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Abstract. We define the notion of a commutator socle-regular Abelian p-group. After
establishing some crucial properties of commutator socle-regularity, we investigate its re-
lationship with socle-regularity, strong socle-regularity and projection socle-regularity.

1 Introduction

Throughout our discussion we shall focus on additively written Abelian p-groups,
where p is a prime fixed for the rest of the present paper, although many of the top-
ics we investigate can be considered in a much wider context. The notion of a fully
invariant subgroup of a group is, of course, a classical notion in algebra, as is the
weaker notion of a characteristic subgroup. Kaplansky devoted a section of his fa-
mous “Little Red Book™ [16] to the study of such subgroups and, arising from this,
he introduced the much-studied classes of transitive and fully transitive groups —
see, for example, [3,4, 10]. Recall that a group G is said to be transitive (respec-
tively, fully transitive) if given x,y € G with Ulm sequences Ug(x) = Ug(y)
(respectively, Ug(x) < Ug(»)), there exists an automorphism (respectively, an
endomorphism) ¢ such that ¢(x) = y. But there are several other weaker notions
which have been of interest: recall that a subgroup H of a group G is said to
be projection invariant in G if w(H) < H for all idempotent endomorphisms &
of G — see, for instance, [8,9,13,18] — while a subgroup H of G is said to be com-
mutator invariant in G if [¢, ¥](H) < H for all ¢, € E(G), where, as usual,
[¢, V] denotes the additive commutator ¢y — ¥¢p. These two notions are inde-
pendent of each other; in fact, there is a commutator invariant subgroup that is not
projection invariant, and a projection invariant subgroup which is not commutator
invariant. For the first case, consider the group A = (a) @ (b) such thato(a) = p
and o(b) = p3 with a proper subgroup H = (a + pb). It was established in [2]
that H is commutator invariant in A but not a fully invariant subgroup. With the
aid of [18] we also deduce that H is not projection invariant in A because in finite
groups full invariance and projection invariance coincide. For the second case, the
group G of Example 3.2 below will suffice; see the note immediately following
the proof of Example 3.3 as well.
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In [5, 6] the authors generalized the classes of transitive and fully transitive
groups by focusing on the possible socles of characteristic and fully invariant sub-
groups (see [7] too). In [8] full invariance was replaced by projection invariance
and the current work continues this theme by replacing full invariance with com-
mutator invariance. Our interest in this was sparked by the timely appearance of
Chekhlov’s interesting paper [2].

In Section 2 we show that in relation to commutator socle-regularity, one can
restrict attention to reduced groups: if A = D @ R, where D is divisible and R is
reduced, then A4 is commutator socle-regular if, and only if, R is commutator socle-
regular — Theorem 2.6. Using realization results of Corner, we establish a useful
method of constructing groups whose commutator socle-regularity is precisely de-
termined by that of its first Ulm subgroup. We then exploit this result to show,
inter alia, that for groups G with G/ p*G totally projective and @ < w?, commu-
tator socle-regularity of G is determined by that of p*G — Theorem 2.12; on the
other hand we construct groups G, K with p®G = p®K but K is commutator
socle-regular while G is not — Example 2.13.

In Section 3 we relate the various notions of socle-regularity that have previ-
ously been investigated ([5, 6, 8]) with commutator socle-regularity. Our principal
results show that the notions are equivalent when the group involved is the direct
sum of at least two copies of a fixed group — Theorem 3.5 — but we provide ex-
amples showing that the notions are, in fact, different in general. It follows easily
from this that summands of commutator socle-regular groups need not be com-
mutator socle-regular — Corollary 3.7. However, we also show that the addition of
a separable summand to a group does not influence commutator socle-regularity —
Theorem 3.8.

Our interest here will focus on the Abelian p-groups involved but we should
point out that a ring-theoretic perspective is also possible: Kaplansky [17] raised
the notion of rings in which every element is a sum of additive commutators —
the so-called commutator rings. These too have been the subject of a great deal of
interest; see, e.g., the recent significant work of Mesyan [19].

