(0) ≥ 0, so limt→∞ Σ1(t) = 0. Then,
system (3)–(5) can be written in the form

d
dt

Σ1(t) = −DΣ1(t)

d
dt

X(t) = e−Dτµ(S0 + KScr(t− τ), Scr(t− τ))X(t− τ)− DX(t)

d
dt

Scr(t) = −kcrµ(S0 + KScr(t), Scr(t))X(t) + D(S0
cr − Scr(t)).

Since limt→∞ Σ1(t) = 0 for any τ ≥ 0, and we are interested in the asymptotic behavior of
the dynamics, we consider the limiting system

dX(t)
dt

= e−Dτµcr(Scr(t− τ))X(t− τ)− DX(t)

dScr(t)
dt

= −kcr µcr(Scr(t))X(t) + D(S0
cr − Scr(t)),

(41)

where µcr(Scr(t)) = µ(S0 + KScr(t), Scr(t)), cf. (12). The initial conditions for (41) belong
to the set

C2
τ = {ϕ = (ϕX , ϕcr) ∈ C+

τ × C+
τ , S0 + Kϕcr ≥ 0}.

Let us fix an arbitrary ϕ = (ϕX, ϕcr) ∈ C2
τ , and denote Φr(ϕ; t) = (X(ϕ; t), Scr(ϕ; t)).

If no confusion arises, we shall also use the simpler notation Φr(t) = (X(t), Scr(t)), as
well as (X(0), Scr(0)), instead of (ϕX(0), ϕcr(0)). As mentioned before, the solution Φr(t)
of (41) is defined and exists for all t ≥ 0.

Theorem 4. (i) If ϕX(θ) = 0 for all θ ∈ [−τ, 0], then X(t) = 0 for all t ≥ 0.
(ii) Let the following inequalities be fulfilled

0 < X(0) <
DS0

cr
kcrµcr(0)

. (42)

Then the solution Φr(t) = (X(t), Scr(t)) of (41) is positive for all t ∈ [−τ,+∞) and is uniformly
bounded.

Proof. (i) is obvious. The plane X = 0 is invariant for the model (41). Therefore, we shall
consider solutions X(t) with ϕX(θ) > 0 for all θ ∈ [−τ, 0].



Water 2021, 13, 3266 15 of 30

(ii) Assume that Scr(0) = 0. Then, from the second equation of (41), we have

d
dt

Scr(0) = −kcrµcr(0)X(0) + DS0
cr > 0 ⇐⇒ X(0) <

DS0
cr

kcrµcr(0)
.

This implies that Scr(t) > 0 for all t ∈ [−τ,+∞).
Further, applying the variation-of-constant formula, we obtain

X(t) = ϕX(0)e−Dt + e−Dτ
∫ t

0
e−D(t−σ)µcr(Scr(σ− τ))X(σ− τ)dσ,

which implies that X(t) > 0 for each t ∈ [−τ,+∞).

Denote
Σ2(t) = S0

cr − Scr(t)− kcreDτX(t + τ).

Then

d
dt

Σ2(t) = − d
dt

Scr(t)− kcre−Dτ d
dt

X(t + τ)

= D
(
−S0

cr + Scr(t) + kcreDτX(t + τ)
)

= −Σ2(t) for all t ≥ 0.

The latter equality implies

Scr(t) + kcreDτX(t + τ) = S0
cr + ε(ϕ, t), t ≥ 0, (43)

where ε(ϕ, t)→ 0 exponentially as t→ +∞. This means that all nonnegative solutions are
uniformly bounded and thus exist for all t ≥ 0. The proof is completed.

Remark 1. Condition (42) can be explained by the complicated expression of the SKIP model
µ(Sph, Scr), and, in particular, by the fact that µcr(0) is strongly positive (see Property (P1)).
Usually, in bioreactor models, the specific growth rate µ(·) is assumed to satisfy µ(0) = 0. In
particular, if we assume that Sph(0) = Scr(0) = 0 are simultaneously fulfilled, i.e., initially the
whole mixture of phenol and p-cresol is not available in the bioreactor, then condition (42) is not
necessary, and it can be proved as above that all model solutions are strongly positive and uniformly
bounded for all time t ≥ 0.

The equilibrium points E0, E1, and E2 of the reduced model (41) take the form

Er
0 = (0, S0

cr), Er
1 = (X(1), S(1)

cr ), Er
2 = (X(2), S(2)

cr ) with S(1)
cr < S(2)

cr .

In what follows, we prove that the interior equilibrium point Er
2 = Er

2(τ) = (X(2), S(2)
cr )

is globally asymptotically stable whenever it exists, i.e., for τ ∈ (τmin, τ0).

Lemma 1. Let (X(t), Scr(t)) be a positive solution of (41). If τ ∈ (τmin, τ0), then there exists time
T0 > 0 such that Scr(t) < S0

cr for all t ≥ T0.

