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Abstract. Several equivalent descriptions are given of the class of pri-
mary abelian groups whose separable subgroups are all direct sums of
cyclic groups; such groups are called ω-totally Σ-cyclic. This establishes
the converse of a theorem due to Megibben. For n < ω, this is generalized
to a consideration of the class of primary abelian groups whose pω+n-
bounded subgroups are all pω+n-projective. The question of whether
there are such groups that are proper in the sense that they are neither
pω+n-projective nor ω-totally Σ-cyclic is shown to be logically equiva-
lent to a natural question about the structure of valuated vector spaces.
Finally, it is shown that both of these statements are independent of
ZFC.
Mathematics Subject Classification (2010). Primary 20K10.
Keywords. Primary abelian group, direct sums of cyclic groups, dsc-
groups, pω+n-projectives, valuated vector space.

1. Introduction and Terminology

By the term “group” we will mean an abelian p-group, where p is a prime fixed
for the duration. Our group theoretic terminology and notation will generally
follow that found in [7]. In particular, pωG denotes the first Ulm subgroup of
a group G consisting of all elements of infinite height, and pω+nG = pn(pωG).
The cyclic group of order pk will be denoted by Zpk and the infinite cocyclic
group will be denoted by Zp∞ . We will say a group G is Σ-cyclic if it is
isomorphic to a direct sum of cyclic groups. A group G is a dsc-group if
it is isomorphic to a direct sum of countable groups. In particular, we are
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not assuming that our dsc-groups are necessarily reduced; in fact, they are
a direct sum of a divisible group and a reduced group where the second
summand is dsc-group in the sense of [7]. Following [11] and [13], a group
G is said to be a Σ-group if one (and hence every) high subgroup of G is
Σ-cyclic (where a subgroup X of G is high if it is maximal with respect to
the property X ∩ pωG = {0}).

It was asked in [11] and [13] whether or not subgroups of Σ-groups
are again Σ-groups. In general, a subgroup of a Σ-group is not necessarily
a Σ-group (see Example 2 of [14]). We will say G is a totally Σ-group if
every subgroup of G is also a Σ-group. Our first objective is to give several
different characterizations of this class (Theorem 2.6). For example, G is a
totally Σ-group iff it is the direct sum of a countable group and a Σ-cyclic
group. Alternatively, we will say that G is ω-totally Σ-cyclic if every separable
subgroup S of G is Σ-cyclic. It is elementary that G is a totally Σ-group iff
it is ω-totally Σ-cyclic (Proposition 2.1).

The class of ω-totally Σ-cyclic groups can be described in other ways.
For example, it coincides with the class of ω-totally pure-complete groups,
i.e., those groups all of whose separable subgroups are pure-complete (where
a group X is pure-complete if for every subgroup S ⊆ X[p] there is a pure
subgroup P ⊆ X such that P [p] = S). It also coincides with the class of ω+n-
totally dsc-groups, i.e., those groups all of whose pω+n-bounded subgroups are
dsc-groups.

Expanding slightly on the example of Megibben in [14], if H is any
group (e.g., a torsion-complete group), then there is a group G such that
pωG = H and G/pωG is Σ-cyclic. Since for any high subgroup Z of G there
is an embedding Z → G/pωG, Z must be Σ-cyclic, so that G will be a Σ-
group containing H. On the other hand, if H is not countable, then G will
not be a totally Σ-group. We sharpen this observation by showing that any
separable group S can be embedded as a subgroup in a group G of length
ω + 1 which is a Σ-group (but not a totally Σ-group - Proposition 2.9).

More generally, if C is a class of groups and α is an ordinal, we will
say that G is α-totally C if every pα-bounded subgroup of G is a member of
C. Again, it is elementary that G is α-totally C iff every subgroup of G has
the property that all of its pα-high subgroups are in C (where a subgroup
X of a group Y is pα-high iff it is maximal with respect to the property
that X ∩ pαY = {0}). In fact, we will mainly be concerned with the case
where n < ω, α = ω + n and C is the class of pω+n-projective groups; recall
that G is pω+n-projective if pω+nExt(G, X) = 0 for all X, or equivalently, if
there is a subgroup P ⊆ G[pn] such that G/P is Σ-cyclic (see, e.g., [16]). So, a
group is pω-projective iff it is Σ-cyclic. It follows easily that the class of pω+n-
projectives is closed under arbitrary subgroups. In addition, if G1 and G2 are
pω+n-projectives, then G1 and G2 are isomorphic iff G1[pn] and G2[pn] are
isometric (i.e., there is an isomorphism that preserves the height functions
on the two groups; see [9]). So, if C is the class of pω+n-projective groups
and α = ω + n, we have that a group G is ω + n-totally pω+n-projective iff
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every pω+n-bounded subgroup X of G is pω+n-projective. And since a group
is pω-projective iff it is Σ-cyclic, a group is ω-totally pω-projective iff it is
ω-totally Σ-cyclic.

Note that if pω+nG = {0}, then G is ω + n-totally pω+n-projective iff
it is pω+n-projective. It is also straightforward to verify that the class of
ω + n-totally pω+n-projectives contains the class of ω-totally Σ-cyclic groups
(Corollary 2.8). We will say an ω + n-totally pω+n-projective group G is
proper if it does not belong to either of these two classes; i.e., iff it is not
pω+n-projective and not ω-totally Σ-cyclic. In particular, there are no proper
ω-totally pω-projectives. For 0 < n < ω we study the question of whether
there are, in fact, any proper ω + n-totally pω+n-projective groups. In fact,
we show that this question is equivalent to a natural construction expressible
using valuated vector spaces (see, for example, [17] and [8]).

If V is a group, then a valuation on V is a function v : V → O∞
(where O∞ is the class of all ordinals plus the symbol ∞), such that for all
x, y ∈ V , v(x ± y) ≥ min{v(x), v(y)} and v(px) > v(x). It follows that for
every α ∈ O∞, V (α) = {x ∈ V : v(x) ≥ α} is a subgroup of V . If V and W
are valuated groups, then a homomorphism φ : V → W will be said to be
valuated if v(x) < v(φ(x)) for all x ∈ V , and an isometry if it is bijective and
preserves all values. Note that if G is any group and H is a subgroup of G,
then the height function on G restricts to a valuation on H. The category of
valuated groups clearly has direct sums.

