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We introduce two classes of abelian groups which have either only trivial fully invariant
subgroups or all their nontrivial (respectively nonzero) fully invariant subgroups are
isomorphic, called IFI-groups and strongly IFI-groups, such that every strongly IFI-
group is an IFI-group, respectively. Moreover, these classes coincide when the groups
are torsion-free, but are different when the groups are torsion as well as, surprisingly,
mixed groups cannot be IFI-groups. We also study their important properties as our
results somewhat contrast with those from [13] and [14].
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1. INTRODUCTION AND MAIN DEFINITIONS

Throughout the present article, let all groups into consideration be additively
written and abelian. Our notations and terminology from group theory are mainly
standard and follow those from [9] and [16]. For instance, if p is a prime integer
and G is an arbitrary group, pnG = �png � g ∈ G� denotes the pnth power subgroup
of G consisting of all elements of p-height greater than or equal to n ∈ �, G�pn� =
�g ∈ G � png = 0� n ∈ �� denotes the pn-socle of G, and Gp = ∪n<�G�pn� denotes the
p-component of the torsion part tG = ⊕pGp of G.

On the other hand, if G is a torsion-free group and a ∈ G, then let �G	a

denote the characteristic and let �G	a
 denote the type of a, respectively. Specifically,
the class of equivalence in the set of all characteristics is just called type, and we write
�. If �G	a
 ∈ �, then we write �G	a
 = �, and so �	G
 = ��G	a
 � 0 �= a ∈ G� is the
set of types of all nonzero elements of G. The set G	�
 = �g ∈ G � �	g
 � �� forms a
pure fully invariant subgroup of the torsion-free group G. Recall that a torsion-free
group G is called homogeneous if all its nonzero elements have the same type.
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Concerning ring theory, suppose that all rings which we consider are
associative with identity element. For any ring R, the letter R+ will denote its additive
group. To simplify the notation and to avoid a risk of confusion, we shall write
E	G
 for the endomorphism ring of G and End	G
 = E	G
+ for the endomorphism
group of G.

As usual, a subgroup F of a group G is called fully invariant if �	F
 ⊆
F for any � ∈ E	G
. In addition, if � is an invertible endomorphism (i.e., an
automorphism), then F is called a characteristic subgroup, while if � is an
idempotent endomorphism (i.e., a projection), then F is called a projection invariant
subgroup.

Classical examples of important fully invariant subgroups of an arbitrary
group G are the subgroups defined above pnG and G�pn� for any natural n as well
as tG and the maximal divisible subgroup dG of G; actually dG is a fully invariant
direct summand of G (see, for instance, [9]).

We shall say that a group G has only trivial fully invariant subgroups if �0�
and G are the only ones. Same appears for characteristic and projection invariant
subgroups, respectively.

The following notions are our major tools.

Definition 1. A nonzero group G is said to be an IFI-group if either it has only
trivial fully invariant subgroups, or all its nontrivial fully invariant subgroups are
isomorphic otherwise.

Definition 2. A nonzero group G is said to be an IC-group if either it has only
trivial characteristic subgroups, or all its nontrivial characteristic subgroups are
isomorphic otherwise.

Definition 3. A nonzero group G is said to be an IPI-group if either it has
only trivial projection invariant subgroups, or all its nontrivial projection invariant
subgroups are isomorphic otherwise.

Note that Definition 3 implies Definition 1 and Definition 2 implies Definition
1. In other words, any IPI-group is an IFI-group and any IC-group is an IFI-group;
in fact, every fully invariant subgroup is both characteristic and projection invariant.

Definition 4. A nonzero group G is called a strongly IFI-group if either it has only
trivial fully invariant subgroups, or all its nonzero fully invariant subgroups are
isomorphic otherwise.

Definition 5. A nonzero group G is called a strongly IC-group if either it has
only trivial characteristic subgroups, or all its nonzero characteristic subgroups are
isomorphic otherwise.

Definition 6. A nonzero group G is called a strongly IPI-group if either it has
only trivial projection invariant subgroups, or all its nonzero projection invariant
subgroups are isomorphic otherwise.

Notice that Definition 6 implies Definition 4 and Definition 5 implies
Definition 4.
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On the other hand, it is obvious that Definition 4 implies Definition 1, whereas
the converse fails as the next example shows: In fact, construct the group G �
�	p
 ⊕ ⊕ℵo

�	p2
. Since it is fairly clear that G �= pG, G �= G�p� and G = G�p2�,
we deduce that pG � ⊕ℵ0

�	p
 � G�p� that are the only proper fully invariant
subgroups of G. However, G �� G�p�, as required. Thus there exists a p-primary IFI-
group which is not a strongly IFI-group, as asserted.

