
Arch. Math. 92 (2009), 191–199
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On the socles of fully invariant subgroups of Abelian p-groups
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Abstract. The classification of the fully invariant subgroups of a reduced
Abelian p-group is a difficult long-standing problem when one moves outside
of the class of fully transitive groups. In this work we restrict attention to the
socles of fully invariant subgroups and introduce a new class of groups which
we term socle-regular groups; this class is shown to be large and strictly con-
tains the class of fully transitive groups. The basic properties of such groups
are investigated but it is shown that the classification of even this simplified
class of groups, seems extremely difficult.
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0. Introduction. The classification of all the fully invariant subgroups of a reduced
Abelian p-group is a difficult and long-standing problem, not withstanding the
progress made by Kaplansky in the 1950s utilizing the notion of a fully transitive
group, see §18 in [8]. Further progress was made for the special class of so-called
large subgroups by Pierce in [10, Theorem 2.7]. A somewhat less ambitious pro-
gramme is to try to characterize the socles of fully invariant subgroups and this is
the subject of our discussions here. Despite the seeming simplification engendered
by restricting attention to socles, the situation is still complicated once one moves
away from fully transitive groups. We will show by means of examples that full
transitivity is not the real core of the problem. We remark at the outset that the
consideration of reduced groups only, is not a serious restriction; see the Note after
Lemma 1.1 below. Hence in the sequel we shall assume that our groups are always
reduced p-groups for some prime p.

Our notation is standard and follows [5, 8], an exception being that maps are
written on the right. Finally we recall the notion of a U -sequence from [8]: a
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U -sequence relative to a p-group G is a monotone increasing sequence of ordinals
{αi}(i ≥ 0) (each less than the length of the group G) except that it is permitted
that the sequence be ∞ from some point on but that if a gap occurs between αn

and αn+1, the αth
n Ulm invariant of G is non-zero.

We introduce two additional concepts, the first of which shall be the primary
focus our interest:

(i) A group G is said to be socle-regular if for all fully invariant subgroups F
of G, there exists an ordinal α (depending on F ) such that F [p] = (pαG)[p].

(ii) Suppose that H is an arbitrary subgroup of the group G. Set α = min{hG(y) :
y ∈ H[p]} and write α = min(H[p]); clearly H[p] ≤ (pαG)[p].

If K is also a subgroup of G containing H, then of course there may be two
different values of min associated to H, depending on where the heights of elements
are calculated. We will distinguish these if necessary by writing minG(H[p]) and
minK(H[p]); note that if K is an isotype subgroup of G then the respective values
of min coincide. However if K is not an isotype subgroup of G then all that one can
say is that minK(H[p]) ≤ minG(H[p]). Our first result collects some elementary
facts about the function min.

Proposition 0.1. (i) If F is a subgroup of the group G and (pnG)[p] ≤ F [p] for
some integer n, then min(F [p]) is finite.

(ii) If F is a fully invariant subgroup of the group G and min(F [p]) = n, a finite
integer, then F [p] = (pnG)[p].

Proof. (i) Suppose that α = min(F [p]), so that α ≤ min{hG(x) : x ∈ (pnG)[p]}.
Now if α ≥ ω, then (pnG)[p] ≤ pωG = pω(pnG), so that writing X = pnG, one
has X[p] ≤ pωX, which forces X to be divisible contrary to the assumption that
G is reduced provided pnG is non-zero. Hence min(F [p]) is finite as required.

(ii) As observed above, one inclusion holds always. Conversely, suppose that
x ∈ F [p] and hG(x) = n. Then x = pny and the subgroup generated by y is a
direct summand of G, see, e.g., Corollary 27.2 in [5]. Thus G = 〈y〉 ⊕ G1 for some
subgroup G1. Now if 0 �= z is an arbitrary element of (pnG)[p], then z = pnw
for some w ∈ G. Since the elements y, w are both of order pn+1 we may define
a homomorphism φ : G → G by sending y 
→ w and mapping G1 to zero; note
that xφ = z. Since F [p] is fully invariant in G, it follows that z ∈ F [p] and so
(pnG)[p] ≤ F [p]. �
Corollary 0.2. If G is a separable group, then G is socle-regular.

Proof. This is immediate since the hypothesis of separability implies that for any
fully invariant subgroup F of G, min(F [p]) is finite. �

Corollary 0.2 could have been deduced directly from our next result but we
preferred to give the more elementary proof as an introduction to the type of
arguments needed.
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Theorem 0.3. If G is a fully transitive group, then G is socle-regular.