Proof. Let τ ∈ (τmin, τ0). Assume that there exists time T0 > 0 such that Scr(t) ≥ S0
cr for

all t > T0. Then

d
dt

Scr(t) = −kcrµcr(Scr(t))X(t) + D(S0
cr − Scr(t)) < 0,
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thus, Scr(t) is a strictly decreasing function. Since d
dt Scr(t) is uniformly continuous in

[−τ,+∞), applying Barbălat’s Lemma [40], we obtain

0 = lim
t→∞

d
dt

Scr(t) = lim
t→∞

[
−kcrµcr(Scr(t))X(t) + D(S0

cr − Scr(t))
]
.

Since S0
cr ≤ Scr(t) and X(t) > 0, the above equality implies that Scr(t) ↓ S0

cr and X(t) ↓ 0
as t→ ∞. Define the function (cf. Lemma 2.2 in [26])

Z(t) = X(t) + e−Dτ
∫ τ

t−τ
µcr(Scr(σ))X(σ)dσ. (44)

Then

d
dt

Z(t) =
d
dt

X(t) + e−Dτ [µcr(Scr(t))X(t)− µcr(Scr(t− τ))X(t− τ)]

= e−Dτµcr(Scr(t− τ))X(t− τ)− DX(t)

+ e−Dτµcr(Scr(t))X(t)− e−Dτµcr(Scr(t− τ))X(t− τ)

= X(t)
[
−D + e−Dτµcr(Scr(t))

]
= e−DτX(t)

[
µcr(Scr(t))− DeDτ

]
. (45)

Since, in this case, DeDτ < DeDτ0 = µcr(S0
cr) < µcr(Scr(t)), we find that d

dt Z(t) > 0 for
all sufficiently large t > 0. So, there exists Z∗ > 0 such that Z(t) ↑ Z∗ as t→ ∞. However,
this is impossible according to the definition of Z(t), and because we have already shown
that X(t) ↓ 0 as t → ∞. Hence, there exists a sufficiently large time T0 > 0 such that
Scr(T0) ≤ S0

cr. Moreover, if there exists t0 ≥ T0 such that Scr(t0) = S0
cr then

d
dt

Scr(t0) = −kcrµcr(Scr(t0))X(t0) + D(S0
cr − Scr(t0)) = −kcrµcr(Scr(t0))X(t0) < 0.

The last inequality shows that Scr(t) < S0
cr for all t ≥ T0. The proof is completed.

Lemma 2. Let (X(t), Scr(t)) be a positive solution of (41) and Er
2 = (X(2), S(2)

cr ) be its interior
equilibrium point. Denote

α1 = lim inft→∞ X(t), α2 = lim supt→∞ X(t)

V(t) = e−DτScr(t) + kcrX(t + τ)

β1 = lim inft→∞ V(t), β2 = lim supt→∞ V(t).

Then α1 = α2 > 0 and β1 = β2 hold true.

Proof. Assume that α1 = 0. Choose an arbitrary

ε ∈
(

0,
S0

cr − S(2)
cr

1 + kcreDτ

)
.

According to Theorem 4 (see (43)), there exists time Tε > 0 such that for all t ≥ Tε the
following inequalities hold true

S0
cr − ε < Scr(t− τ) + kcreDτX(t) < S0

cr + ε. (46)
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Lemma 1 implies that there exists time T0 > 0 such that Scr(t) < S0
cr for all t ≥ T0.

Since α1 = 0, there exists t0 > max{Tε, T0} such that X(t) < ε for all t ≥ t0. We set
(cf. Lemma 3.5 in [26])

σ = min{X(t) : t ∈ [t0 − τ, t0]},
t̄ = sup{t ≥ t0 − τ : X(τ̃) ≥ σ for all τ̃ ∈ [t0 − τ, t]}.

Then σ ∈ (0, ε], t̄ ∈ [t0,+∞), X(t) ≥ σ for all t ∈ [t0 − τ, t̄], and

X(t̄) = σ,
d
dt

X(t̄) ≤ 0. (47)

From (46) and the choice of ε we obtain

S0
cr > Scr(t̄− τ) ≥ S0

cr − kcreDτX(t̄)− ε ≥ S0
cr − (1 + kcreDτ)ε > S(2)

cr

and further, taking into account the monotonicity of µcr (Property (P2)), it follows

d
dt

X(t̄) = e−Dτµcr(Scr(t̄− τ))X(t̄− τ)− DX(t̄)

> e−Dτµcr(S
(2)
cr )X(t̄− τ)− DX(t̄) > e−Dτ DeDτσ− Dσ = Dσ− Dσ = 0.

The last equality contradicts (47), which means that α1 > 0.
Assume now that α = α1 = α2 > 0, i.e., that the limit of X(t) exists as t→ ∞. We shall

show that β1 = β2 holds true. By Barbălat’s Lemma, we obtain that limt→∞
d
dt X(t) = 0, i.e.,

e−Dτµcr(Scr(t− τ))X(t− τ)− DX(t)→ 0 as t→ ∞.