However, in the torsion-free case, Definitions 1 and 4 are tantamount (see
Proposition 2.2 below).

Moreover, each subgroup of an indecomposable group is projection invariant,
so that an indecomposable group is an IPI-group if and only if it is either a cyclic
group of order p for some prime p, or is isomorphic to the additive group of
integers �.

It is worthwhile noticing in the current context that in [13] and [14] were
studied p-groups which are isomorphic to their fixed proper fully invariant subgroup
as well as in [1] were examined the so-called IP-groups that are isomorphic to
their fixed pure subgroup. On the other vein, in [10] and [11] the classes of
minimal and quasi-minimal groups, having some specific properties of subgroups,
were investigated as well.

Our purpose in this article is to explore some crucial properties of the defined
above new classes of groups. The chief results are stated and proved in the next
section.

2. BASIC RESULTS

As usual, ⊕mG = G	m
 will denote the external direct sum of m copies of the
group G, where m is some ordinal (finite or infinite). The following statement asserts
that in a special case the three classes from Definitions 1, 2, and 3 do coincide.

Theorem 2.1. Let G be a p-group, and let m � 2 be an ordinal. Then G	m
 is an
IFI-group if and only if G is an IC-group if and only if G is an IPI-group.

Proof. The statement follows directly by results from [7] and [8], where it is shown
that in this case characteristic and projection invariant subgroups are fully invariant.

�

Remark 1. In [3] and [4] some other special properties of projection invariant
subgroups were considered and, in addition, when they are fully invariant (see [19]
too). The results established there can also be applied successfully to the proof of
Theorem 2.1.

Proposition 2.2. Let G be a torsion-free group. Then G is an IFI-group if and only
if G is a strongly IFI-group.

Proof. One direction being elementary, we assume now that G is a torsion-free
IFI-group containing all nontrivial fully invariant subgroups isomorphic. So, for
all primes p, we have that G�p� = �0�, and consequently, G � G/�0� = G/G�p� �
pG �= �0�. If G = pG for any prime p, it follows from [9] that G is a torsion-free
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divisible group, whence it does not contain proper fully invariant subgroups, and so
we are finished.

Suppose now that G �= pG for some prime p. Since pG �= �0� is fully invariant
in G for every p, it follows by definition that each other nontrivial fully invariant
subgroup of G must be isomorphic to pG, and hence to G. So, all nonzero fully
invariant subgroups of G (including the full group G) must be mutually isomorphic,
i.e., G is a strongly IFI-group, as claimed. �

For torsion (strongly) IFI-groups, we can obtain a complete description;
however, the torsion-free case is rather more complicated. We first need a series of
technical claims.

The next technicality is quite easy, but we provide a proof only for the sake
of completeness and for the readers’ convenience.

Lemma 2.3.

(a) A fully invariant subgroup of an IFI-group is an IFI-group.
(b) A fully invariant subgroup of a strongly IFI-group is a strongly IFI-group.

Proof. (a) Let G be an IFI-group with a fully invariant subgroup F . If either F =
�0� or F = G, we are done. Suppose now that K and L are two different proper
fully invariant subgroups of F . Since they are obviously proper fully invariant in G,
we deduce that K � L, as required.

(b) The same idea as that in the preceding point successfully works to get the
claim. �

Before proceeding by proving our main characterization theorem, we need one
more useful observation.

Proposition 2.4. A nonzero IFI-group is either divisible or reduced.

Proof. If dG = �0� or dG = G, we are finished. If now G �= dG �= �0�, we have
that G�p� = �0� or that G�p� = G for any p, because otherwise dG � G�p� assures
that dG = �0�, a contradiction. In the latter case, dG = �0�, again a contradiction.
So, let G�p� = �0� for all p. But G �= pG for some p; if not G should be divisible —
contrary to our assumption. Therefore, G � G/�0� = G/G�p� � pG and thus dG �
pG � G, which is false since G is not divisible. �

In accordance to the last statement, since divisible groups are well-classified
(cf. [9]), we will henceforth consider only reduced groups.