Proof. Since G is, by hypothesis, fully transitive, one may make use of Kaplansky’s
classification of fully invariant subgroups, see Theorem 25 in [8]. Thus the fully
invariant subgroup F has the form F = {x ∈ G : UG(x) ≥ U}, where U = {αi} is
a U -sequence relative to G. Now if x ∈ F [p], then UG(x) = {β,∞, . . . } for some
ordinal β ≥ α0. Clearly x ∈ (pα0G)[p] and so F [p] ≤ (pα0G)[p].

Conversely if y ∈ (pα0G)[p], then UG(y) = {γ,∞, . . . } where γ ≥ α0. But now
it is immediate that y ∈ {x ∈ G : UG(x) ≥ U} = F , so that (pα0G)[p] ≤ F [p].
This completes the proof. �

It follows, of course, that the class of socle-regular groups is large since the class
of fully transitive groups is known to contain the λ-separable groups for all limit
ordinals λ, the totally projective groups and Crawley’s generalized torsion-complete
groups; for further details of the latter see [6]. It is perhaps worth remarking that,
as observed in [6], for p �= 2, the concept of full transitivity coincides with Krylov’s
notion of transitivity, i.e. there exists an endomorphism mapping any element of
the group to any other element which has the same Ulm sequence.

1. The class of socle-regular groups. In this section we explore some of the prop-
erties of the class of socle-regular groups. We shall have need of the following result
which is a slight variation of a well-known result.

Lemma 1.1. Suppose that A =
⊕

i∈I

Gi and that F is fully invariant in A. Then

1. F =
⊕

i∈I

(Gi ∩ F )

2. each Gi ∩ F is fully invariant in Gi.

Proof. Let πi : A � Gi denote the canonical projections onto Gi. It is easy to see
that F =

⊕

i∈I

Fπi. Since F is fully invariant in A, Fπi ≤ F and it follows easily that

Fπi = Gi ∩F , establishing (i). Suppose now that φi is an arbitrary endomorphism
of Gi. Then (Gi ∩ F )φi = Fπiφi ≤ F since F is fully invariant in A and πiφi can
be identified with an endomorphism of A. Since (Gi ∩ F )φi ≤ Gi also, the result
follows. �

Note. This Lemma allows one to justify the restriction of consideration to reduced
groups. For if G = D ⊕ R is a group with maximal divisible subgroup D, then
for any fully invariant subgroup F of G, one has F = (F ∩ D) ⊕ (F ∩ R) and
F ∩ D, F ∩ R are fully invariant in D, R respectively. However it is well known
that the socle (F ∩D)[p] must be either 0 or D[p] and so the determination of F [p]
reduces to the determination of the socle of the fully invariant subgroup F ∩ R of
the reduced group R.
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Given that the class of fully transitive groups is closed under the addition of
separable summands—see e.g. [1, Proposition 2.6]—it is reasonable to ask whether
the class of socle-regular groups has a similar property. A strong positive answer
is given by:

Theorem 1.2. Suppose that A = G ⊕ H where H is separable, then A is socle-
regular if, and only if, G is socle-regular.

Proof. Suppose that G is socle-regular and that F is fully invariant in A, so that
by Lemma 1.1 F = (F ∩ G) ⊕ (F ∩ H) and (F ∩ G), (F ∩ H) are fully invariant
in G, H respectively. If F ∩ H �= 0 then, since H is separable, it follows that
minH((F ∩ H)[p]) is finite. But F [p] = (F ∩ G)[p] ⊕ (F ∩ H)[p] and so

minA(F [p]) ≤ minA((F ∩ H)[p]) = minH((F ∩ H)[p]),

the last equality following since H is pure in A. Thus it follows that minA(F [p])
is also finite, and so by Proposition 0.1, F [p] = (pnA)[p] for some integer n.

If F ∩ H = 0, then F is a fully invariant subgroup of the socle-regular group
G. Hence F [p] = (pαG)[p] for some ordinal α. If α ≥ ω, then pαA = pαG since
H is separable and so F [p] = (pαA)[p]. Otherwise F [p] = (pnG)[p] and F is a
fully invariant subgroup of G. It follows from Proposition 0.1(i) that minG(F [p])
is finite, and since G is pure in A, we also have that minA(F [p]) is finite. Now an
appeal to Proposition 0.1(ii) yields the desired result.

