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Abstract

We show that an associate unital ring R is weakly exchange (respec-
tively, weakly clean) if R/J(R) is weakly exchange (respectively, weakly
clean) and idempotents in R lift modulo J(R). If, in addition, 2 belongs
to J(R), then the converse holds too. In particular, if 2 lies in J(R), then
any weakly exchange ring is exchange as well as any weakly clean ring
is clean. These facts somewhat strengthen some classical results due to
Nicholson (Trans. Amer. Math. Soc., 1977).

2010 Mathematics Subject Classification: 16S34.

1 Introduction and Backgrounds

Throughout this note, let R be an associative unital ring with unit group U(R),
with Jacobson radical J(R), and with set of idempotents Id(R). All other
notations are standard as well as the terminology is classical. For instance, a
ring R is said to be abelian if all its idempotents are central. Moreover, the
most important concepts used in the sequel are recollected below.

In [6] the following fundamental notion was defined.

Definition 1. A ring R is called clean if each r ∈ R can be expressed as
r = u+ e, where u ∈ U(R) and e ∈ Id(R).

Likewise, in [6] it was pointed out that R is clean if, and only if, R/J(R) is
clean and all idempotents lift modulo J(R).

The ”clean” concept was generalized there to the following one:

Definition 2. A ring R is said to be exchange if, for every a ∈ R, there exists
an idempotent e ∈ aR such that 1− e ∈ (1− a)R.

It was obtained in [6] that R is an exchange ring if, and only if, R/J(R) is
an exchange ring and all idempotents lift modulo J(R). Also, it was established
there that Definitions 1 and 2 are tantamount for abelian rings. However, there
is an exchange ring that is not clean.

On the other hand, it was introduced in [1] the notion of weakly clean rings
but only in a commutative version as follows:
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Definition 3. A ring R is called weakly clean if each r ∈ R can be expressed
as either r = u+ e or r = u− e, where u ∈ U(R) and e ∈ Id(R).

Certainly, the last definition can be stated in general for arbitrary rings.
Besides, it is evident that all clean rings are weakly clean, whereas the converse
does not hold even in the commutative aspect (see, e.g., [1]). However, every
weakly clean ring of characteristic 2 is clean, and vice versa. One of our moti-
vation in the present paper is to improve this observation by requiring that 2
lies in J(R) that supersedes the condition 2 = 0.

The following appears in [7].

Definition 4. A ring R is said to be weakly exchange if, for any x ∈ R, there
exists e ∈ Id(R) such that e ∈ xR and either 1−e ∈ (1−x)R or 1−e ∈ (1+x)R.

It was established in [3] that the notions of being weakly exchange and
weakly clean do coincide for abelian rings, thus extending the aforementioned
result due to Nicholson from [6] (see also [7]).

Apparently, all exchange rings are weakly exchange, while the converse does
not hold even in the commutative variant. However, every weakly exchange ring
of characteristic 2 is exchange, and vice versa. One of our aims in the current
article is to enlarge this observation by requiring that 2 lies in J(R) which is
weaker than the condition 2 = 0.

2 Main Results

The following technicality, which extends Proposition 1.1 from [6], was stated
in [7] without a proof and with two identical misprints in points (3) and (4),
which are presently points (c) and (d), respectively. We however formulate it
correctly and provide a transparent proof for the sake of completeness and for
the convenience of the reader.

Lemma 2.1 Let R be a ring. Then the following points are equivalent:
(a) R is weakly exchange;
(b) For any x ∈ R there exists e ∈ Id(R) such that e − x ∈ (x − x2)R or

e+ x ∈ (x+ x2)R;
(c) For any x ∈ R there exist e ∈ Id(R) ∩ xR and c ∈ R such that 1 − e −

(1− x)c ∈ J(R) or 1− e− (1 + x)c ∈ J(R);
(d) For any x ∈ R there exists e ∈ Id(R)∩ xR such that eR+ (1− x)R = R

or eR+ (1 + x)R = R.

Proof. (a) ⇒ (b). Letting for any x ∈ R there is e ∈ Id(R) such that
e ∈ xR and either 1− e ∈ (1− x)R or 1− e ∈ (1 + x)R. Furthermore, for some
r, a ∈ R, one sees that e − x = (1 − x)e − x(1 − e) = (1 − x)xr − x(1 − x)a =
(x − x2)r − (x − x2)a ∈ (x − x2)R. Moreover, e + x = (1 + x)e + x(1 − e) =
(1 + x)xr + x(1 + x)a = (x+ x2)r + (x+ x2)a ∈ (x+ x2)R, as stated.

(b) ⇒ (c). If e− x = (x− x2)r for some r ∈ R, then e = x(1 + r− xr) ∈ xR
and 1 − e = (1 − x)(1 − xr) where we may take c = 1 − xr. Analogously, if
e+ x = (x+ x2)a for some a ∈ R, then 1− e = (1 + x)(1− xa) where we may
again choose c = 1− xa.