It follows then that µcr(Scr(t)) → DeDτ as t → ∞, which means that Scr(t) → S(2)
cr as

t→ ∞ and thus

V(t) = e−DτScr(t) + kcrX(t + τ)→ e−DτS(2)
cr + kcrα as t→ ∞.

Hence, if α = α1 = α2 > 0, then β1 = β2 holds true.
Now assume that β1 = β2, i.e., the limit of V(t) exists as t→ ∞. We shall show that

α1 = α2 is fulfilled. Applying Barbălat’s Lemma yields limt→∞
d
dt V(t) = 0, i.e.,

0 = lim
t→∞

d
dt

V(t) = D
(

e−DτS0
cr −V(t)

)
,

which means that
lim
t→∞

V(t) = e−DτS0
cr.

From here, it follows that there exists the limit of X(t) as t→ ∞, i.e., α1 = α2 is satisfied.
Next, we show that the equalities α1 = α2 and β1 = β2 are simultaneously fulfilled.

Thus, we shall use some ideas from the proofs of Lemma 4.3 in [26] and Theorem 3.1 in [27].
Let ε > 0 be an arbitrary fixed number. The Fluctuation Lemma [41] implies that there

exists a sequence {tm}∞
m=1 → ∞ such that for each m we have

lim
m→∞

X(tm) = α2,
d
dt

X(tm) = 0 and X(tm − τ) ≤ α2 + ε.
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The equality d
dt X(tm) = 0 leads to

e−Dτµcr(Scr(tm − τ)) = e−Dτµcr

(
V(tm − τ)− kcrX(tm)

e−Dτ

)
=

DX(tm)

X(tm − τ)
≥ Dα2

α2 + ε
;

=⇒ lim infm→∞ e−Dτµcr

(
V(tm − τ)− kcrX(tm)

e−Dτ

)
≥ Dα2

α2 + ε
.

Since ε > 0 can be arbitrarily small, it follows that

lim inf
m→∞

e−Dτµcr

(
V(tm − τ)− kcrX(tm)

e−Dτ

)
≥ D.

The latter inequality yields

lim inf
m→∞

V(tm − τ)− kcrX(tm)

e−Dτ
∈ [S(2)

cr , S0
cr),

and hence
β2 ≥ e−DτS(2)

cr + kcrα2. (48)

Similarly, one can show that β1 ≤ e−DτS(2)
cr + kcrα1. This and (48) lead to

β2 − β1 ≥ kcr(α2 − α1) ≥ 0. (49)

Applying the Fluctuation Lemma again, there exists a sequence {tk}∞
k=1 → ∞ such

that for each k we have

lim
k→∞

V(tk) = β2 and
d
dt

V(tk) = 0.

Then
0 =

d
dt

V(tk) = D
(

e−DτS0
cr −V(tk)

)
,

and therefore
V(tk) = e−DτS0

cr ≥ β2.

In the same way one can show that

e−DτS0
cr ≤ β1.

Hence, β2 − β1 ≤ 0 holds true. This and (49) lead to β1 = β2. Using (49) again, we find
that α1 = α2 is valid. The proof is completed.

Theorem 5. Let τ ∈ (τmin, τ0) and ϕ ∈ C2
τ be an arbitrary element with ϕ(0) > 0 such that

(42) is fulfilled. Then, the corresponding positive solution Φr(t) = (X(t), Scr(t)) converges
asymptotically towards Er

2 = (X(2), S(2)
cr ).

Proof. Lemmas 1 and 2 imply that the solution Φr(t) is convergent as t → ∞. Let
limt→∞ X(t) = X∗, limt→∞ Scr(t) = S∗cr. Applying Barbălat’s Lemma, we obtain

0 = lim
t→∞

d
dt

X(t) = lim
t→∞

[
e−Dτµcr(Scr(t− τ))X(t− τ)− DX(t)

]
0 = lim

t→∞

d
dt

Scr(t) = lim
t→∞

[
−kcrµcr(Scr(t))X(t) + D(S0

cr − Scr(t))
]
,
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and hence

0 = e−Dτµcr(S∗cr)X∗ − DX∗

0 = −kcrµcr(S∗cr)X∗ + D(S0
cr − S∗cr).

From here, it follows that (X∗, S∗cr) = (X(2), S(2)
cr ) = Er

2, because Er
2 is the locally asymp-

totically stable equilibrium for τ ∈ (τmin, τ0) according to Proposition 1. The proof is
completed.

The next Theorem 6 proves that the locally asymptotically stable washout equilibrium
E0 is also globally asymptotically stable. The proof uses similar ideas to Theorem 2.3 of [26].

Theorem 6. Let τ > τ0 and ϕ ∈ C2
τ be an arbitrary element such that (42) is fulfilled. Then the

corresponding positive solution Φr(t) = (X(t), Scr(t)) of (41) converges asymptotically towards
Er

0 = (0, S0
cr).

Proof. Let τ > τ0. According to the definition of τ0, this means that DeDτ > µcr(S0
cr).