We re-iterate that all groups throughout the current paper are additively written
Abelian p-groups, where p is an arbitrary but fixed prime. Our notation and ter-
minology not explicitly stated herein are standard and follow mainly those in [11].
As usual, E(G) denotes the endomorphism ring of a group G. We close this in-
troduction by recalling an important result of A.L.S. Corner [3, Theorem 6.1]
which we shall use repeatedly in the sequel: If H is a countable bounded p-group
and @ is a countable subring of E(H), then H may be imbedded as the sub-
group p®G of a p-group G such that E(G) acts on H as ® and with the property
that each ¢ € ® extends to an endomorphism ¢* of G. The mapping ¢ > ¢*
may even be taken as a semigroup homomorphism between the respective multi-
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plicative semigroups of the rings; we shall need this semigroup property only in
Example 3.3. We shall also exploit the groups constructed by Corner using this
imbedding result: there is a fully transitive non-transitive p-group with first Ulm
subgroup elementary of countably infinite rank and a transitive 2-group which is
not fully transitive having a finite first Ulm subgroup which is the direct sum of
cycles of order 2 and 8 — see [4, Sections 3—4] and [12] for further details.

The construction of examples in this area invariably leads one to considerable
amounts of reasonably straightforward but somewhat laborious calculations. These
calculations have been recorded separately in an Appendix in order not to interfere
with the presentation of results.

2 The class of commutator socle-regular groups

In this section we investigate some of the fundamental properties of commutator
socle-regular groups; we begin with the appropriate definitions.

Definition 2.1. A subgroup C of a group G is said to be commutator invariant
if f(C)<C forevery f € E(G) that is of the form f = [¢p, V] = ¢V — ¥,
where ¢, ¥ € E(G).

Clearly each fully invariant subgroup is commutator invariant, whereas the con-
verse fails (see, e.g., [2]). Nevertheless, in some concrete situations, commutator
invariant subgroups are fully invariant. Specifically, the following result from [2]
holds:

Proposition 2.2 (Chekhlov). Suppose A is a group such that A = @,c; G for
some group G, where |I| > 1. Then in A any commutator invariant subgroup is
fully invariant.

Proof. We outline an alternative approach to that in [2], utilizing Mesyan’s re-
sult [19] and some standard matrix representation. Let H be an arbitrary commu-
tator invariant subgroup of A. If | 7] is infinite, then every element of E(A) is a sum
of commutators — see [19, Theorem 13] — and so if H is commutator invariant, it is
then certainly fully invariant.

Suppose then that A = @?:1 G;,n > 1, where each G; = G, say. Let Ej; (s)
be the n x n matrix over the ring S = E(G) with ij"-entry equal to s and all other
entries zero. Recall that an arbitrary endomorphism of A can be represented as an
n X n matrix A over S,
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Now Eij(dij)Ejj(l) = Eij(dij) while Ejj(l)Eij(dl'j) =0 pI‘OVidedi 75 J So,
fori # j, E;j(d;;)is acommutator. Hence A = diag{d1,...,dnn} + A, where
A’ is a sum of commutators. Thus, to establish that H is fully invariant, it suffices
to show that H is invariant under the diagonal matrix diag{d1, ..., dnn}; in fact,
it follows easily that it will suffice to show that H is invariant under the diagonal
matrix diag{d,0,...,0}, where d = d;.

Now Ej,1(d) is a commutator, so if (g1,...,g,)" € H — we are writing ele-
ments of G as column vectors and using (-)’ to denote transposes — then it fol-
lows that the matrix product E,1(d).(g1.....gn)" = (0,...,0,dg1)" is also an
element of H. However, the matrix obtained by interchanging the first and last
columns of the identity matrix and O elsewhere is also a commutator:

Ein(1) + Eni(1) = [(E1n (1) + En1(=1)), Epn(1)].
It follows immediately that
diag{d,0,...,0}.(g1,...,8n)" = (dg1,0,...,0)" € H
and so H has the required invariance property. o
The next result is elementary and we state it without proof for convenience of
reference; the content also appears in [2].

Lemma 2.3. The following statements hold:

(1) If A is a commutator invariant subgroup of the fully invariant subgroup B of
a group C, then A is commutator invariant in C.

(1) If A is fully invariant in B and B is a commutator invariant subgroup of C,
then A is commutator invariant in C.

Motivated by similar definitions used previously in [5, 6, 8], we introduce the
following:

Definition 2.4. A group G is said to be commutator socle-regular if, for each com-
mutator invariant subgroup C of G, there exists an ordinal « (depending on C)
such that C[p] = (p*G)[p].

Our first observation is that the property of being commutator socle-regular is
inherited by certain subgroups.

Proposition 2.5. If G is a commutator socle-regular group, then so is pﬂ G forall
ordinals p.