Conversely suppose that A is socle-regular and assume for a contradiction that
G is not. Then there exists a fully invariant subgroup K of G such that K[p] �=
(pαG)[p] for any α. Note that min(K[p]) must be infinite, for if it were finite,
then by Proposition 0.1(ii), K[p] = (pnG)[p] for some finite n—contradiction. So
min(K[p]) is infinite and thus K[p] ≤ pωG. Furthermore K[p] is fully invariant in
G since K is. It follows from Lemma 1.3 below that K[p] is fully invariant in the
socle-regular group A. Thus K[p] = (pαA)[p] for some α. Since K[p] ≤ pωG, α
must be infinite. But then pαH = 0 and so K[p] = (pαG)[p] ⊕ (pαH)[p] = (pαG)
[p]—contradiction. Thus G is socle-regular as required. �

We remark that the last possibility examined in the proof above never actually
occurs: minG(F [p]) finite implies that there is an x ∈ F [p] which can be embedded
in a cyclic summand of G and then this element x can be mapped outside of F
contrary to full invariance of F .

The proof of Theorem 1.2 is completed by the following:

Lemma 1.3. A subgroup F of G is fully invariant in A = G ⊕ H, where H is
separable, if F is fully invariant in G and F ≤ pωG.

Proof. Suppose that F ≤ pωG and that F is fully invariant in G. Let Φ =
( α γ

δ β

)

be any endomorphism of A. Then (F ⊕ 0)Φ ≤ (Fα ⊕ Fγ) ≤ (F ⊕ Fγ) since F is
fully invariant in G. Moreover, γ is a homomorphism : G → H, and since H is
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separable, pωG must be mapped to zero by γ. Since F ≤ pωG, one must have that
Fγ = 0 and so (F ⊕ 0)Φ ≤ (F ⊕ 0) and F is fully invariant in A as required. �

We can also show that direct powers of a single socle-regular group are again
socle-regular. In fact we have the stronger:

Theorem 1.4. The group G is socle-regular if, and only if, the direct sum G(κ) is
socle-regular for any cardinal κ.

Proof. Suppose that F is fully invariant in G(κ), so that in view of Lemma 1.1,
F =

⊕

i<κ

(Gi ∩ F ) where each Gi is isomorphic to G. Then the socle F [p] =
⊕

i<κ

(Gi ∩ F )[p] and each Gi ∩ F is fully invariant in Gi. Since G is socle-regular, each
(Gi∩F )[p] can be expressed as (pαiGi)[p] for ordinals αi. However if the αi are not
all equal, the subgroup

⊕

i<κ

(pαiGi)[p] is not fully invariant. It follows immediately

that F [p] = (pαG(κ))[p], where α is the common value of the αi, as required.

Conversely suppose that G(κ)is socle-regular and that F is an arbitrary fully
invariant subgroup of G. Since the endomorphism ring of G(κ) may be construed
as the ring of row-finite matrices over End(G), it is easy to see that the subgroup
F (κ) is fully invariant in G(κ). Since the latter is socle-regular, we have (F (κ))[p]
= (pαG(κ))[p] for some ordinal α. It follows immediately that F [p] = (pαG)[p] and
thus G is socle-regular. �

Recall that a fully invariant subgroup L of a group G is said to be large if
G = L + B for every basic subgroup B of G. Our next result shows that socle-
regularity is inherited by large subgroups.

Proposition 1.5. If A is a socle-regular group and L is a fully invariant subgroup
of A such that pωL = pωA, then L is socle-regular. In particular, large subgroups
of socle-regular groups are again socle-regular.

Proof. Let F be a fully invariant subgroup of L. Then F is also fully invariant
in A and hence, as A is socle-regular, F [p] = (pαA)[p] for some ordinal α. Since
pωA = pωL by hypothesis, it follows from a simple transfinite induction argument
that pαA = pαL for all ordinals α ≥ ω. Thus, if α ≥ ω, F [p] = (pαA)[p] = (pαL)[p].
If α is finite, then F [p] = (pnA)[p] ≥ (pnL)[p] and so it follows from Proposition
0.1(i) that minL(F [p]) is finite. Applying the second part of the same Proposition
gives that F [p] = (pmL)[p] for some integer m. The final claim in relation to large
subgroups follows from the fact that if L is a large subgroup of A, then pωA = pωL,
see, e.g., §46.1 in [11]. �

Once we drop the hypothesis of full transitivity, it is possible to exhibit groups
of varying levels of complexity which are not socle-regular. Our first result shows
that this failure can happen at the next stage beyond separability. We give two
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examples, the first based on the well-known realization theorem of Corner in [2]
while the second is essentially due to Megibben [9].