Suppose that Scr(t) < S0
cr for all sufficiently large t. Then using the function Z(t)

in (44) we obtain from (45)

d
dt

Z(t) = e−DτX(t)
[
µcr(Scr(t))− DeDτ

]
≤ e−DτX(t)

[
µcr(S0

cr)− DeDτ
]
≤ 0.

The last inequality follows from the fact that µcr(Scr) is an increasing function for Scr ≤ S0
cr.

Therefore, Z(t) ↓ Z̄ as t → ∞ for some Z̄ ≥ 0. Since Z(t) is bounded and uniformly
continuous, it follows by Barbălat’s Lemma [40] that d

dt Z(t)→ 0 as t→ ∞, i.e.,

lim
t→∞

X(t)
[
µcr(Scr(t))− DeDτ

]
= 0.

Assume that there is a sequence {tm} → ∞ such that limm→∞ X(tm) = X̄ > 0. Then
limm→∞ µcr(Scr(tm)) = DeDτ > µcr(S0

cr), which implies that Scr(tm) ≥ S0
cr, a contradiction.

Therefore, Scr(t) ≥ S0
cr for all sufficiently large t.

Assume that Scr(t) > S0
cr for all sufficiently large t > 0. Then it follows from the

second equation of (41) that d
dt Scr(t) < 0 for all large t, which implies that Scr(t) ↓ S̄cr for

some S̄cr ≥ S0
cr. If S̄cr > S0

cr, then

d
dt

Z(t) = e−DτX(t)
[
µcr(Scr(t))− DeDτ

]
< e−DτX(t)

[
µcr(Scr(t))− µcr(S0

cr)
]
≤ 0

because µcr(Scr) is decreasing for Scr > S0
cr. Therefore, Z(t) ↓ Z̄ as t→ ∞ for some Z̄ ≥ 0.

Barbălat’s Lemma then implies that d
dt Z(t) → 0 as t → ∞, which means that X(t) → 0

leading to Scr(t)→ S0
cr as t→ ∞. If S̄cr = S0

cr, then obviously limt→∞ X(t) = 0. Therefore,
Er

0 is globally asymptotically stable for the model (41). The proof is completed.

4. Numerical Simulation

Here, we illustrate the theoretical results from the previous sections on three numerical
examples for different values of the parameters D and τ. We use the numerical values of
the model parameters in Table 1.

We notice that τmin ≥ 0 if D ≤ µcr(Smin
cr ) ≈ 0.07455989538 is fulfilled.

The next computer simulations illustrate the occurrence of Hopf bifurcations of
the interior equilibrium E1, investigated in Section 2.2. First we have to determine
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the tangent point ωi of sin ξ and the line η = − ξ

Dτ
, which coincides with the unique

solution of cos ξ = − 1
Dτ

, i.e., with the unique solution of tan ξ = ξ in the interval(
(2i− 1)π, (4i− 1)π

2
)

for some i ≥ 1 (cf. [34]). We obtain the following values

ω1 = 4.493409458 ∈
(

π,
3π

2

)
, ω2 = 10.90412166 ∈

(
3π,

7π

2

)
.

Example 1. D = 0.0005

For this value of D we obtain

τmin = 10, 009.49990, τ0 = 10, 306.76779, τmax = 10, 583.24050,

τb :=

√
ω2

1 + 1

D
= 9206.677698,

thus, τmin > τb holds true. According to Theorem 1, we have N = 1, thus, there are
two solutions δ1(τ) and δ2(τ), and the equilibrium E1 undergoes Hopf bifurcations at the
following four values of τ:

τ∗1 = 10, 022.86, τ∗2 = 10, 050.78, τ∗3 = 10, 084.7, τ∗4 = 10, 113.52.

Figure 3 visualizes the curve G(τ) and the solutions δ1(τ) and δ2(τ) as well as the
above intersection points.

Figure 3. Graph of the function G(τ) and of the solutions δi(τ), i = 1, 2.
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We take τ = τ∗1 = 10022.86. At this value of the delay, the two interior steady states are

E1 = E1(τ
∗
1 ) = (0.0003071390889, 0.1605423590, 0.03257655402),

E2 = E2(τ
∗
1 ) = (0.0002781194773, 0.2115122674, 0.05784368812).

According to Proposition 2, E1 is locally asymptotically unstable for all τ ∈ (τmin, τmax).
Theorem 5 implies that the equilibrium E2 is globally asymptotically stable for τ ∈ (τmin, τ0).

Figures 4 and 5 show the time evolution of the solutions of the model (3)–(5). Although
the initial conditions (X(0), Sph(0), Scr(0)) = (0.0003, 0.16054, 0.03257) are chosen near to
E1, the solutions tend to the globally asymptotically stable equilibrium E2. Transient
oscillations in the time evolution of the phase X(t), Sph(t) and Scr(t) are observed in the
right plot of Figure 4 and in Figure 5.
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Figure 4. Example 1. Left plot: solutions (X(t), Sph(t), Scr(t)) of (3)–(5). Right plot: transient oscillations of the phase
variable X(t).
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Figure 5. Example 1. Transient oscillations of the phase variables Sph(t) (left) and Scr(t) (right).