Proof. Let C be a commutator-invariant subgroup of p’3 G. Since the latter is
fully invariant in G, it follows from Lemma 2.3 that C is commutator invariant
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in G. Consequently, there is an ordinal « such that C[p] = (p*G)[p]. Intersect-
ing both sides of the last equality with p# G, we obtain that C[p] = (p? G)[p]
where y = max(«, B). But we have y = B + § for some § > 0, so that we can
write C[p] = (p®(p# G))[p], as required. ]

The next result allows us to restrict our attention hereafter to reduced groups.

Theorem 2.6. The following statements hold:
(1) If D is a divisible group, then D is commutator socle-regular.

(i1) Let A = D @ R be a group, where D is a divisible subgroup and R is a re-
duced subgroup. Then A is commutator socle-regular if, and only if, R is
commutator socle-regular.

Proof. (1) If H is a commutator invariant subgroup of D, then it follows from
Proposition 2.2 that H is fully invariant in D. Then H has the form H = D or
H = D[p"] for some non-negative integer n — see, for example, [ 16, Exercise 68].
Hence, in both situations, we have H[p] = (D[p"])[p] = D[p], as required.

(i1) “Necessity”. Suppose that C is an arbitrary commutator invariant subgroup
of R. We claim that D @ C is then a commutator invariant subgroup of A. As-
suming we have established this, it follows that

(D & C)[p] = Dlpl® Clp] = (p*Dlp] = (p*D)[p] ® (p* R)[p]

for some ordinal «. Thus it readily follows that C[p] = (p®R)[p]. Hence it re-
mains only to establish the claim.

Since endomorphisms of A4 have matrix representations as upper triangular ma-
trices, an easy calculation shows that any commutator homomorphism in E(A)

must have the form
_ ([a,al] 5 )
0 [B.A1]

for endomorphisms «,«; of D, 8,81 of R and a homomorphism § : R — D.
Since C is commutator invariant in R, it follows easily that A(D & C) < D & C,
as required.

“Sufficiency”. Given that K is an arbitrary commutator invariant subgroup of 4,
[2, Theorem 2] ensures that K has one of the forms K = D®C or K = D[p']|®&C
for some ¢t € N U {0}, where in both cases C is a commutator invariant subgroup
of R. In the first case,

K[p] = D[p] & C[p] = DIp] ® (p*R)[p] = (D & p*R)[p]
= (p*D ® p*R)[p] = (p*A)[p).
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as desired. For the second case we have

K[pl = (D[p'DIp) @ Clp] = Dlp] & Clp] = (p*A)p,

as required. |

Note. For the remainder of the paper, we shall assume that all groups being dis-
cussed, unless explicitly stated to the contrary, are reduced.

We shall make use of the following technical lemma in our next result.

Lemma 2.7. Suppose that A = {a), B = (b) are isomorphic cyclic summands of
order p"™ of the group G. Then there is a commutator f from E(G) such that
f(a) =bor f(a) = b — sa, where s is a unit mod p".

Proof. Since A is a finite group, it has the exchange property — see, e.g., [11, The-
orem 72.1]. Thusif G = A ® N = B & M, then there exist summands £, £, of
B, M respectively suchthat G = A@E1 @ Ex;let B=E @ E|,M = E;® E)
so that A = E| @ E} — see [11, Section 72 (a)~(b)]. Since B is cyclic, we have
either £y = {0} or E; = B.

* Case (1):If E; = {0}, then E| = B andso E} = {0}, implying that M = E,.
So in this case we have

G=A®dM =B M.
e Case (2): If E1 = B, then
G=A®B®E,.

We now consider the cases separately:

Case (1):G =A@ M =B &® M.Note thatifa = rb +m and b = sa + m
for some m,mq, € M, with r,s integers mod p”, then a = rsa + (rm; + m),
whence we deduce that rs = 1 mod p”. Now define ¢ : G — G by ¢(a) = sb,
f(m)=0forallme M,andy : G — G by (b) =a,y(m) =0forallm € M.
Set f = ¢ — V¢, a direct calculation shows that f(a) = b — sa, as required.