Naturally, a valuated group V is a valuated vector space if pV = {0}.
In particular, the socle of a group will always be a valuated vector space.
The valuated vector space V will be said to be separable if V (ω) = {x ∈
V : v(x) ≥ ω} = {0} and free if it is isometric to the valuated direct sum
of valuated vector spaces of rank one. If W is a subspace of V , then the
corank of W is the dimension of V/W . A subspace E of V will be called
cofree if there is a valuated decomposition V = E ⊕ F , where F is free [in
other words, V is algebraically the internal direct sum of E and F , and
v(x + y) = min{v(x), v(y)} for all x ∈ E and y ∈ F ].

If κ is an infinite cardinal, then a valuated vector space V will be said
to be κ-coseparable if it is separable and every subspace W of corank strictly
less than κ contains a subspace E ⊆ W that is cofree in V . We will really only
be concerned with the cases where κ = ℵ0 or ℵ1. A κ-coseparable valuated
vector space will be said to be proper if it is not free. In [6] the existence of a
proper ℵ1-coseparable valuated vector space was shown to be equivalent to a
question involving the structure of abelian groups, and to be independent of
ZFC. We conclude this paper by showing that for 0 < n < ω, the existence of
a proper ℵ0-coseparable valuated vector space is equivalent to the existence
of a proper ω + n-totally pω+n-projective group, and we prove that both of
these propositions are independent of ZFC (Theorem 3.11).
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2. ω + n-Totally pω+n-Projective Groups

We begin with the following elementary assertion:

Proposition 2.1. If G is a group, α is an ordinal and C is a class of groups,
then G is α-totally C iff every subgroup T ⊆ G has the property that every
pα-high subgroup of T is a member of C.

Proof. Suppose G is α-totally C and T is an arbitrary subgroup of G. If S
is a pα-high subgroup of T , then S is pα-bounded, so by hypothesis, S is in
C. So, one direction has been established.

Conversely, suppose every pα-high subgroup of a subgroup of G is in C.
If S is any pα-bounded subgroup of G, then S is a pα-high subgroup of itself,
so it must be in C, so that G is α-totally C. �

The following is a special case of a general result on extending homo-
morphisms on nice subgroups.

Lemma 2.2. Suppose G and H are groups, H has infinite cardinality κ, P is
a subgroup of H such that H/P is Σ-cyclic and there is an injective homo-
morphism φ : P → G such that (1) for every x ∈ P , htG(φ(x)) ≥ htH(x);
and (2) for every m < ω, (pmG)[p]/(pmG ∩ φ(P ))[p] has cardinality at least
κ. Then φ extends to an injective homomorphism Φ : H → G.

Proof. By adding a Σ-cyclic summand if needed, there is clearly no loss
of generality in assuming that H/P has cardinality κ. Suppose H/P ∼=⊕

i<κ 〈xi + P 〉, and for α < κ let Hα = P + 〈xi : i < α〉; thus H = ∪α<κHα.
We inductively extend φ to an injection φα : Hα → G, so that β < α im-
plies that φα agrees with φβ on Hβ . Assume we have constructed φβ for
all β < α. If α is a limit, then we clearly need just take unions. On the
other hand, suppose α is isolated and xα−1 + P has order pm in H/P . It
follows that pmxα−1 ∈ P , and so φ(pmxα−1) is defined. By condition (1),
we have htG(φ(pmxα−1)) ≥ m; let u ∈ G satisfy pmu = φ(pmxα−1). Clearly
[〈u〉 + φα−1(Hα−1)]/φ(P ) has rank |α| < κ. By condition (2) there is an
element

w ∈ (pm−1G)[p] − (〈u〉 + φα−1(Hα−1)) . (∗)
Choose z ∈ G such that pm−1z = w. We let φα agree with φα−1 on Hα−1 and
φα(xα−1) = u+z. To show φα is an injection, suppose y ∈ Hα and φα(y) = 0.
Let y = a + kxα−1, where a ∈ Hα−1 and k is an integer. We first claim that
pm|k: If this failed, then for some integer � we would have �k ≡ pm−1 modulo
the order of z. Therefore,

0 = φα(�y) = φα(�a+�kxα−1) = φα−1(�a)+�ku+�kz = φα−1(�a)+�ku+w.

This implies that w = −�ku − φα−1(�a), which contradicts (∗). We can,
therefore, conclude that pm|k, so that kxα−1 ∈ P , and hence, y ∈ Hα−1.
Since φα−1 is injective, we have y = 0, as required.

Letting Φ = ∪α<κφα completes the proof. �
Recall that G is ω-totally pω+n-projective means that every separable

subgroup of G is pω+n-projective.
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Proposition 2.3. If n < ω and G is ω-totally pω+n-projective, then pω+nG is
countable.

Proof. Suppose on the contrary that pω+nG is uncountable. Let H be a
separable group of cardinality ℵ1 which is pω+n+1-projective, but not pω+n-
projective. [To construct such a group, let A be a separable group of cardi-
nality ℵ1 with a countable basic subgroup, so that A is not pα-projective for
any ordinal α. If C is a Σ-group of rank and final rank ℵ1, then by Theorem 8
of [2], A ⊕ C has a subgroup H of the required form.]

Let P be a subgroup of H such that pω+n+1P = {0} and H/P is Σ-
cyclic. Since pω+nG is uncountable, there is a subgroup P ′ of pωG which
is isomorphic to P such that (pωG)[p]/P ′[p] is uncountable. By Lemma 2.2,
the isomorphism of P and P ′ extends to an embedding H → G. Since H is
separable and not pω+n-projective, we can conclude that G is not ω-totally
pω+n-projective, contrary to our assumption. �

Since an ω+n-totally pω+n-projective group is ω-totally pω+n-projective,
we have the following:

Corollary 2.4. If n < ω and G is ω + n-totally pω+n-projective, then pω+nG
is countable.