The next two examples demonstrate the global stability of the equilibrium points E2
and E0 with respect to D and τ.

Example 2. D = 0.05
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For this value of D we obtain

τmin = 7.991595294, τ0 = 10.96427421, τmax = 13.72900131.

We choose and fix τ = 9 ∈ (τmin, τ0). Then, there exist the two interior equilibria

E1 = (0.03095223849, 0.1320495584, 0.01845191786),
E2 = (0.02226233088, 0.2915028678, 0.09749714815).

Proposition 2 implies that E1 is locally asymptotically unstable, and E2 is the global attractor
for the model (3)–(5) according to Theorem 5.

According to Theorem 4(ii) the inequality

X(0) <
DS0

cr
kcrµcr(0)

≈ 0.02603585149

should be fulfilled to ensure existence of positive model solutions. The right plot in Figure 6
visualizes the time evolution of (X(t), Sph(t), Scr(t)) towards the globally asymptotically
stable equilibrium E2. As expected, no oscillations are observed in the time evolution of
each one of the variables X(t) (right plot in Figure 6), as well as of Sph(t) and Scr(t) even
for the short time t ∈ [0, 200], Figure 7.
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Figure 6. Example 2. Global stability of the equilibrium point E2 (left). Time evolution of the phase variable X(t) for
t ∈ [0, 200] (right).
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Figure 7. Example 2. Time evolution of the phase variables Sph(t) (left) and Scr(t) for t ∈ [0, 200] (right).
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Example 3. D = 0.06

Here we have

τmin = 3.620970124, τ0 = 6.098202568, τmax = 8.402141813.

Taking τ = 7 > τ0 we obtain

E0 = (0, 0.7, 0.3) (with X = 0),
E1 = (0.03354087904, 0.1027392369, 0.003922014857).
E2 does not exist.

In this case, E0 is the global attractor of the model (Theorem 6), and E1 is locally asymptoti-
cally unstable (Proposition 2).

According to Theorem 4 (ii), the inequality

X(0) <
DS0

cr
kcrµcr(0)

≈ 0.03124302179.

has to be satisfied so that the model (3)–(5) possesses positive solutions. The left plot in
Figure 8 illustrates the global stability of the washout equilibrium E0. The right plot of
Figures 8 and 9 show the evolution of each phase variable X(t), Sph(t), Scr(t) for a shorter
time t ∈ [0, 200]. Again, no transient oscillations can be seen in these plots.
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Figure 8. Example 3. Global stability of the equilibrium point E0 (left). Time evolution of X(t) for t ∈ [0, 200] (right).
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Water 2021, 13, 3266 24 of 30

5. Conclusions and Future Work

We considered a time-delayed model, describing a phenol and 4-methylphenol (p-
cresol) mixture biodegradation in a continuously stirred tank bioreactor with a SKIP
specific growth rate. It was based on a previously proposed and studied dynamical model,
presented in [25]. The discrete time delay τ > 0 was introduced in the microorganisms’
growth response to indicate the delay in the conversion of the consumed nutrient into
viable biomass.

We presented the mathematical analysis of the proposed time-delayed model. First, in
Section 2, the equilibrium points were determined, and their local asymptotic stability was
investigated in dependence on the delay τ (and on the dilution rate D). Three equilibrium
points were found, namely a boundary (washout) equilibrium E0 = (0, S0

ph, S0
cr) with X = 0

and two interior (coexistence) equilibria E1 = (X(1), S(1)
ph , S(1)

cr ) and E2 = (X(2), S(2)
ph , S(2)

cr )

with S(1)
cr < S(2)

cr . For any fixed D > 0, values of τ were determined, 0 < τmin < τ0 < τmax,
and it was shown that

• E2 exists and is locally asymptotically stable for τ ∈ (τmin, τ0) (Proposition 1);
• E1 exists and is locally asymptotically unstable for τ ∈ (τmin, τmax) (Proposition 2);
• E0 exists for all τ > 0 and is locally asymptotically stable (unstable) if τ > τ0 (τ < τ0)

(Proposition 3).

Then, we showed that the locally unstable equilibrium E1 underwent local Hopf
bifurcations at certain critical values of the delay parameter τ ∈ (τmin, τmax) (Theorems 1–3).
To prove this, we exploited a known approach presented in [34]. The occurrence of some
transient oscillations as a result of the Hopf bifurcations was demonstrated by Example 1
in Section 4, see Figures 4 and 5. In this example, the delay τ was chosen to be at one of the
four existing bifurcating values, namely τ = τ∗1 = 10, 022.86 h, which is approximately 418
days. According to Theorem 3, the period of the bifurcating solutions lies in the interval(

4τ∗1
3 , 2τ∗1

)
≈ (13, 363.8, 20, 045.7) h, which corresponds to an interval of approximately

(557, 835) days, with a width of 318 days. Practically, this oscillating behavior is difficult
to observe, not only because the periodic solutions are unstable but also due to the rather
large bifurcating periods, especially in realtime laboratory experiments.