2



(c) ⇒ (d). Observe that either u = e+ (1−x)c or v = e+ (1 +x)c is a unit.
Consequently, 1 = eu−1 + (1 − x)cu−1 or 1 = eu−1 + (1 + x)cu−1 and hence,
for any r ∈ R, we deduce that r = eu−1r + (1 − x)cu−1r ∈ eR + (1 − x)R or
r = eu−1r + (1 + x)cu−1r ∈ eR+ (1 + x)R, as required.

(d) ⇒ (a). Writing 1 = et + (1 − x)s, we define f = e + et(1 − e). It is
not too hard to check that f2 = f ∈ xR and 1 − f = (1 − e) − et(1 − e) =
(1− et)(1− e) = (1− x)s(1− e) ∈ (1− x)R.

By symmetry, writing 1 = et+ (1 + x)s, we as above set f = e+ et(1− e).
So, f ∈ Id(R) ∩ xR and 1 − f = (1 − et)(1 − e) = (1 + x)s(1 − e) ∈ (1 + x)R,
as expected.

Recall that the idempotents of a ring R can be lifted modulo the ideal L if,
given x ∈ R with x − x2 ∈ L, there exists e ∈ Id(R) such that e − x ∈ L.
Replacing x by −x this condition is equivalent to the following: if x + x2 ∈ L,
there exists e ∈ Id(R) such that e + x ∈ L. Especially, we take into account
that x = −(−x) = −y and so x− x2 ∈ L ⇐⇒ y + y2 ∈ L.

So, we come to our first basic result.

Theorem 2.2 A ring R is weakly exchange if R/J(R) is weakly exchange and
all idempotents in R lift modulo J(R). In addition, if 2 ∈ J(R), then the
converse is true.

Proof. Given an arbitrary x ∈ R, we have x + J(R) ∈ R/J(R) = R and
thus 1 − a = (1 − x)c or 1 − a = (1 + x)d for some a2 = a ∈ xR and c, d ∈ R.
Writing a = xr, we derive a = xr + j = a′ + j where a′ ∈ xR and j ∈ J(R).
Furthermore, either 1 − a′ ∈ (1 − x)c + J(R) or 1 − a′ ∈ (1 + x)d + J(R) for
some c, d ∈ R. But a2 − a ∈ J(R), hence by assumption there is f ∈ Id(R)
such that a − f ∈ J(R), so that a′ − f ∈ J(R) and u = 1 − f + a′ ∈ U(R).
Writing a′ = f + j1 with j1 ∈ J(R), one sees that a2 − a ∈ J(R) is tantamount
to a′2−a′ ∈ J(R). Define e = ufu−1. It is clear that e = a′fu−1 ∈ Id(R)∩xR.
We therefore obtain that either 1−e−(1−x)c ∈ J(R) or 1−e−(1+x)d ∈ J(R).
In fact, what we need to prove is that e − a′ ∈ J(R). To show this, consider
e − a′ = a′fu−1 − a′ = a′(fu−1 − 1) = a′(f − u)u−1 = a′(2f − 1 − a′)u−1 =
(f + j1)(2f − 1 − f − j1)u−1 = (f + j1)(f − j1 − 1)u−1 = [(f + j1)(f − j1) −
f − j1]u−1 = [f2 − j21 − f − j1]u−1 = [−j21 − j1]u−1 ∈ J(R), as wanted. Now
Lemma 2.1 (c) applies to deduce the desired claim that R is weakly exchange.

For the second part-half, we observe that a homomorphic image of a weakly
exchange ring is also a weakly exchange ring. Next, as for the lifting property,
we observe that x − x2 = (x + x2) − 2x2, so that x − x2 ∈ J(R) is equivalent
to x + x2 ∈ J(R), provided 2 ∈ J(R). By virtue of Lemma 2.1 (b), there is
e ∈ J(R) such that e− x ∈ (x− x2)R or e+ x ∈ (x+ x2)R. In the first case, it
follows at once that e−x ∈ J(R). In the second one, it also follows immediately
that e+ x ∈ J(R), as required.

Similarly, one can derive the following assertion. Before doing that, we need
the following technicality.

Lemma 2.3 For any ring R the following equality holds:

U(R) + J(R) = U(R).
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Proof. It is self-evident that the left hand-side contains the right one. To
treat the converse, given x ∈ J(R) + U(R), we may write x = a + u where
a ∈ J(R) and u ∈ U(R). But it is well known that J(R) = {x ∈ R | 1− rxs ∈
U(R),∀r, s ∈ R}. Hence a + u = u(1 + u−1a) ∈ U(R) taking r = −u−1 and
s = 1, as required.

We are now able to proceed by proving the following:

Theorem 2.4 A ring R is weakly clean if R/J(R) is weakly clean and all idem-
potents in R lift modulo J(R). In addition, if 2 ∈ J(R), then the converse is
true.