Corollary 2.5. If n < ω and G is ω-totally pω+n-projective, then G is a dsc-
group iff G/pωG is Σ-cyclic.

Proof. By Lemma 78.1 of [7], if G is a dsc-group, then G/pωG is Σ-cyclic.
Conversely, Proposition 2.3 ensures that pω+nG is countable, so that pn(pωG)
is a dsc-group, and hence, so is pωG. If, in addition, G/pωG is Σ-cyclic, then
G must be a dsc-group. �

The following characterizes the class of groups that are ω-totally Σ-
cyclic (= ω-totally pω-projective).

Theorem 2.6. If G is a group, then the following are equivalent:
(a) G is a totally Σ-group;
(b) G is ω-totally Σ-cyclic;
(c) G is a Σ-group and pωG is countable;
(d) G/pωG is Σ-cyclic and pωG is countable;
(e) G ∼= C ⊕ M , where C is countable and M is Σ-cyclic;
(f) G is ω-totally pure-complete;
(g) For all n < ω, G is an ω + n-totally dsc-group;
(h) For some n < ω, G is an ω + n-totally dsc-group.

Proof. By Proposition 2.1, (a) and (b) are equivalent, and we begin by ver-
ifying that these imply (c); so suppose that G is a totally Σ-group. Clearly,
if G is a totally Σ-group, then it is a Σ-group. By Proposition 2.3, pωG is
countable.

Next assume (c), so that G is a Σ-group with countable pωG, and we
show that G/pωG is Σ-cyclic, as required in (d). Suppose Z is a high subgroup
of G, so that Z is Σ-cyclic. Since pωG embeds as an essential subgroup of
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G/Z, it follows that G/Z is countable. Since there is a surjection G/Z →
G/[Z + pωG], it follows that latter group is also countable. However, since
there exists a short exact sequence

0 → Z → G/pωG → G/[Z + pωG] → 0

it follows that G/pωG is Σ-cyclic (see, for example, Corollary 3.1 of [5]).
The equivalence of (d) and (e) is another elementary exercise in the the-

ory of totally projective groups (again, see Chapter XII of [7]). So, suppose G
satisfies (d) and (e), and we verify that (b) holds as well. If S is any separa-
ble subgroup of G, then S/(S ∩ pωG) embeds in G/pωG, and since G/pωG is
Σ-cyclic, it follows that S/(S ∩ pωG) is Σ-cyclic. Since S ∩ pωG is countable,
it follows that S is Σ-cyclic, as required (see, for example, Theorem 4.2 of
[5]).

To establish the equivalence of (b) and (f), note that if G is ω-totally Σ-
cyclic and X is a separable subgroup of G, then X must be Σ-cyclic. Since any
Σ-cyclic group is pure-complete, it follows that G is ω-totally pure-complete.
Conversely, suppose that G is not ω-totally Σ-cyclic, so it has a separable
subgroup S which is not Σ-cyclic. By virtue of the “core class property” from
[1], one may infer that S contains a subgroup X which is pω+1-projective but
not Σ-cyclic. But by Theorem 2 of [12] (or see [4]), a pure-complete pω+1-
projective group must be Σ-cyclic, so that S is not pure-complete. It follows
that G is not ω-totally pure-complete, proving the result.

Finally, turning to the equivalence of (g) and (h) with the other condi-
tions, suppose first that G is ω-totally Σ-cyclic. It follows that every subgroup
of G must also be ω-totally Σ-cyclic, and hence a dsc-group. In particular,
for every n < ω, every pω+n-bounded subgroup of G is a dsc-group, i.e., G is
an ω + n-totally dsc-group and (g) follows.

Clearly (g) implies (h), so assume (h) hold for some positive integer n.
It follows that every separable subgroup of G is a separable dsc-group, i.e.,
every separable subgroup of G is Σ-cyclic. This shows that (h) implies (b),
completing the proof. �
Remark 2.7. In [14] (Theorem 7), Megibben noted that, in our terminology,
a group which is isomorphic to a direct sum of a countable group and a
Σ-cyclic group is a totally Σ-group; Theorem 2.6 gives the converse of this
observation.

Corollary 2.8. If n < ω and G is ω-totally Σ-cyclic, then G is ω + n-totally
pω+n-projective.

Proof. If G is ω-totally Σ-cyclic, then it is an ω + n-totally dsc-group, and
since a pω+n-bounded dsc-group is pω+n-projective, G must be ω + n-totally
pω+n-projective. �

We now observe that every separable group can be embedded in a Σ-
group of minimal length.

Proposition 2.9. If S is any separable group, then there is a Σ-group G of
length ω + 1 containing S as a subgroup.
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Proof. Suppose T is any dsc-group of length ω + 1 for which there is an
isomorphism φ : pωT → S[p]. Let

X = {(x, φ(x)) : x ∈ pωT} ⊆ T ⊕ S, and G = [T ⊕ S]/X.

Since T ∼= ([T ⊕ {0}] + X)/X ⊆ G and S ∼= ([{0} ⊕ S] + X)/X ⊆ G,
we may identify S and T with subgroups of G so that G = S + T and
pωT = S[p] = T ∩ S. Since pωT ⊆ pωG and

G/pωT ∼= [T + S]/[T ∩ S]
∼= (T/[T ∩ S]) ⊕ (S/[T ∩ S])
= (T/pωT ) ⊕ (S/S[p])
∼= (T/pωT ) ⊕ pS

is separable, it follows that pωG = pωT , so that G has length ω + 1.
If Z is a high subgroup of G, then Z ∩ S[p] = Z ∩ pωT = {0}, so that

Z ∩ S = {0}, as well. Since Z ∩ S = {0} is the kernel of the composite
homomorphism

Z ↪→ G = T + S → (T + S)/S ∼= T/(S ∩ T ) = T/pωT,

it follows that this is an embedding. However, since T/pωT is Σ-cyclic, we
have that Z is also Σ-cyclic, so that G is a Σ-group. �

Note that in Proposition 2.9, if S is not Σ-cyclic, then G is a Σ-group
which is not a totally Σ-group.