Finally, in Section 3, we established the existence and uniqueness of positive model
solutions in Theorem 4. We reduced the 3-dimensional model (3)–(5) into a limiting
2-dimensional dynamical system (41). Although the reduced model was very similar to
well known bioreactor models, the main difference was in the specific properties of the
SKIP function µ(Sph, Scr) and, in particular, of µcr(Scr). We proved in Theorem 5 the global
asymptotic stability of the coexistence equilibrium point E2 with respect to τ whenever
it exists, i.e., for τ ∈ (τmin, τ0). However, if τ > τ0, then the washout equilibrium E0 is
globally asymptotically stable (Theorem 6). These results mean practically either long-
term sustainability of the biodegradation process when E2 is the global attractor or process
breakdown due to total washout of the biomass in the reactor when E0 is the global attractor.
Numerical examples in Section 4 (Examples 2 and 3) confirmed the latter theoretical results.

The time delayed model (3)–(5), investigated in this paper, shows many similarities in
its dynamic properties in comparison with the previously studied [25] model (1) without a
time delay. These are, for example, the global attractivity of the two equilibrium points
E2 and E0. The main difference is the existence of Hopf bifurcations around the unstable
equilibria at certain critical values of τ, which serve as sources of transient oscillations in
practical experiments.

As mentioned before, the model parameters in Table 1 were obtained from laboratory
experiments for phenol and p-cresol mixture degradation. New experimental work is
planned in the future to eventually account for the time delay in the biomass growth
response and the model will be validated by the new data.

The proposed model (3)–(5) could be successfully used on a bioreactor scale-up, and
this is also planned in the future. It is very likely to change the values of the model
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parameters, which will lead to adaptation of the investigations and to new conclusions.
However, the following theoretical results are independent of the particular parameter
values: (i) existence of a washout steady state E0 and of at least one interior (coexistence)
equilibrium E2; and (ii) the inversely proportional relationship between the dilution rate D
and the time delay τ. Generally speaking, this means that relatively large values of D and
small values of τ may cause biomass washout, due to the global stability of E0, and thus to
process breakdown in the bioreactor. On the contrary, smaller values of D and larger values
of τ lead to a stable process and biodegradation sustainability due to the global attractivity
of E2. Since D is the controllable input in the bioreactor, these results can be very useful
for the experimenter in order to obtain answers long before the physical prototype of the
actual system is built and tested.

A next step in future investigations will be to treat more complex chemical com-
pounds involving more than two substrates. The challenging element will be the design
of the biomass specific growth rate as a SKIP-type model. This could be performed in
dependence on experimental results showing the activity and the mutual interaction of the
involved substances.
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Appendix A

Proof of Theorem 1. (i) Let τ = τ∗ ∈ (τmin, τmax) be a solution of Equation (26). Then

cos G(τ∗) = 1− F(τ∗)
D

, sin G(τ∗) = −G(τ∗)

Dτ∗
. (A1)

Therefore, G(τ∗) = δj(τ
∗) holds true for j = 2i− 1 or j = 2i for some integer i ≥ 1. Since

δj(τ) is defined for τ ∈
[√

ω2
i + 1/D,+∞

)
and τ∗ < τmax, it follows that j ≤ 2N is valid

(cf. Figure 3).
(ii) Let η = G(τ) and η = δj(τ), 1 ≤ j ≤ 2N, intersect at τ = τ∗ ∈ (τmin, τmax). Then

sin G(τ∗) = −G(τ∗)

Dτ∗
, which means that τ∗ > 0 satisfies the second equation in (26).

If j = 2i − 1, then δj(τ
∗) ∈ ((2i − 1)π, ωi], i.e., G(τ∗) ∈ ((2i − 1)π, ωi],

sin G(τ∗) = −G(τ∗)

Dτ∗
, hence cos G(τ∗) < 0, which means that F(τ∗) > D. We have

in this case
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cos G(τ∗) = −
√

1− sin2 G(τ∗) = −
√

1− G2(τ∗)/(Dτ∗)2

= −

√
1− τ∗2F(τ∗)(2D− F(τ∗))

D2τ∗2

= − 1
D

√
D2 − F(τ∗)(2D− F(τ∗)) = − 1

D

√
(D− F(τ∗))2

= − F(τ∗)− D
D

= 1− F(τ∗)
D

.

Thus, τ∗ satisfies the first equation in (26) too, and this means that τ∗ is a positive solution
of (26).

If j = 2i, then

either
{

F(τ∗) > D and δj(τ
∗) ∈ [ωi, (4i− 1)π/2)

}
or
{

F(τ∗) < D and δj(τ
∗) ∈ ((4i− 1)π/2, 2iπ)

}
.

In the first case cos G(τ∗) < 0 and the proof is the same as above. In the second case we
have cos G(τ∗) > 0 and thus,

cos G(τ∗) =
√

1− sin2 G(τ∗) =
√

1− G2(τ∗)/(Dτ∗)2

=
1

Dτ∗

√
D2τ∗2 − τ∗2F(τ∗)(2D− F(τ∗)) =

1
D

√
(D− F(τ∗))2

=
D− F(τ∗)

D
= 1− F(τ∗)

D
.