Theorem 2.5. The following two points hold:

(i) A nonzero group G is an IFI-group if and only if one of the following holds:

• For some prime p either pG = �0�, or p2G = �0� with r	G
 = r	pG
;
• G is a homogeneous torsion-free IFI-group of an idempotent type.
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(ii) A nonzero torsion group G is a strongly IFI-group if and only if it is an elementary
p-group for some prime p.

Proof. (i) Suppose first that G is torsion, that is, G = tG. If G = G�p�, the
assertion follows. So, assume now that G �= G�p�. We next claim that G = G�p2� or,
equivalently, p2G = �0�. If G �= G�p2�, then G�p2� � G�p� which is untrue, so that
the claim is sustained. But moreover G�p� and 	pG
�p� = pG are both non-trivial
fully invariant in G, whence they should be isomorphic. In addition, appealing to
[9], one may derive that r	G
 = r	G�p�
 = r		pG
�p�
 = r	pG
, as stated.

Reciprocally, if G is an elementary p-group, it contains only trivial fully
invariant subgroups, and thus we are done. So, let G be p2-bounded. It is well
known in this case that the only proper fully invariant subgroups of G are G�p� and
pG = 	pG
�p�. Now, the rank condition allows us to infer that they are isomorphic,
as required. This completes the proof of the torsion case.

Assume now that G is torsion-free, i.e., G �= tG = �0�. Since G	�
 � G, we can
write G = G	�
. But G	�
 is also fully invariant in G for a characteristic � ∈ � and,
because G � G	�
, we conclude that the type � must be an idempotent, that is, �2 =
�, as claimed. This completes the torsion-free case.

Finally, we will show that an IFI-group cannot be mixed. In fact, applying
Lemma 2.3, tG is an IFI-group. By what we have shown above, tG has to be a p2-
bounded p-group for some prime p. This means that G splits, that is, G = tG ⊕ R
where R is torsion-free (see, for instance, [9]). Since both tG �= �0� and p2R = p2G �=
�0� are obviously nontrivially fully invariant in G (this is because G �= tG and p2R =
G = R ⊕ tG ensures that tG = �0� which is against our assumption), they must be
mutually isomorphic. But this is manifestly wrong, because p2R remains torsion-free
while tG is torsion, which gives the desired contradiction. This completes the proof
of the mixed case.

(ii) If G possesses only two trivial fully invariant subgroups, we are done.
Suppose now that Gp �= �0� for some prime p. Since both G �= �0� and G�p� �= �0�
are fully invariant in G, they should be isomorphic, so that G must be an elementary
p-group, as asserted.

Conversely, it is apparent that each elementary p-group G, where p is a prime,
is a strongly IFI-group because it has only two fully invariant subgroups, namely
�0� and G. �

In conjunction with the last statement, we will hereafter be interested only in
torsion-free groups.

It is self-evident that any rank one torsion-free group of an idempotent type
is an IFI-group; these groups are realized as subgroups of the additive group of
rational numbers �. Thus a question related to torsion-free IFI-groups, which
immediately arises, is the following one: Is it true that all homogeneous torsion-
free groups of an idempotent type are IFI-groups? Unfortunately, this problem has
a negative resolution; especially, there is a homogeneous torsion-free group of an
idempotent type with arbitrary rank greater than 1 which is not an IFI-group. In
fact, the following concrete example is true.

Example 2.6. There exists a homogeneous torsion-free group of an idempotent
type with arbitrary large rank > 1 that is not an IFI-group.
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Proof. Letting �p be the ring of all rational numbers with denominator q such
that 	q� p
 = 1, we employ [9, Paragraph 110, Exercize 7] or [6] to find that there is
a reduced indecomposable torsion-free group G of rank 2 with endomorphism ring
E	G
 = �p. Therefore, G is a �p-module, whence G is a homogeneous torsion-free
group of an idempotent type with the property that E	G
a � �+

p for any 0 �= a ∈ G,
but E	G
a � G. However, one may see that G is not an IFI-group.