The following property of valuated vector spaces is well-known: If φ :
V → F is a valuated vector space homomorphism and F is separable and
free, then the kernel of φ is cofree in V . [See, for example, Lemma 1 of [12]. If
W is this kernel, then the separability of F implies that W is nice in V , that
is, every coset has an element of maximal value, and the quotient valuated
vector space V/W is separable. Since F is the union of bounded subspaces
Bk, for k < ω, it follows that V/W will be the union of bounded subspaces
φ−1(Bk)/W , again for k < ω. This means that V/W is also free, so that V
is isometric to the valuated direct sum W ⊕ (V/W ).]

We now introduce two useful functors. If G is a group, we let K(G) =
(G/pωG)[p] and K0(G) = {(G[p] + pωG)/pωG} ⊆ K(G). Note that K0(G) is
dense in K(G) in the induced p-adic topology. [If x+pωG ∈ K(G) and m < ω,
then px ∈ pωG, so there is a y ∈ G such that pm+1y = px. It follows that
x+pωG = (x−pmy+pωG)+(pmy+G) so that K(G) = K0(G)+K(G)(m).]
Another way to interpret this notion is to check that the map x + pωG �→
px+pω+1G is a well-defined surjective homomorphism K(G) → pωG/pω+1G,
and that K0(G) is the kernel of this map; thus K(G)/K0(G) ∼= pωG/pω+1G.

Lemma 2.10. Suppose G is a group such that G/pωG is pω+1-projective. Then
the following are equivalent:
(a) There is a group decomposition G = H ⊕ M where H is separable and

M/pωM is Σ-cyclic;
(b) G/pω+1G is pω+1-projective;
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(c) K0(G) ⊆ K(G) contains a cofree subspace of K(G).

Proof. We first show (a) implies (c). If G ∼= H ⊕ M is as described, then
clearly H[p] maps to a subspace of K0(G), and K(G) is isometric to H[p] ⊕
(M/pωM)[p] where the latter summand is free. This proves (c).

Suppose now that (c) holds, and we will prove (b) does, as well. Let
K(G) be the valuated direct sum E ⊕ F , where E ⊆ K0(G) and F is free.
Since G1 = G/pωG is pω+1-projective, there is a subgroup P ⊆ K(G) such
that G1/P is Σ-cyclic. If Q = P ∩ E, then Q is the kernel of the valuated
homomorphism P ⊆ K(G) → F , so that it follows that there is a valuated
decomposition P = Q⊕F ′, where F ′ is free. Let C be a Σ-cyclic group such
that there is an isometry φ : F ′ → C[p]. Letting φ(Q) = 0 then gives a
valuated homomorphism P → C[p], and since G1/P is Σ-cyclic, this extends
to a homomorphism φ : G1 → C such that P ∩ ker(φ) = Q. It therefore
follows that the map G1 → (G1/P ) ⊕ C given by g �→ (g + P, φ(g)) has Q
as its kernel, so that G1/Q is also Σ-cyclic. Replacing P by Q, then, we may
assume that P ⊆ E ⊆ K0(G). This implies there is a subgroup P0 ⊆ G[p]
such that P0 ∩ pωG = {0} and P = [P0 ⊕ pωG]/pωG. We then let

P1 = ([P0 ⊕ pω+1G]/pω+1G) ⊕ (pωG/pω+1G) ⊆ G/pω+1G.

It follows that pP1 ={0} and (G/pω+1G)/P1 ∼= G1/P is Σ-cyclic, so G/pω+1G
is pω+1-projective, as required.

Finally, we assume that (b) holds and prove (a). Note that there is a
decomposition:

G/pω+1G = H ⊕ Y

where H is separable and pω+1-projective, and Y is a dsc-group (see, e.g.,
[10]). We define L,M ⊆ G by the conditions pω+1G = L∩M , L/pω+1G = H
and M/pω+1G = Y . Note that G/M ∼= H is separable, so that pωG ⊆ M .
This implies that for every x ∈ pω+1G, there is a y ∈ pωG ⊆ M , such
that py = x. We now prove by induction on m that pωG ⊆ pmM , which
we have just observed holds for m = 0. Suppose next that it holds for m
and z ∈ pωG. Considering G/pω+1G ∼= (L/pω+1G) ⊕ (M/pω+1G), there is
a w ∈ M such that x1 = pm+1w − z ∈ pω+1G. This means that x1 = py1
for some y1 ∈ pωG ⊆ pmM . Therefore, y1 = pmu for some u ∈ M , so that
z = pm+1w − x1 = pm+1w − py1 = pm+1(w − u) ∈ pm+1M , as required.
We can conclude that pωG ⊆ pωM ⊆ pωG, so that pωG = pωM , and hence
pω+1M = pω+1G.

We therefore have a commutative diagram

0 → pω+1M → L → H → 0
↓ ↓ ‖

0 → M → G → H → 0

By Proposition 56.1 of [7], it follows that the bottom row is pω+1-pure, and
since H is pω+1-projective, we have G ∼= H ⊕M . Finally, M/pωM ∼= Y/pωY
is Σ-cyclic. �

As a consequence, we have the following:
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Corollary 2.11. Suppose that G is a group and G/pω+1G is pω+1-projective.
(i) If pωG is countable, then G is the direct sum of a separable pω+1-

projective group and a countable group.
(ii) If pω+1G is countable, then G is the direct sum of a pω+1-projective

group and a countable group.

Proof. Since G/pω+1G is pω+1-projective, it easily follows that G/pωG is
pω+1-projective. Applying Lemma 2.10(a), one may write G = H ⊕M where
H is a separable pω+1-projective group and M is a group with the property
that M/pωM is Σ-cyclic. Regarding (i), since pωM is countable, it follows
that M can be written as a direct sum of a Σ-cyclic group and a countable
group. So, (i) is sustained.

As for (ii), it is easy to see that M/pω+1M is a dsc-group and pω+1M is
countable. Therefore, M is itself a dsc-group which, because of the countabil-
ity of pω+1M , can be decomposed as a direct sum of a dsc-group of length
ω + 1, which is certainly pω+1-projective, and a countable group. �

The following example illustrates that neither statement in Corollary
2.11 holds for n ≥ 2.