If conditions (34) do not hold, then τ∗ is not a solution because the sign in the first
equation of (26) is violated. This proves (ii).

(iii) Assume that η = G(τ) and η = δj(τ) intersect at τ = τ∗ ∈ (τmin, τmax), with
j = 2i− 1 or j = 2i for some integer 1 ≤ i ≤ N. Since G(τ∗) > 0 then F(τ∗) < 2D holds

true. Without loss of generality let us assume that τ∗ 6=

√
ω2

i + 1

D
. Then δ′j(τ

∗) exists

according to (30) and (31). Using the equality G(τ∗) = δj(τ
∗) it follows from the first

equation of (A1) and the monotonicity of δj(τ) that

δ′j(τ
∗) =

δj(τ
∗)

τ∗(1 + Dτ∗ cos(δj(τ∗)))
=

δj(τ
∗)

τ∗

1 + Dτ∗
(

1− F(τ∗)
D

)
=

√
F(τ∗)(2D− F(τ∗))

1 + (D− F(τ∗))τ∗
=

(−1)j
√

F(τ∗)(2D− F(τ∗))
|1 + (D− F(τ∗))τ∗| .

Therefore,

G′(τ∗)− δ′j(τ
∗)

=
√

F(τ)(2D− F(τ))
(

1 +
τ(D− F(τ))F′(τ)
F(τ)(2D− F(τ))

− 1
1 + (D− F(τ))τ

)∣∣∣∣
τ=τ∗

=
√

F(τ)(2D− F(τ))
(

τ(D− F(τ))F′(τ)
F(τ)(2D− F(τ))

+
(D− F(τ))τ

1 + (D− F(τ))τ

)∣∣∣∣
τ=τ∗

=
(D− F(τ))(τF′(τ) + G(τ)G′(τ))

(1 + (D− F(τ))τ)
√

F(τ)(2D− F(τ))

∣∣∣∣∣
τ=τ∗

=
(−1)j(D− F(τ))(τF′(τ) + G(τ)G′(τ))
|1 + (D− F(τ))τ|

√
F(τ)(2D− F(τ))

∣∣∣∣∣
τ=τ∗

. (A2)
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If the roots of the nominator, i.e., the solutions of (35) at τ = τ∗ are isolated, then there
exists at most finite number of points at which the graphs of η = G(τ) and η = δj(τ) are
tangent. This means that η = G(τ) and η = δj(τ), 1 ≤ j ≤ 2N, intersect at a finite number
of points, and then (iii) follows from (i). The proof is completed.

Proof of Theorem 2. Since λ = λ(τ) is a real root of Equation (23), by differentiating the
latter with respect to τ we obtain consecutively

λ′(τ)− F′(τ)− De−λτ(−λ′(τ)τ − λ(τ)) = 0,

λ′(τ)
(

1 + τDe−λ(τ)τ
)
+ De−λ(τ)τλ(τ)− F′(τ) = 0,

λ′(τ) =
F′(τ)− λ(τ)De−τλ(τ)

1 + τDe−τλ(τ)
.

We have from (23) that De−τλ(τ) = λ(τ) + D− F(τ), and therefore

λ′(τ∗) =
F′(τ)− λ(τ)(λ(τ) + D− F(τ))

1 + τ(λ(τ) + D− F(τ))

∣∣∣∣
τ=τ∗

=
F′(τ∗)−ωi(ωi + D− F(τ∗))

1 + τ∗(ωi + D− F(τ∗))
· D− F(τ∗)−ωi

D− F(τ∗)−ωi

=
F′(τ∗)(D− F(τ∗)−ωi)−ωi(ω2 + (D− F(τ∗))2)

(D− F(τ∗)−ωi) + τ∗(ω2 + (D− F(τ∗))2)
.

Using the presentations cos ωτ =
D− F(τ)

D
and sin ωτ = −ω

D
as well as the identity

1 = cos2 ωτ + sin2 ωτ, we obtain ω2 + (D− F(τ∗))2 = D2, so that

λ′(τ∗) =
F′(τ∗)(D− F(τ∗)−ωi)− D2ωi

D− F(τ∗)−ωi + D2τ∗
.

Further,

d
dτ

R(τ∗) = Re(λ′(τ∗)) = Re
(

F′(τ∗)(D− F(τ∗)−ωi)− D2ωi
D− F(τ∗)−ωi + D2τ∗

)
.