Even more, the following generalized construction holds: Suppose that L =
�	n


p = �p × · · · × �p (n-times), where n is a natural. So, using the construction of
G demonstrated above, there exists a reduced indecomposable torsion-free group Gn

of rank 2n with endomorphism ring E	G
 = L, and hence G1 = G. Consequently,
rank	E	Gn
a
 � n for any 0 �= a ∈ Gn and thus E	Gn
a � Gn. So, for each n, we
have constructed a homogeneous group of an idempotent type and rank 2n which
is not an IFI-group. Set A = G	
 ⊕ �+

p , where  is an arbitrary cardinal. It is not
too hard to see that the group A is endocyclic, that is, A = E	A
a for some a ∈ A,
although G is obviously not endocyclic. Furthermore, Hom	G��+

p 
 = 0, because
otherwise G will have a direct summand isomorphic to �+

p , which will contradict
the fact that G is indecomposable. Thus, Hom	G	
��+

p 
 = 0, i.e., G	
 is a fully
invariant subgroup in A. But it is clear that G	
 � A, as wanted. Therefore, if  = l
is a natural, for each l we have constructed a homogeneous group of an idempotent
type and rank 2l + 1 which is not an IFI-group. For an infinite ordinal  such a
group has exactly rank .

Note also that, if 2 �  � 2ℵ0 and B is a pure subgroup of rank  of the group
�p of p-adic integers, then B	m
 ⊕ �+

p is also not an IFI-group for any cardinal m.
�

It follows directly from the proof of Theorem 2.5 that the following
proposition is true.

Proposition 2.7. Suppose G is a divisible group. Then G is an IFI-group if and only
if it is a torsion-free group.

As an explicit example to this fact, it is worthwhile noticing that � is a torsion-
free divisible group of rank 1, whence it is an IFI-group.

Since the divisible part is always a fully invariant subgroup of the whole group,
then the (torsion-free) IFI-group is either divisible or reduced. That is why we may
hereafter assume that all groups are reduced.

Observe also that Theorem 2.5 gives a chance to describe some partial classes
of IFI-groups. So, the following corollary holds.

Corollary 2.8.

(1) A coperiodical group is an IFI-group if and only if it is either an elementary p-
group, or is a torsion-free p-adic algebraically compact group, for some single
prime p.

(2) A vector torsion-free group is an IFI-group if and only if it is a direct product of
groups of rank 1 with the same idempotent type.

Proof. (1) Applying Theorem 2.5, such a group should be either an elementary
p-group or a torsion-free group. In the latter case, in accordance with [9,
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Corollary 54.5], a torsion-free coperiodical group is algebraically compact (for more
details, the interested reader can see cf. [9] too). Since each its nonzero p-adic
component is fully invariant, we are done.

(2) Owing to [9, Lemma 96.4], such a group should be homogeneous and
separable, whence it is an IFI-group. �

As already illustrated in the proof of point (2) of Corollary 2.8, since any
nonzero fully invariant subgroup of a group G is of the form nG, where n ∈ �, it
easily follows that every separable homogeneous torsion-free group of idempotent
type is an IFI-group.

Furthermore, recall that a torsion-free group A is called fully transitive if,
for each two elements 0 �= a� b ∈ A with �A	a
 � �A	b
, there exists f ∈ E	A
 such
that f	a
 = b. This class of groups is quite large and, for instance, it contains
algebraically compact torsion-free groups and homogeneous separable groups (see,
for example, [17]). Using this definition, the last claim about separable homogeneous
torsion-free groups stated above can be somewhat extended thus:

Proposition 2.9. Every homogeneous fully transitive torsion-free group of an
idempotent type is an IFI-group.

Proof. In Paragraph 25, Exercise 11 of [17] it was proved that every fully invariant
subgroup of a torsion-free group G has the form nG for some integer n � 0 if and
only if G is a homogeneous torsion-free fully transitive group of an idempotent
type. And since nG is isomorphic to G, all nontrivial fully invariant subgroups are
mutually isomorphic, so that the assertion follows. �

On the other hand, if an almost completely decomposable group (for the
definition, we refer the reader to [18]) is an IFI-group, then by virtue of Theorem 2.5
it is homogeneous of an idempotent type. Likewise, excepting the case where it is
isomorphic to its regulator, an almost completely decomposable IFI-group A should
be a completely decomposable homogeneous group with the property that each its
fully invariant subgroup has the form nA.

As a consequence to Proposition 2.9, we obtain the following (see also
Problem 1 below).

Corollary 2.10. A direct summand of a fully transitive torsion-free IFI-group is again
a fully transitive IFI-group.

Proof. In view of Theorem 2.5, the group G should be homogeneous of an
idempotent type. Moreover, it follows from [17] that any direct summand of a fully
transitive torsion-free group is again a torsion-free fully transitive group. But it must
also be homogeneous of an idempotent type, so that Proposition 2.9 is applicable
to get the claim. �

In [12], a group G is called an H-group if any its fully invariant subgroup
F has the form F = �a ∈ G � H	a
 � M�, where H	a
 is the height matrix of the
element a and M is some � × �-matrix with ordinal numbers and symbol 
 for
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entries. Likewise, it is shown there that every H-group is a fully transitive group and
that a p-group is a H-group if and only if it is fully transitive. However, there are
fully transitive torsion-free groups that are not H-groups. Nevertheless, torsion-free
homogeneous fully transitive groups are necessarily H-groups.