Theorem 1.6. There exist groups of length ω + 1 which are not socle-regular.

Proof. For the first class of examples let H = 〈a〉 ⊕ 〈b〉 where a, b are of order p
and set K = 〈a〉 and L = 〈b〉. The endomorphism ring of H contains a subring Φ
consisting of the diagonal matrices with entries from End(K) and End(L). Now
apply Corner’s realization result Theorem 6.1 in [2] to obtain a group G such
that pωG = H and End(G) � H = Φ. (Note that G is neither transitive nor fully
transitive since K, L are both fully invariant subgroups of G but the elements a, b
have the same Ulm sequence (ω, ∞, . . . ).)

In particular K is fully invariant in G and K[p] = K. However (pωG)[p] =
K ⊕ L, pω+1G = 0 and pnG is unbounded for all positive integers n, so that
K[p] �= (pαG)[p] for any α. Hence G is not socle-regular as desired.

For the second class of examples let A = G ⊕ H, where pωG ∼= pωH ∼= Z(p),
G/pωG is a direct sum of cyclic groups and H/pωH is torsion-complete. It follows
easily – e.g., see Theorem 2.4 in [9] – that pωH is fully invariant in A. We claim
that A is not socle-regular. If it were, then there is an ordinal α ≥ 0 such that
pωH = (pωH)[p] = (pαA)[p] = (pαG)[p] ⊕ (pαH)[p]. Therefore, (pαG)[p] = 0, i.e.,
pαG = 0 and hence α = ω + 1. Thus, pωH = (pω+1H)[p] = 0, a contradiction. �

Note. (i) The first class of examples shows that elongations of socle-regular groups
by socle-regular groups need not be socle-regular: pωG and G/pωG are clearly both
socle-regular while G is not. Notice, however, that it is easy to show that for any
ordinal α and any socle-regular group A, the subgroup pαA is always socle-regular.

(ii) These same examples show that Kaplansky’s classification of fully invariant
subgroups fails if we drop the full transitivity hypothesis: the subgroup K above
is fully invariant but it cannot have the form M({αi}) for any U -sequence {αi}.
To see this observe that UG(a) = (ω, ∞, . . . ) and so if K = M({αi}) for some
U -sequence {αi}, then α0 ≤ ω. But it follows immediately that b, which has Ulm
sequence UG(b) = (ω, ∞, . . . ), must also belong to M({αi}), implying that b ∈ K –
contradiction. A similar observation has been made by Megibben in [9].

(iii) The second class of examples shows that one cannot drop the separability
condition from Theorem 1.2: since pωG ∼= pωH ∼= Z(p), it is easy to see that
G, H are both fully transitive and hence socle-regular by Theorem 0.3. However
A = G ⊕ H is not socle-regular and so direct sums of socle-regular groups need
not be socle-regular.

As noted above, elongations of socle-regular groups by socle-regular groups
need not be socle-regular. We can however obtain some additional information in
the special situation where the quotient G/pωG is a direct sum of cyclic groups.
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Theorem 1.7. Let G be a group such that G/pωG is a direct sum of cyclic groups.
Then G is socle-regular if, and only if, pωG is socle-regular.

Proof. We have already noted that G socle-regular implies that pαG is socle-
regular for any ordinal α, so it suffices to handle the sufficiency. Let F be an
arbitrary fully invariant subgroup of G. Consider the socle F [p]. If F [p] � (pωG)[p],
then min(F [p]) is finite and it follows from Proposition 0.1 that F [p] = (pnG)[p] for
some finite integer n. If, however, F [p] ≤ (pωG)[p] we claim that F [p] is fully invari-
ant in pωG. Assuming that this is true, it then follows immediately that F [p] =
(pα(pωG))[p] since pωG is socle-regular by hypothesis. Thus F [p] = (pω+αG)[p]
and we are finished. Thus it remains to show that F [p] is fully invariant in pωG.