Denoting for simplicity
C(τ∗) = D2τ∗ + D− F(τ∗),

we obtain

d
dτ

R(τ∗) = Re
(

F′(τ∗)(D− F(τ∗))− (F′(τ∗) + D2)ωi
C(τ∗)−ωi

· C(τ∗) + ωi
C(τ∗) + ωi

)
=

F′(τ∗)(D− F(τ∗))C(τ∗) + ω2(F′(τ∗) + D2)

C2(τ∗) + ω2

=
F′(τ∗)(D− F(τ∗))(D2τ∗ + D− F(τ∗)) + ω2(F′(τ∗) + D2)

C2(τ∗) + ω2

=
F′(τ∗)

(
(D− F(τ∗))2 + ω2 + (D− F(τ∗)D2τ∗)

)
+ ω2D2

C2(τ∗) + ω2

=
D2[F′(τ∗)(1 + (D− F(τ∗))τ∗) + ω2]

C2(τ∗) + ω2 . (A3)

It follows from (25) that
ω2 = F(τ∗)(2D− F(τ∗)).
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Using (33) we obtain further

G′(τ∗)G(τ∗)

=

(√
F(τ∗)(2D− F(τ∗)) + τ∗

F′(τ∗)(2D− F(τ∗))− F(τ∗)F′(τ∗)
2
√

F(τ∗)(2D− F(τ∗))

)
× τ∗

√
F(τ∗)(2D− F(τ∗))

= τ∗F(τ∗)(2D− F(τ∗)) +
τ∗2

2
[
F′(τ∗)(2D− F(τ∗))− F(τ∗)F′(τ∗)

]
= τ∗F(τ∗)(2D− F(τ∗)) + τ∗2F′(τ∗)(D− F(τ∗))

= τ∗
[
F′(τ∗)(D− F(τ∗))τ∗ + F(τ∗)(2D− F(τ∗))

]
= τ∗

[
F′(τ∗)(D− F(τ∗))τ∗ + ω2

]
.

Substituting the latter expression into (A3) yields

d
dτ

R(τ∗) =
D2

C2(τ∗) + ω2

[
F′(τ∗) + F′(τ∗)(D− F(τ∗))τ∗ + ω2

]
=

D2

C2(τ∗) + ω2

[
F′(τ∗) +

G(τ∗)G′(τ∗)
τ∗

]
=

D2(τ∗F′(τ∗) + G(τ∗)G′(τ∗))
τ∗(C2(τ∗) + ω2)

, (A4)

thus (36) is fulfilled. The proof is completed.

Proof of Corollary 1. The first part (i) follows directly from Theorem 1(i).
(ii) Using (A2) and (36) we obtain

sign
(

d
dτ

R(τ∗)
)
= sign

(
(−1)j(D− F(τ∗))(G′(τ∗)− δ′j(τ

∗))
)

. (A5)

If j = 2i− 1, then τ∗ <

√
ω2

i + 1

D
and by Theorem 1(ii) it follows that D− F(τ∗) ≤ 0.

However, D 6= F(τ∗) since otherwise cos δj(τ
∗) = 0 which leads to δj(τ

∗) = (4i−1)π
2 , and

by (27) it follows that τ∗ = (4i−1)π
2D . Therefore, D− F(τ∗) < 0 and (−1)j(D− F(τ∗)) > 0

are fulfilled, thus

sign
(

d
dτ

R(τ∗)
)
= sign

(
G′(τ∗)− δ′j(τ

∗)
)

. (A6)

If j = 2i and τ∗ > (4i−1)π
2D then δj(τ

∗) > (4i−1)π
2 holds true. Theorem 1(ii) implies

D− F(τ∗) > 0 and so (−1)j(D− F(τ∗)) > 0, which means that (A5) is satisfied. Anal-

ogously, if τ∗ ∈
(√

ω2
i +1

D , (4i−1)π
2D

)
then j is even and δj(τ

∗) ∈
(

ωi,
(4i−1)π

2

)
. Apply-

ing Theorem 1(ii) yields (−1)j(D − F(τ∗)) < 0, thus (37) follows from (A5). The proof
is completed.

Proof of Theorem 3. (i) follows directly from Theorem 1.
(ii) The existence of Hopf bifurcations of E1 follows from Theorem 2, Corollary 1

and the local Hopf bifurcation theorem for delay differential equations (cf. [36]). Since the
equilibrium E1 is locally asymptotically unstable for τ ∈ (τmin, τmax) (see Proposition 2),
any branching periodic solution of E1 is unstable. Let λ = iω∗, ω∗ > 0, be a pure imaginary
root of (23) at τ = τ∗. Then it follows from (25) and (33) that ω∗ = G(τ∗)

τ∗ . If n is odd, i.e.,



Water 2021, 13, 3266 29 of 30

n = 2i − 1 for some integer i ≥ 1, then it follows from the proof of Theorem 1(ii) that
G(τ∗) = δn(τ∗) = τ∗ω∗ ∈ (nπ, ωi], and ωi <

(2n+1)π
2 . So we obtain

nπ < G(τ∗) ≤ ωi <
(2n + 1)π

2
,

4τ∗

2n + 1
=

4πτ∗

(2n + 1)π
<

2π

ω∗
=

2πτ∗

G(τ∗)
<

2πτ∗

nπ
=

2τ∗

n
.

The above inequalities imply that (38) is fulfilled.
The case when n is even can be shown in a similar way. The proof is completed.
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