Example. There is a group G such that G/pω+2G is pω+2-projective and
pωG is countable which is not the direct sum of a pω+2-projective group and
a countable group.

Proof. Suppose A is an unbounded separable pω+2-projective group with the
property that every summand of A which is Σ-cyclic must be bounded (an
example of which was constructed by Cutler and Missel in [3]). Since any
unbounded pω+1-projective group has unbounded Σ-cyclic summands, it fol-
lows that A is not pω+1-projective. Let P ⊆ A[p2] be a subgroup such that
A/P is Σ-cyclic.

We claim that (pmA)[p] is not contained in P for any m < ω: Assume
this fails for some m. If we let P0 = (pmA∩P )/(pmA)[p], it follows that pP0 =
{0}. In addition, (pmA/(pmA)[p])/P0 ∼= pmA/(pmA∩ P ) embeds in A/P , so
in particular, it is Σ-cyclic. This implies that pm+1A ∼= pmA/(pmA)[p] is
pω+1-projective; which in turn would imply that A is pω+1-projective, which
is not the case.

This last claim implies that we can construct a dense subsocle D ⊆ A[p]
containing P [p] such that A[p]/D has rank 1. Let L be a subgroup of A
containing P that is maximal with respect to L[p] = D. It follows that L is
pure and dense in A and there is an isomorphism ϕ : A/L ∼= Zp∞ . Let

G = {(a, z) : a ∈ A, z ∈ Zp∞ and ϕ(a) = p3z}.
It readily follows that pωG = {0}⊕Zp∞ [p3], which we denote by J , and that
G/J ∼= A. In addition, let P ′ = P ⊕ {0} ⊆ G.

Note that J∩P ′ = {0}, and so P ′⊕J can also be viewed as a p3-bounded
subgroup of G containing pω+2G = p2J . Since

(G/pω+2G)/[(P ′ ⊕ J)/pω+2G] ∼= G/[P ′ ⊕ J ] ∼= A/P
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is Σ-cyclic and p2[(P ′ ⊕ J)/pω+2G] = {0}, G/pω+2G is pω+2-projective.
On the other hand, if G = C⊕G′, where C is countable and G′ is pω+2-

projective, then pω+2G′ = {0}, so that pω+2C = pω+2G �= {0}. In particular,
pmC �= {0} for all m < ω. However,

A ∼= G/J = G/pωG ∼= (C/pωC) ⊕ (G′/pωG′),

where C/pωC is an unbounded Σ-cyclic, which contradicts the fact that A
has no unbounded Σ-cyclic summands. �

We can now extend Theorem 2.6(b) ⇔ (e) for n = 1 in the following
way:

Proposition 2.12. An ω+1-totally pω+1-projective group G is a direct sum of a
pω+1-projective group and a countable group iff G/pω+1G is pω+1-projective.

Proof. If G is the direct sum of a pω+1-projective group and a countable
group, say H ⊕ C, then it plainly follows that G/pω+1G ∼= H ⊕ (C/pω+1C)
is pω+1-projective, as well.

Conversely, suppose G is a ω + 1-totally pω+1-projective group such
that G/pω+1G is pω+1-projective. Employing Proposition 2.3 and Corol-
lary 2.11(ii), we deduce the desired decomposition of G. �

3. Proper ω + n-Totally pω+n-Projective Groups

Though this section contains a discussion of the structure of proper ω + n-
totally pω+n-projective groups, we pause for a few general observations on
κ-coseparable valuated vector spaces. It can be easily verified that the class of
κ-coseparable valuated vector spaces is closed under valuated direct sums and
summands, and that it contains all the separable free valuated vector spaces.
In particular, if the separable valuated vector space V is the valuated direct
sum W ⊕ F , where F is free, then V is κ-coseparable iff W is κ-coseparable.
In addition, a separable valuated vector space V is ℵ0-coseparable iff every
subspace W ⊆ V of corank one contains a cofree subspace (this follows since
the intersection of a finite collection of cofree subspaces is also cofree).

The following result is our main tool in analyzing proper ω + n-totally
pω+n-projective groups. Since non-free separable valuated vector spaces are
usually not ℵ0-coseparable, it puts a serious limitation on the structure of
proper ω + n-totally pω+n-projectives, showing that they are relatively rare
phenomena.

Theorem 3.1. Suppose n < ω and G is a proper ω +n-totally pω+n-projective
group. If V is a separable valuated vector space for which there is an injective
valuated homomorphism V → G[p], then V is ℵ0-coseparable.

Proof. We may clearly assume V is unbounded and our valuated injection
V → G[p] is an inclusion such that for all x ∈ V , v(x) <htG(x). If necessary,
we may replace G by pmG and V by V (m), so that there is no loss of generality
in assuming that the rank and final rank of G is some cardinal κ, and that
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the rank of V is at most κ. Since pω+nG �= {0}, we can find some non-zero
x ∈ (pω+nG)[p]. Observe first that if x ∈ V , then 〈x〉 is a valuated summand
of V , and if V = 〈x〉 ⊕ V0, then V is ℵ0-coseparable iff V0 is. Replacing V by
V0, we may therefore assume that x �∈ V . Find y ∈ pωG such that pny = x,
so that 〈y〉 ∩ V = {0}.

Let Y be a high subgroup of G, so that Y is pω+n-projective and there
is a (htG-)valuated decomposition G[p] = Y [p] ⊕ (pωG)[p]. It follows from
Corollary 26 of [12] that Y [p] is isometric to Q⊕F , where F is a free valuated
vector space of final rank κ. Consider the valuated composition V → G[p] →
Y [p] = Q⊕ F → F whose kernel is V1 = V ∩ (Q + pωG[p]). We can conclude
that V is isometric to V1⊕F ′ where F ′ is free; therefore, V is ℵ0-coseparable
iff V1 is. Replacing V by V1, we may assume V ⊆ Q + (pωG)[p], so that
F ∩ V = {0}. This means that if m < ω, that (pmG)[p]/(pmG ∩ V )[p] has
cardinality κ, since it contains a copy of F (m).