Case 2): G =A® B & E;,. Define ¢ : G — G by ¢p(a) =b,¢(b) =0 and
¢(e) =0foralle € Ey,andyy : G — G by ¥(b) = b, ¥(a) =0and ¥(e) =0
forall e € E5. Set f = ¢ — Y¢p; a direct computation shows that f(a) = b, as
required. o

Suppose H is an arbitrary subgroup of G. Let « = min{hg(y) : y € H[p]}
and write « = ming (H [p]); the inclusion H [p] < (p*G)[p] clearly holds. Our
next result illustrates some elementary but useful properties of the function ming.
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Proposition 2.8. If C is a commutator-invariant subgroup of the group G and
ming (C[p]) = n, a natural number, then C[p] = (p" G)[p].

Proof. Suppose that C is an arbitrary commutator-invariant subgroup of G and
ming (C[p]) = n, a finite integer. Therefore, there is an element x € C[p] such
that hg(x) = n and so x = p"y where y is the generator of a direct summand
of G,say G = (y)®G; see [11, Corollary 27.2]. Let z € (p" G)[p]\(p" 1 G)[p].
so that we write z = p"w for some element w of height zero; thus G = (w) & G».
Notice that {(w) = Z(p" ') = (y). By Lemma 2.7, there is a commutator endo-
morphism f of G such that f(y) = w or f(y) = w — sy. Thus we have that
f(x) =vzor f(x) =z —sx for some s. Since x € C and C is commutator in-
variant in G, either z € C or z —sx € C;in either case we can conclude that z € C.
If now z’ is an arbitrary element of (p"+1G)[p], then

2+ € (P"G)pl\ ("1 G)p]

and so z + z/ € C, whence z’ € C. Hence (p"G)[p] < C. As ming(C|[p]) = n,
we certainly have C[p] < (p" G)[p] and so we obtain the desired equality

Clp] = (p"G)[p]. o

Proposition 2.9. Any large subgroup of a reduced commutator socle-regular group
is also commutator socle-regular.

Proof. Let C be a commutator invariant subgroup of a large subgroup L of a com-
mutator socle-regular group G. If ming (C[p]) is finite, n say, then it follows from
Proposition 2.8 that C[p] = (p" L)[p]. If minz (C[p]) is infinite, then so also is
ming (C[p]), thus C[p] < (pP G)[p] for some infinite ordinal 8. However, utiliz-
ing Lemma 2.3, C is commutator invariant in G as well, so C[p] = (p*G)[p]
for some ordinal « and it is immediate that « > f is infinite. It follows from [1]
or [20, Section 46.1] that p®G = p*L, whence C[p] = (p*L)[p]. Thus L is
commutator socle-regular, as claimed. O

An examination of the proof of the proposition above shows that the result
holds for any fully invariant subgroup F of a group G having the property that
p®F = p®G (compare also the difference with Example 2.13 below).

Our next proposition is somewhat technical but will enable us to deduce some
interesting consequences.

Proposition 2.10. If G is a group with p®G = H and for each ¢ € E(H) there
is an endomorphism ¢* € E(G) with ¢*H = ¢, then G is commutator socle-
regular if, and only if, H is commutator socle-regular.
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Proof. The necessity follows from Proposition 2.5 above.

Conversely, suppose that H is commutator socle-regular and let C be an arbi-
trary commutator invariant subgroup of G. If ming (C[p]) is finite, then it follows
from Proposition 2.8 that C[p] = (p" G)[p] for some finite n. If ming(C|[p]) is
infinite, then C[p] < H. We claim that C[p] is actually a commutator invariant
subgroup of H. Assuming this for the moment, we conclude, as H is commutator
socle-regular, that C[p] = (p® H)[p] for some ordinal @ and hence

Clpl = (p*(p®G))lpl = (p®**G)Ipl.

as required.
It remains then to establish the claim. If f = ¢ — ¥ ¢ is any commutator
inE(H), then f* = ¢*y* — ™ @™ is a commutator in E(G). Butif x € H, then

@Y ) (x) = ¢™ (¥ (x))
since ¥ *M H = ¥; note that y = ¥ (x) € H because ¥ € E(H). Thus

@Y () =" (1) = ¢ (y) = (Y (x)) = ($¥)(x)

and we have that (¢*Y ™)' H = ¢; similarly (y*¢™)'H = ¥¢. In particular,
if x € C[p], then f(x) = f*(x) € C[p] since C is a commutator invariant sub-
group of G which in turn makes C[p] commutator invariant in G. Since f was an
arbitrary commutator in E(H ), we conclude that C[p] is a commutator invariant
subgroup of H, as claimed. |

In the proof of our next theorem we shall need an easy extension of a well-
known result on extending automorphisms from the subgroup p" G, n an integer,
to automorphisms of the whole group G. It is possible to prove this directly using
a modification of the argument in [11, Proposition 113.3] but we give here a simple
argument which utilizes the result for automorphisms given by Fuchs.