The next assertions shed some light about the relationships between IFI-
groups and H-groups (compare also with Theorem 2.19 below).

Proposition 2.11. Suppose that G is a torsion-free H-group. Then G is an IFI-group
if and only if G is a homogeneous group of an idempotent type.

Proof. The necessity follows directly from Theorem 2.5. Since as observed above
H-groups are fully transitive, the sufficiency follows directly from Proposition 2.9.

�

Mimicking [20], a ring R with identity is said to be an E-ring if Hom�	R� R
 =
HomR	R� R
, where � is the ring of integers. Note that every E-ring is necessarily
commutative. The additive groups of E-rings are just called E-groups. Notice also
that the group A is an E-group if and only if A � End	A
 and the ring E	A
 is
commutative. Furthermore, if R is a commutative ring, then the right R-module A
is said to be an E-module if Hom�	R� A
 = HomR	R� A
.

We also recall that the commutative ring R with identity is called a principal
ideal ring if each its ideal is principal, that is, it is of the form xR for some element
x ∈ R.

Theorem 2.12. Suppose A �= 0 is a torsion-free group whose nonzero endomorphisms
are monomorphisms. Then A is an IFI-group if and only if A is an E-group and E	A

is a principal ideal ring.

Proof. “Necessity.” Set R = E	A
. For each 0 �= a ∈ A the map of R+ onto Ra,
defined by R+ � � �→ �a, gives the group isomorphism R+ � Ra. Thus A � Ra �
R+. In fact, let f � R+ → A be an isomorphism. Now, the map �� ra �→ f	ra
 −
r	f	a

 defines for each fixed 0 �= a ∈ A a group homomorphism Ra → A with
nonzero kernel. Therefore, � = 0 which forces an isomorphism Ra � A. So, f	ra
 =
r	f	a

 and, hence, f is an R-modular isomorphism. But R+ � A implies the equality
Hom�	R� R
 = HomR	R� R
, that is, the ring R is an E-ring. Every ideal I of R
as a submodule of an E-module RR is an E-module as well. Consequently, the
isomorphism I+ � Ra is an R-modular isomorphism and so the ideal I is principal,
i.e., R is a principal ideal ring.

“Sufficiency.” Since A � End	A
, then we can determine on A the structure of
the ring E	A
, so that all non-zero fully invariant subgroups of A can be considered
as the ideals of the ring E	A
. According to the condition on additive groups, such
ideals are obviously isomorphic to End	A
, as required. �

Lemma 2.13. If A is a torsion-free IFI-group, then all its nonzero central
endomorphisms are monomorphisms.
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Proof. If � is a central endomorphism and ker � �= 0, then ker � � A, and therefore,
there exists a monomorphism f ∈ E	A
 such that �f = 0. But �f = f�, whence � =
0 as needed. �

It follows from [2, Lemma 1.3] that in any quasi-homogeneous torsion-free
fully transitive group all nonzero central endomorphisms are monomorphisms.
Besides, in [5] were found some necessary and sufficient conditions for groups to be
torsion-free fully transitive, provided that their endomorphism ring is commutative.

A group is said to be irreducible if it does not have proper pure fully invariant
subgroups. So, elementary p-groups can be considered as irreducible. If now A is
a torsion-free IFI-group of finite rank, then any its pure fully invariant subgroups
coincides with the full group A; in particular, the group A is irreducible.

The following sheds some light on the endomorphism ring structure of such
groups.

Proposition 2.14. If A is a torsion-free IFI-group of finite rank, then the following
conditions are equivalent:

(1) All nonzero endomorphisms of A are monomorphisms;
(2) A is a strongly indecomposable group;
(3) E	A
 is a commutative ring.

Proof. The implication (1) ⇒ (2) is obvious, while the implication (1) ⇒
(3) follows from Theorem 2.12. The validity of the implication (3) ⇒ (1)
was noted above. Now, we will show that (2) ⇒ (1) is true. In fact, in a
strongly indecomposable torsion-free IFI-group of finite rank any pure fully
invariant subgroup coincides with the whole group. Consequently, according to
Corollary 5.14 from [17], all its nonzero endomorphisms are monomorphisms which
guarantees the wanted implication. �

A combination of Theorem 2.12 and Proposition 2.14 gives the following
corollary.