Let D be a subspace of V of corank one; we need to exhibit a subspace
of D which is cofree in V . If D is not dense in V , then D will be a valuated
summand of V , so it will be cofree. We may therefore assume that D is dense
in V . Suppose z ∈ V − D, and let P = D ⊕ 〈z + y〉 ⊆ G. Note that there is
a surjective homomorphism ρ : P → V which is the identity on D and maps
z + y to z; the kernel of this homomorphism is clearly 〈py〉 ⊆ P . We define a
valuation vP on P as follows: Suppose u ∈ P ; if u = 0, then let vP (u) = ∞;
otherwise, if ρ(u) �= 0, then let vP (u) = v(ρ(x)); finally, if ρ(u) = 0, then
u = pkq(py), where (p, q) = 1 and k < n, and we let vP (u) = ω + k. It is
straightforward to check that vP is a valuation, and if vP (u) is infinite and
β < vP (u), then there is a w ∈ P such that pw = u and β ≤ vP (w). By
a variation on a construction in [17], there is a group H of rank at most κ
containing P as a subgroup such that
(1) the height function on H agrees with vP on P ;
(2) H/P is Σ-cyclic of rank at most κ.

[Let H be generated by P and a set of elements xu, for u ∈ P −P (ω), subject
to the relations pvP (u)xu = u.]

It follows that pωH = P (ω) = 〈py〉, so G is pω+n-bounded. It is easy
to verify that for all u ∈ P , vP (u) <htG(u), so by Lemma 2.2, the inclusion
P ⊆ G extends to an embedding H → G.

Since G is ω + n-totally pω+n-projective, we can conclude that H is
pω+n-projective. Therefore, there is a subgroup R ⊆ H[pn] such that H/R is
Σ-cyclic. Note that P (ω) ⊆ R∩P ⊆ P [pn] = D⊕〈py〉, so that if E = ρ(R∩P ),
then E ⊆ D. In addition, E is the kernel of the valuated composition: V ∼=
P/P (ω) → H/P (ω) → H/R. Since (H/R)[p] is free, it follows that E ⊆ D is
cofree in V , as required. �

A separable valuated vector space V is efi (for essentially finitely inde-
composable) iff it does not have a valuated summand which is an unbounded
free valuated vector space. In particular, an unbounded efi valuated vector
space cannot be ℵ0-coseparable. Therefore, we have the following direct con-
sequence of Theorem 3.1.
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Corollary 3.2. Suppose G is a proper ω + n-totally pω+n-projective and V is
an unbounded valuated vector space that is efi. Then there does not exist a
valuated injection V → G[p].

We have seen by Theorem 2.6 that if G is ω-totally Σ-cyclic, then pωG
is countable. More generally, by Corollary 2.4, if n > 0 and G is ω +n-totally
pω+n-projective, then pω+nG must be countable, but pωG does not have to
be countable: for example, if G is pω+n-projective (such as a pω+n-bounded
dsc-group), pωG can be made as large as we please. We now investigate the
question of the countability of pωG for proper ω + n-totally pω+n-projective
groups.

Let σ be the smallest cardinal such that there is a separable valuated
vector space of cardinality σ which is not ℵ0-coseparable. Since any countable
separable valuated vector space is free, and hence ℵ0-coseparable, we can
conclude that σ ≥ ℵ1.

Corollary 3.3. If G is a proper ω+n-totally pω+n-projective, then r(pωG) < σ.

Proof. Let V be a separable valuated vector space of cardinality σ which is
not ℵ0-coseparable. If r(pωG) ≥ σ, then there is an injective group homo-
morphism V → (pωG)[p] ⊆ G[p], which certainly does not decrease values,
contradicting Theorem 3.1. �

It is clear that the class of ω-totally Σ-cyclic groups is closed under
countable direct sums. On the other hand, this property does not generalize
to integers 0 < n < ω. However, for any natural number n, arbitrary direct
sums of pω+n-projective groups are again pω+n-projective.

Corollary 3.4. If 0 < n < ω, then the class of ω + n-totally pω+n-projective
groups is not closed under (finite) direct sums.

Proof. Let A be a pω+1-bounded dsc-group such that r(pωA) ≥ σ. Then A
is pω+1-projective, and hence pω+n-projective, and hence ω +n-totally pω+n-
projective. Next, let M be a countable reduced group such that pω+nM �= 0.
Then M is ω-totally Σ-cyclic, and hence ω + n-totally pω+n-projective.

Note that if G = A⊕M were ω+n-totally pω+n-projective, then since G
is not pω+n-projective and pωG is not countable, it would have to be proper.
Since r(pωG) ≥ σ, however, this would contradict Corollary 3.3. �

Corollary 3.3 implies that we would like to know whether σ = ℵ1. To
investigate this question, we extend our brief detour into the theory of val-
uated vector spaces. If λ is a cardinal number, let Dλ be a valuated vec-
tor space of dimension λ such that v(x) = ω for all non-zero x ∈ Dλ. Let
φλ : Fλ → Dλ be a surjective homomorphism, where Fλ is a free separable
valuated vector space of cardinality λ · ℵ0 such that if Mλ is the kernel of
φλ, then ω = max{v(x + y) : y ∈ Mλ} for every x ∈ Fλ − Mλ (i.e., Mλ

is a dense subspace of Fλ of corank λ). If V and W are valuated vector
spaces, let Homv(V,W ) denote the collection of all valuated homomorphisms
f : V → W .
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Lemma 3.5. Suppose κ is an infinite cardinal and V is a separable valuated
vector space. Then V is κ-coseparable iff for every cardinal λ < κ,

Homv(V, Fλ) → Homv(V,Dλ)

is surjective, i.e., for every homomorphism f : V → Dλ (which is automat-
ically valuated) there is a valuated homomorphism g : V → Fλ such that
f = φλ ◦ g. If κ = ℵ0, then this need only be true for λ = 1.