Proof. Choosing an arbitrary x ∈ R, we have x + J(R) ∈ R/J(R) and so
write either x+ J(R) = (u+ J(R)) + (e+ J(R)) = u+ e+ J(R) or x+ J(R) =
(u+J(R))− (e+J(R)) = u+J(R)− e+J(R) = u− e+J(R), where u+J(R)
is a unit in R/J(R) and e + J(R) is an idempotent in R/J(R). Consequently,
1 − uv ∈ J(R) and 1 − vu ∈ J(R) for some v ∈ R as well as e − e2 ∈ J(R).
Since 1 − (1 − uv) = uv ∈ U(R) and 1 − (1 − vu) = vu ∈ U(R), we deduce
that u ∈ U(R). Moreover, e − f ∈ J(R) for some f ∈ Id(R). Therefore,
x − (u + f) ∈ J(R) and x − (u − f) ∈ J(R). We next refer to Lemma 2.3 to
infer that x = w + f or x = w − f where w ∈ U(R), as required.

As for the second part-half, it is obvious that a homomorphic image of a
weakly clean ring is again a weakly clean ring. Since weakly clean rings are
necessarily weakly exchange, we just apply Theorem 2.2.

So, we are now ready to extend one of our basic results in [4], proved for
abelian rings, to the following statement:

Proposition 2.5 Suppose that R is a ring with 2 ∈ J(R). Then R is weakly
exchange if, and only if, R is exchange.

Proof. One direction being trivial, we consider the other one. So, letting
R be weakly exchange, we employ Theorem 2.2 to get that R/J(R) is weakly
exchange and all idempotents of R are lifted modulo J(R). Since 2 lies in
J(R), the factor-ring R/J(R) is exchange possessing characteristic 2. We further
appeal to [6] and conclude that R is exchange, as required.

Same type result appears for weakly clean rings. Specifically, the following
is valid:

Proposition 2.6 Suppose that R is a ring with 2 ∈ J(R). Then R is weakly
clean if, and only if, R is clean.

Proof. One direction being elementary, we consider the other one. So, given
R is weakly clean, we apply Theorem 2.4 to obtain that R/J(R) is weakly clean
and all idempotents of R are lifted modulo J(R). Since 2 is in J(R), the quotient
ring R/J(R) is clean having characteristic 2. We furthermore appeal to [6] and
infer that R is clean, as expected.

It is worthwhile noticing that the above results strengthen these from [4],
provided that the ring is abelian.
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3 Open Problems

In closing we pose the following challenging questions:

Problem 1. Are Theorems 2.2 and/or 2.4 fulfilled without the assumption that
2 ∈ J(R)?

Problem 2. If R is a (commutative) weakly exchange ring or, in particular,
a (commutative) weakly clean ring, and 2 ∈ U(R), is R a 2-good ring, that is,
each element is the sum of two units?

Problem 3. Characterize weakly exchange rings with prime Artinian factors.

Notice that exchange rings with prime Artinian factors are strongly π-regular
– for more details the interested reader may see [8].

Problem 4. If R is a weakly exchange ring with primitive Artinian factors, is
then R weakly clean?

Problem 5. Does it follow that weakly exchange rings with bounded index of
nilpotency are weakly clean?

It is well known in the literature that a ring R is called uniquely (weakly)
clean if in Definitions 1 and 3 the existing idempotent is unique. While uniquely
clean rings are well-studied (see, for instance, [2]), the same cannot be said
of uniquely weakly clean rings. So, the statement of the following has some
motivation.

Problem 6. Characterize uniquely weakly clean rings. Are uniquely weakly
clean rings R precisely the abelian weakly clean rings R such that for all maximal
ideals M of R we have either R/M ∼= Z3 or R/M ∼= B, where B is Boolean?

We shall call a ring R uniquely (weakly) exchange if in Definitions 2 and 4
the existing idempotent is unique. So, we come to the following:

Problem 6. Characterize uniquely (weakly) exchange rings. Are uniquely
(weakly) exchange rings exactly the abelian (weakly) exchange rings with some
additional conditions on maximal ideals?

References

[1] M-S. Ahn and D. D. Anderson, Weakly clean rings and almost clean rings,
Rocky Mount. J. Math. 36 (2006), 783–798.

[2] H. Chen, On uniquely clean rings, Commun. Algebra 39 (2011), 189–198.

[3] A. Y. M. Chin and K. T. Qua, A note on weakly clean rings, Acta Math.
Hungar. 132 (2011), 113–116.

[4] P. V. Danchev, When is an abelian weakly clean ring clean?, to appear.

5



[5] C. Y. Hong, N. K. Kim and Y. Lee, Exchange rings and their extensions,
J. Pure Appl. Algebra 179 (2003), 117–126.

[6] W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer.
Math. Soc. 229 (1977), 269–278.

[7] J.-C. Wei, Weakly-abel rings and weakly exchange rings, Acta Math. Hun-
gar. 137 (2012), 254–262.

[8] H.-P. Yu, On the structure of exchange rings, Commun. Algebra 25 (1997),
661–670.

6