If φ is an arbitrary endomorphism of pωG, then it follows from Hill’s work on
totally projective groups – see Theorem 2 in [7] – that every endomorphism of
pωG is induced from an endomorphism of G in this situation. The desired result
follows immediately. �

We have seen in Theorem 1.4 that direct powers of socle-regular groups must
be socle-regular, but we have been unable to determine whether or not summands
of socle-regular groups are, in general, socle-regular. The best we can offer is the
rather weak:

Proposition 1.8. Let G = A ⊕ B be a socle-regular group such that every homo-
morphism from A to B is small, then A is socle-regular.

Proof. Let F be a fully invariant subgroup of A. If min(F [p]) is finite then it
follows from Proposition 0.1 that F [p] = (pnA)[p] for some finite integer n.
If min(F [p]) is infinite, then F [p] ≤ pωA. Claim that F [p] ⊕ 0 is fully invariant
in G: the argument is similar to that used in Lemma 1.3 with smallness replac-
ing the argument using separability. If Φ is any endomorphism of G then Φ may
be written as a matrix

( α γ
δ β

)
, where γ ∈ Hom(A, B), so that γ is small. Then

(F [p] ⊕ 0)Φ ≤ (F [p]α ⊕ F [p]γ). However F [p] ≤ pωA implies that F [p]γ = 0 as γ
is small. So F [p]⊕ 0 is fully invariant in G and hence F [p]⊕ 0 = (pνG)[p] for some
ordinal ν. Hence F [p] = (pνA)[p] as required. �

It is, however, possible to construct a group which is not fully transitive but is
transitive (and hence is a 2-group) and has the property that it is socle-regular.

Example. Let G be the transitive, non fully transitive 2-group constructed by
Corner in [3]. The group G has the property that 2ωG = H, Aut(G) � 2ωG =
Aut(H), End(G) � 2ωG = Φ, where Φ is the subring of End(H) generated by
Aut(H) and the group H = 〈a〉⊕ 〈b〉, where a has order 2 and b has order 8. Note
that H has six different associated Ulm sequences:

(∞,∞, . . . ); (2,∞, . . . ); (0,∞, . . . ); (1, 2,∞, . . . ); (0, 2,∞, . . . ); (0, 1, 2,∞, . . . ).
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Fuller details of this group, relevant for our present purposes, may be found in
[6, Example 3.16]. In particular, the associated lattice has just one pair of incom-
parable Ulm types and it is easy to check, using the calculations and discussions
of Example 3.16 in [6], that the only fully invariant subgroups of G contained in
2ωG are F1 = {0, 4b, a − 2b, a + 2b}, F2 = {0, a, 4b, a + 4b} and F3 = {0, 4b}. (This
is essentially because it is possible to map from any vertex of the lattice, other
than the vertex labelled (0, 2,∞, . . . ), to any other one above it.)
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(∞,∞, . . . )

(2,∞, . . . )

(1, 2,∞ . . . ) (0,∞, . . . )

(0, 2,∞, . . . )

(0, 1, 2,∞, . . . )

Now if F is an arbitrary fully invariant subgroup of G and min(F [2]) is finite, then
F [2] = (2nG)[2] for n = min(F [2]) by Proposition 0.1. If min(F [2]) ≥ ω then F [2]
is one of Fi[2], i = 1, 2, 3. However, a simple check shows that F1[2] = (2ω+1G)[2],
F2[2] = (2ωG)[2] while F3[2] = (2ω+2G)[2]. Thus the socle of each fully invariant
subgroup of G is of the form (2αG)[2] for some α and G is socle-regular.

Note. It is now rather easy to show that neither transitivity nor full transitivity is
the core concept in determining whether or not a group is socle-regular. For if G
is the group in the example above, it follows from Theorem 1.4 that A = G ⊕ G
is socle-regular. However A is neither transitive nor fully transitive; it cannot be
fully transitive since direct summands of such groups are again fully transitive
[1, Theorem 3.4] and it cannot be transitive since if it were, it would follow from
[4, Corollary 3] that G was fully transitive which it is not.

We finish off our discussion by posing three questions:
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(1) Does there exist a transitive group which is not socle-regular? Such a group
would, of course, necessarily be a 2-group.

(2) Does Theorem 1.7 generalize to arbitrary infinite ordinals α, if G/pαG is
assumed to be totally projective?

(3) Is a summand of a socle-regular group again socle-regular?
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