Proof. We will concentrate on the case where κ = ℵ0 and λ = 1, which is
the only one we will use in the rest of the paper. (The general case follows in
an almost identical way.) Suppose V is ℵ0-coseparable and f : V → D1 is a
homomorphism. If W is the kernel of f , then it follows that V/W has rank
at most one. Since V is ℵ0-coseparable, it follows that V = E ⊕ F , where
E ⊆ W and F is free. Since F is free, there is a valuated homomorphism
g : F → F1 such that f |F = φ1 ◦g. If we then define g(E) = 0, then it follows
that f = φ1 ◦ g.

Conversely, suppose V satisfies this homological condition and W is a
subspace of V of corank one. Then there is a valuated composite homomor-
phism f : V → V/W → D1 with kernel W . If g : V → F1 is the valuated
homomorphism satisfying f = φ1 ◦ g, then letting E be the kernel of g, it
follows that E ⊆ W . Since F1 is separable and free, it follows that E is cofree
in V , as required. �

The following gives a great deal of information about the size of σ.

Proposition 3.6. The following relations hold:

(a) σ ≤ c = 2ℵ0 ;
(b) If 2ℵ0 < 2ℵ1 , then σ = ℵ1.

Proof. Regarding (a), let B be a countable separable unbounded free valuated
vector space. If V = B is the p-adic completion of B, then V has cardinality
c. Since B is efi, it follows that it is not ℵ0-coseparable, so that σ ≤ c.

Turning to (b), again let B be a countable separable unbounded free
valuated vector space, but this time, let V be a subspace of B containing B of
cardinality ℵ1. We claim that V is not ℵ0-coseparable. To that end, consider
the valuated sequence

0 → M1 → F1 → D1 → 0

from Lemma 3.5. Note that any valuated homomorphism g : V → F1 is de-
termined by its restriction to B. It follows that Homv(V, F1) has cardinality
at most 2ℵ0 . On the other hand, since any homomorphism f : V → D1 is val-
uated, the cardinality of Homv(V,D1) is 2ℵ1 . It follows that Homv(V, F1) →
Homv(V,D1) is not surjective, so that V is not ℵ0-coseparable. This implies
that σ = ℵ1, as required. �

Combining the Corollary 3.3 and Proposition 3.6, we derive:
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Corollary 3.7. If 2ℵ0 < 2ℵ1 (e.g., in any set-theoretic environment in which
CH is valid) and G is a proper ω +n-totally pω+n-projective group, then pωG
must be countable.

A simple combination of Theorem 2.6 and Corollary 3.7 leads us to the
following supplement to Corollary 2.5:

Corollary 3.8. If 2ℵ0 < 2ℵ1 and G is a proper ω + n-totally pω+n-projective
group, then G is not a dsc-group.

We will have use for the following technical observation:

Lemma 3.9. Suppose κ is an infinite cardinal, V is a κ-coseparable valuated
vector space, W is a separable valuated vector space and φ : W → V is a
valuated vector space homomorphism with finite kernel J . Then W is also
κ-coseparable.

Proof. Since J is finite, there is a valuated decomposition W = J ⊕ W ′. It
follows that W is κ-coseparable iff W ′ is κ-coseparable, so, without loss of
generality, we may assume J = {0}, W = W ′ and φ is injective (note that
φ may increase values computed in W and V ). Considering Lemma 3.5, if
λ < κ is a cardinal and fW : W → Dλ is a homomorphism, then there is a
homomorphism fV : V → Dλ such that fW = fV ◦φ. Since V is κ-coseparable,
there is a valuated homomorphism gV : V → Fλ such fV = φλ ◦ gV . If
gW = gV ◦φ, it follows that fW = fV ◦φ = φλ ◦ gV ◦φ = φλ ◦ gW , so that W
is κ-coseparable, as required. �

A group G will be said to be special if it is isomorphic to a direct sum
H ⊕ M , where:
(a) H is a separable pω+1-projective group and H[p] is an ℵ0-coseparable

valuated vector space;
(b) M is a dsc-group and pωM is finite.

Clearly, a special group is reduced, and, in fact, pω+nG = {0} for some
n < ω. Since M can be decomposed as a direct sum of a Σ-cyclic group and
a countable group, we may assume M is countable.

Theorem 3.10. The following hold:
(a) A group G is special iff pωG is finite, G/pωG is pω+1-projective and

K(G) is ℵ0-coseparable.
(b) The class of special groups is closed under arbitrary subgroups.
(c) Any special group is ω + n-totally pω+n-projective for all 0 < n < ω.

Proof. Regarding (a), if G ∼= H ⊕ M is special, then clearly pωG ∼= pωM is
finite, and G/pωG ∼= H ⊕ (M/pωM) is pω+1-projective. Note that K(G) is
isometric to the valuated sum H[p] ⊕ K(M), and since the first summand is
ℵ0-coseparable and the second summand is separable and free, it follows that
K(G) is also ℵ0-coseparable.

Suppose now that G satisfies the conditions listed in the last half of (a).
Since K(G) is ℵ0-coseparable and K(G)/K0(G) ∼= pωG/pω+1G is finite, it
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follows from Lemma 2.10 that G ∼= H ⊕ M , where H is a separable pω+1-
projective and M is such that pωM is finite and M/pωM is Σ-cyclic, thus a
dsc-group, so that (a) follows.

Turning to (b), suppose G is special and A is some subgroup of G.
Since pωA ⊆ pωG and the latter is finite, it follow that pωA is finite, as well.
Next note that there is an induced homomorphism φ : A/pωA → G/pωG
which restricts to a homomorphism K(A) → K(G). The kernel of φ is [A ∩
pωG]/pωA which is finite (so that it embeds in a finite summand of A/pωA),
and it follows easily that A/pωA is pω+1-projective. Finally, since K(G) is ℵ0-
coseparable and K(A) → K(G) has finite kernel, it follows from Lemma 3.9
that K(A) is ℵ0-coseparable. This proves that A is special and concludes the
proof of (b).