Corollary 2.15. Suppose A �= 0 is a strongly indecomposable torsion-free IFI-group
of finite rank. Then A is an E-group and E	A
 is a principal ideal ring.

Homogeneous fully transitive torsion-free groups A of an idempotent type are
endocyclic groups, that is, A = E	A
a for a certain element a ∈ A; in conjunction
with Proposition 2.9, they are also IFI-groups. All fully invariant subgroups of
such a group A are submodules of the R-module RA, where R = E	A
. If in the
determination of the torsion-free IFI-group we require an R-module isomorphism,
then under the validity of the isomorphism A � Ra, where 0 �= a ∈ A, the group A
is endocyclic. Moreover, a more general class form the so-called endofinite groups
that are groups considered as finitely generated modules over their endomorphism
rings.

Theorem 2.16. Suppose A is an irreducible endofinite torsion-free group, the center
C of E	A
 is a principal ideal domain, and the module CA has rank � ℵ0. Then A is an
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IFI-group. Besides, if the group A is decomposable, then it is both an IC-group and an
IP-group.

Proof. According to [15] (see also [17, Corollary 8.6]), one sees that A is a free
C-module. If now H is a fully invariant subgroup of A, then H is a submodule of
the module CA. Since C is a principal ideal domain, then H is also a free C-module
(same rank as CA under the truthfulness of the fully invariance of the subgroup H).
Consequently, the module CH is isomorphic to CA, and hence we have the group
isomorphism H � A, as desired.

The second part is immediate. �

We shall say that R is a ring with property 	∗
 if R+ is a torsion-free group
and the factor-ring R/pR is a domain for any prime number p such that pR �= R.
With [17, Lemma 44.6] at hand, it will follow that in such a ring R the equality
�	ab
 = �	a
 + �	b
 holds for any a� b ∈ R.

The following technicality is pivotal.

Lemma 2.17. Let R be an E-ring with property 	∗
. Then the following conditions are
equivalent:

(1) R+ is irreducible;
(2) any element of R is an integer multiplied by invertible;
(3) R+ is a homogeneous fully transitive group.

Proof. “(1) ⇒ (2).” Since R+ is irreducible, then it is homogeneous, and since �	1

is the least characteristic, then the type of R+ is an idempotent. Supposing that I =
xR is a main ideal, we write x = nx0 where �	x0
 = �	1
 and J = x0R. If y = x0z ∈
J , where z ∈ R, then �	y
 = �	x0
 + �	z
 = �	z
 because �	x0
 is a characteristic
consisting only of 0 and 
. So, if pkt = y, then z ∈ pkR and y ∈ pkJ . Equivalently,
J+ is a pure fully invariant subgroup in R+ because R is an E-ring. Consequently,
J = R ensures that the element x0 is invertible, as required.

“(2) ⇒ (3).” Since any element of R is an integer multiplied by invertible,
the group R+ is homogeneous of an idempotent type. Let 0 �= a� b ∈ R+ and �	a
 �
�	b
. Assuming na0 = a, where a0 is invertible, we obtain that nb0 = b. Therefore,
b0a

−1
0 a = b, as wanted.

“(3) ⇒ (1).” It is obvious. �

It is worthwhile noticing that, since the multiplication of elements of a ring by
its invertible elements is an automorphism, all conditions of Lemma 2.17 are also
equivalent to the fact that R+ is a homogeneous transitive group. Besides, note that
the ring R from Lemma 2.17 is a principal ideal domain.

Proposition 2.18. Any countable irreducible and endofinite torsion-free group, for
which the center of its endomorphism ring is a principal ideal domain with property 	∗
,
is both a fully transitive and transitive group.
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Proof. Let A be such a group, and let C be the center of E	A
. In accordance with
[17, Theorem 8.7], C is an E-ring. With [17, Corollary 8.6] at hand, A is a free C-
module. However, as a direct summand of A, the group C+ is irreducible. Thus the
proof goes on by virtue of Lemma 2.17 and [17, Corollary 40.5]. �

The next statement also describes certain cases of IFI-groups (compare with
Proposition 2.14 above).