Finally, to show (c), if 0 < n < ω, G is special, and A is a pω+n-bounded
subgroup of G, then in view of (b) we have that A is also special. If follows
that A ∼= H ′⊕M ′, where H ′ is pω+1-projective, and M ′ is a countable group
with pω+nM ′ = {0}. Since H ′ and M ′ are pω+n-projective, we can conclude
that A is pω+n-projective and hence G is ω + n-totally pω+n-projective. �

We come now to our main theorem on proper ω + n-totally pω+n-
projectives.

Theorem 3.11. The equivalence of the following three statements is a theorem
in ZFC:
(a) There is a proper ω + n-totally pω+n-projective group for some 0 < n <

ω.
(b) There is a proper ℵ0-coseparable valuated vector space.
(c) There is a separable pω+1-projective group A which is not Σ-cyclic such

that whenever G is a group with pωG ∼= Zp and G/pωG ∼= A, then G
must also be pω+1-projective.

On the other hand, all three are undecidable in ZFC; in particular, they all
hold in a model of MA+¬CH, whereas they all fail in a model of V=L.

Proof. We begin by showing that (b) implies (a); to that end, suppose V is
a non-free ℵ0-coseparable valuated vector space. Then there is a group H
containing V ⊆ H[p] such that the valuation on V agrees with the height
function on H, and for which H/V is Σ-cyclic. Note that such an H will
be separable and pω+1-projective. As we have observed several times in the
past, H[p] is isometric to V ⊕ F , where F is a free valuated vector space.
It therefore follows that H[p] is also a proper ℵ0-coseparable valuated vector
space. If M is any countable group such that pωM is finite and pω+nM �= {0},
then G = H ⊕ M will be special, and hence ω + n-totally pω+n-projective,
by Theorem 3.10(c). Since M is not pω+n-bounded and H is not Σ-cyclic, G
is necessarily proper, thus proving (a).

We next verify that (a) implies (b), so suppose G is a proper ω + n-
totally pω+n-projective group. Suppose first that pωG is uncountable. In this
case, Corollary 3.3 implies that σ > ℵ1. However, if we let V be any separable
valuated vector space of rank ℵ1 with a countable basic subspace, then V is
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clearly not free, but since r(V ) < σ, V must be a proper ℵ0-coseparable
valuated vector space, proving (b) in this case.

On the other hand, assume that pωG is countable. Let H be a high
subgroup of G. Note that if H is Σ-cyclic, then G must be a Σ-group. However,
since pωG is countable, Theorem 2.6(c) ⇒ (b) would imply that G is ω-totally
Σ-cyclic, contrary to assumption. It follows that H[p] is not free. Since there
is obviously a valuated injection H[p] → G[p], it follows from Theorem 3.1
that H[p] is ℵ0-coseparable, which establishes (b).

Assume now that (b) holds, and we will prove (c). Let V be a proper
ℵ0-coseparable valuated vector space. It follows that there is a separable pω+1-
projective group A containing V as a subgroup where the height function on
A coincides with the valuation on V , and such that A/V is Σ-cyclic. If G is
any group with pωG ∼= Zp and G/pωG ∼= A, it follows from Theorem 3.10(a)
that G is special. Therefore, G ∼= H ⊕ M , where H is a separable pω+1-
projective group and M is countable. Since G is pω+1-bounded, so is M , so
that G is necessarily pω+1-projective.

Conversely, suppose that (c) holds, and we establish (b). Let V = A[p];
since A is not Σ-cyclic, V is not free. Suppose D is a subspace of V of corank
one. If there is an m < ω such that V (m) ⊆ D, then D is already cofree, so
assume D is dense in V . If L is a pure subgroup of A with L[p] = D, then
there is a surjective homomorphism φ : A → Zp∞ with kernel L. Let

G = {(a, z) : a ∈ A, z ∈ Zp∞ and φ(a) = pz}.
It follows that G/pωG ∼= A, pωG is cyclic of order p and D ∼= K0(G). Since
G must be pω+1-projective, by Lemma 2.10(c), D = K0(G) contains a cofree
subspace of K(G), so that V = A[p] = K(G) must be a proper ℵ0-coseparable
valuated vector space.

We next show that all of them are valid in a model of MA+¬CH. In this
set-theoretic context, by Theorem 3.4(a) and 3.3 of [6], there is a proper ℵ1-
coseparable valuated vector space. Since an ℵ1-coseparable valuated vector
space is also ℵ0-coseparable, we have that (b) holds.

Finally, arguing as in [6], we show that (c) does not hold in a model of
V=L. Suppose, therefore, that A satisfies (c). Note that if G is some group
such that pωG ∼= Zp and G/pωG ∼= A, then G is pω+1-projective, so that
G ∼= C ⊕ S, where C is a dsc-group and S is separable. If Hω+1 is the
generalized Prüfer group of length ω + 1, there is clearly a homomorphism
G → C → Hω+1 which is non-zero on pωG ∼= pωC. In the presence of V=L,
by Theorem 2.2 of [15], A must be Σ-cyclic, contrary to assumption. �

The last proof actually shows the following:

Corollary 3.12. If there is a proper ω + n-totally pω+n-projective for some
0 < n < ω, then there is a proper ω + n-totally pω+n-projective for all 0 <
n < ω.

Corollary 3.13. In V=L, if n < m < ω and G is ω+n-totally pω+n-projective,
then it is ω + m-totally pω+m-projective.
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Proof. Since by Theorem 3.11 the group G cannot be proper, it must either
be pω+n-projective or ω-totally Σ-cyclic. In either case it will be ω+m-totally
pω+m-projective. �

There are still unanswered questions that pertain to the structure of
proper ω+n-totally pω+n-groups, at least in those set-theoretic environments
in which they exist. For example, we have the following:

Problem 1: In ZFC, does σ = ℵ1?

Problem 2: In ZFC, if G is a proper ω + n-totally pω+n-projective, does it
follow that pωG is necessarily countable?

By Corollary 3.3, an affirmative answer to Problem 1 implies an affir-
mative answer to Problem 2.

Problem 3: In ZFC, if n < m < ω and G is ω + n-totally pω+n-projective,
must it also be ω + m-totally pω+m-projective?

Problem 4: If n < ω, describe the class of ω-totally pω+n-projectives (which
contains the class of ω + n-totally pω+n-projectives).
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