Theorem 2.19. For a torsion-free group G of finite rank, for which the center C of
E	G
 is a ring satisfying property 	∗
, the following four conditions are equivalent:

(1) G is an IFI-group;
(2) G is an irreducible endofinite group and C is a principal ideal E-ring;
(3) G � 	C+
	n
, where n is some natural number and C+ is a strongly indecomposable

E-group of finite rank;
(4) G is a homogeneous fully transitive group of idempotent type.

Proof. “(1) ⇒ (2)” and “(1) ⇒ (3).” We have noted before the statement of
Proposition 2.14 that G is irreducible and that we have proved in Lemma 2.13 that
all nonzero endomorphisms in C are monomorphisms. Since G � E	G
a for any
fixed 0 �= a ∈ G, the subgroup E	G
a has finite index in G because of the finite rank
of G. So G is an endofinite group. Invoking [17, Corollary 8.8] and Corollary 2.15, C
is a principal ideal E-ring, and G is quasi-isomorphic to 	C+
	n
 for some n. As being
a quasi-summand of G, the group C+ is irreducible, so referring to Lemma 2.17 and
[17, Corollary 8.6], we obtain that G � 	C+
	n
 that substantiates the proof of these
two implications.

“(2) ⇒ (3).” It follows from [17, Corollary 11.5].

“(3) ⇒ (4).” By virtue of [17, Corollary 8.10], the group End	C+
 is an
irreducible group, and hence in view of Lemma 2.17 the group C+ � End	C+
 is
a fully transitive group, so G as being isomorphic to the direct sum of copies of a
fixed fully transitive group is again fully transitive, as required.

“(4) ⇒ (1).” It follows directly from Proposition 2.9. �

Remark 2. Note that Theorem 2.5 guarantees the validity only of a part of
implication (1) ⇒ (4), namely that G is a homogeneous group of an idempotent
type.

Now we will consider the question of when an arbitrary direct sum of IFI-
groups is again an IFI-group. Before doing this, it is worthy of noticing that any
IFI-group G has no nontrivial fully invariant direct summand (i.e., a fully invariant
direct summand �= 0� G). To that goal, Theorem 2.5 settles this when G is a torsion
group. Letting now G be torsion-free, we write in a way of contradiction that
G = A ⊕ B, where A �= 0 is fully invariant in G. Then A � G, so one can infer
that A = A1 ⊕ B1, where A1 � A and B1 � B. But this allows us to conclude that
Hom	A� B
 �= 0, and so the desired claim follows.
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Proposition 2.20. Suppose Ai 	i ∈ I
 is a system of nonzero torsion-free IFI-groups.
Then G = ⊕

i∈I Ai is an IFI-group if and only if at most one of the following two
conditions is valid:

(1) For any pair i� j ∈ I and for each 0 �= a ∈ Ai, there exists � ∈ Hom	Ai� Aj
 with
the property �	a
 �= 0;

(2)
⊕

j∈JK
Aj � G for each K ⊆ I (K �= �� I), where

JK = �j ∈ I � ⋂f∈Hom	Aj�Ak
� k∈K ker f �= 0�.

Proof. “Necessity.” Assume that JK �= � for some � �= K � I . Thus G = B ⊕ C,
where B = ⊕

j∈JK
Aj and C = ⊕

i∈I\JK
Ai. Set

Hj = ⋂
f∈Hom	Aj�Ak
� k∈K

ker f�

where j ∈ JK . It is clear that H = ⊕
j∈JK

Hj is a fully invariant subgroup in B. But
if i ∈ I\JK , then for any 0 �= a ∈ Ai there exist k ∈ K and f ∈ Hom	Ai� Ak
 with the
property f	a
 �= 0. So H is a fully invariant subgroup of G and Hj is a fully invariant
subgroup of Aj for each j ∈ JK , respectively. Therefore, H � G and hence B � H �
G, as required.

“Sufficiency.” If H is a fully invariant subgroup of G, then it is well known
that H = ⊕

i∈I 	H ∩ Ai
, where every H ∩ Ai is a fully invariant subgroup of Ai.
If now condition (1) holds, then H ∩ Ai �= 0 for any i ∈ I . However, H ∩ Ai � Ai,
which assures that H � G, as needed.

If we set K = �k ∈ I � H ∩ Ak = 0� �= � and J = �j ∈ I � H ∩ Aj �= 0�, then
one sees that J ∪ K = I and J ∩ K = �, so that

J = JK =
{

s ∈ I � ⋂
f∈Hom	As�Ak
� k∈K

ker f �= 0

}
�

Next, in the presence of condition (2), we conclude that H ∩ Aj � Aj for each
j ∈ J and consequently H � G, as required. �

We notice the obvious fact that condition (1) in Proposition 2.20 is not
equivalent to Hom	Ai� Aj
 �= 0 for any i� j ∈ I ; in fact, it is weaker than that
inequality because in (1) the homomorphism � depends on the choice of the
element a.

The next assertion, however, shows that under some additional circumstances
on the family �Ai�i∈I , the last statement can be somewhat reversed.

Proposition 2.21. Let Ai 	i ∈ I
 be a system of nonzero irreducible IFI-groups. Then
G = ⊕

i∈I Ai is an IFI-group if and only if Hom	Ai� Aj
 �= 0 for any i� j ∈ I .

Proof. “Necessity.” Assume that �	a
 = 0 for some 0 �= a ∈ Ai and for
each � ∈ Hom	Ai� Aj
. If we set B = ⊕

k∈I\�j� Ak and C = Aj , then a ∈ H =⋂
f∈Hom	B�C
 ker f , where it is readily checked that H is a pure fully invariant

subgroup of G. So, it follows that H = ⊕
i∈I 	H ∩ Ai
, where H ∩ Ai are fully
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invariant pure subgroups of Ai and thus H ∩ Ai = Ai if H ∩ Ai �= 0. Consequently,
H is a nonzero fully invariant direct summand of G that contradicts the remark
listed before Proposition 2.20. In particular, Hom	Ai� Aj
 �= 0 for any i� j ∈ I , as
desired.

“Sufficiency.” By hypothesis, it follows that either all Ai are elementary
p-groups for a fixed prime natural p and hence G is an elementary p-group, or all
Ai are torsion-free groups. In the second case, these Ai are irreducible groups. So,
for any 0 �= a� b ∈ Ai, we find f ∈ E	Ai
 with the property that f	a
 = kb for some
natural number k. Thus, if H is a fully invariant subgroup of G, then H ∩ Ai �= 0
for every i ∈ I . As in the proof of Proposition 2.20, we deduce that H � G, whence
G is an IFI-group, as claimed. �

As an immediate consequence to Proposition 2.20, we also derive:

Corollary 2.22. If G is an IFI-group, then G	m
 is also an IFI-group for any
ordinal m.

It was proved in [12, Corollary 3.24] that if G is a homogeneous fully transitive
torsion-free group and K is an arbitrary ideal of the Boolean algebra of all subsets
of a certain set of indices I , then the K-direct sum

⊕
K G remains a fully transitive

group. If, additionally, the type of G is an idempotent, then
⊕

K G will also be
homogeneous as a pure subgroup of the homogeneous group GI (see, for instance,
[9, Lemma 96.4]).

We thus deduce the following statement.

Proposition 2.23. If G is a fully transitive torsion-free IFI-group, then any K-direct
sum

⊕
K G is an IFI-group.

Recall that a torsion-free group is called strongly irreducible if any of its
nonzero fully invariant subgroup has bounded index. Utilizing [9, Proposition 92.1],
we directly obtain the following proposition.

Proposition 2.24. Any strongly irreducible group G, satisfying the condition
�G/pG� � p for each prime p, is an IFI-group.

3. LEFT-OPEN PROBLEMS

We close the work with some results of interest.

Problem 1. Is a direct summand of an IFI-group again an IFI-group?

Problem 2. Do there exist IFI-groups that are not fully transitive (in particular,
that are not H-groups)?

Problem 3. Do there exist nonirreducible and nonendocyclic torsion-free IFI-
groups?
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Problem 4. Does there exist a strongly irreducible endocyclic group which is not
an IFI-group?

Problem 5. If possible, construct an IFI-group that is neither an IC-group nor an
IPI-group.

Problem 6. Let Ai (i ∈ I) be a system of reduced torsion-free IFI-groups, and let
K be the ideal of the Boolean algebra of all subsets of I . Find a necessary and/or
sufficient condition when the K-direct sum

⊕
K Ai (in particular, the direct product∏

i∈I Ai) is an IFI-group.

Problem 7. Can torsion-free IFI-groups be characterized by certain numerical
invariants?

Problem 8. Determine when E	A
 is a clean ring, provided that A is a torsion-free
IFI-group.

Problem 9. Characterize those groups that have all (proper or nonzero,
respectively) large subgroups isomorphic, if they eventually exist. We call such
groups IL-groups or strongly IL-groups, respectively.
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