Lemma 2.11. If n is finite and ¢ is an arbitrary endomorphism of the subgroup
p"G of G, then ¢ extends to an endomorphism ¢* of G.

Proof. Consider the group H = G®G and note that p" H = p"G@ p" G. Regard
endomorphisms of H as 2 x 2 matrices over E(G) and endomorphisms of p" H
as 2 x 2 matrices over E(p" G). Let ¢ € E(p" G) be arbitrary. Then

A = ¢ 1p"G
Ipng 0

is an endomorphism of p” H which is easily seen to actually be an automorphism.
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By [11, Proposition 113.3], A extends to an automorphism

()
§ B

of H, where a, 8,y,8 € E(G). Thus A(g) = A*()OC) forallx € p"H,ie.,

px)\  falx)
x ] \swx) )

Set ¢* = «, an endomorphism of the group G, and note that $*} p" G = o} p" G,
as required. |

Our next result indicates, inter alia, that the class of commutator socle-regular
groups is quite large.

Theorem 2.12. The following statements hold.

(1) If G is a group such that either p* G = 0or p® G = Z(p") for some finite n,
then G is commutator socle-regular.

(ii) A group G is commutator socle-regular if, and only if, p" G is commutator
socle-regular for some n € N.

(iii) If G is a group such that G/ p*G is totally projective for some ordinal
o < w?, then G is commutator socle-regular if, and only if, p*G is com-
mutator socle-regular.

2

(iv) Totally projective groups of length < w* are commutator socle-regular.

Proof. Statement (i) follows immediately from Proposition 2.10 and the observa-
tion that in either case the endomorphisms of p® G are scalars and hence give rise
in a natural way to the desired semigroup homomorphism.

The necessity in statement (ii) follows directly from Proposition 2.5. The proof
of sufficiency is similar to the proof of Proposition 2.10; let K be a commutator-
invariant subgroup of G and if ming (K[p]) is finite, say m, then with the aid of
Proposition 2.8 we may write K[p] = (p"G)[p], as required. Otherwise, if we
have ming (K[p]) > o, then clearly K[p] < p®G < p"G. We assert that K[p] is
a commutator-invariant subgroup of p” G. This follows as in Proposition 2.10 us-
ing Lemma 2.11 to deduce that endomorphisms of p” G extend to endomorphisms
of G. Since p" G is commutator socle-regular, we have K[p] = (p*(p" G))|[p] for
some ordinal . Consequently, K[p] = (p"T¥G)[p] and G is commutator socle-
regular, as desired.

We will establish (iii) by first considering the case « = w. In this special case
the proof follows from Proposition 2.10 and the observation that as G/ p®G is to-
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tally projective, it follows from [15, Theorem 2] that every endomorphism of p® G
extends to an endomorphism of G, thereby giving the extension property required
to apply Proposition 2.10.

Suppose now the ordinal « has the form o« = w - m for some 1 < m < w. Since
the group p*G = p®™G = p®(p® ™D G) is commutator socle-regular and
the quotient G/ p*G = G/ p®™G is totally projective, whence so is the quotient
p@ =D (G/pG) = p®M=DG/p®™G, we apply the preceding case o = w
for A = p® ™= G to derive that p®" =D G is commutator socle-regular. More-
over, as G/ p®G is totally projective so also is G/ pP G for any B < «. Thus, after
m — 1 steps, we deduce that p®G is commutator socle-regular and G/p®G is
a direct sum of cyclic groups. Again by what we have shown in the previous para-
graph, G will be commutator socle-regular, finishing this case.

Finally, consider the case where ¢ = w - m + n withm,n < w. Since the group
peG = p@®MtnG = p"(p®™G) is commutator socle-regular, we can conclude
from (ii) above that the same holds for p®™G. As already observed, if G/ p®G is
totally projective, then so also is G/ p®™ G . We therefore may employ the previous
step to conclude that G is commutator socle-regular, indeed.

Part (iv) follows immediately from (iii) by choosing « to be the lengthof G. O

Our next example shows that one cannot extend part (i) of the preceding theo-
rem even to the situation where p® G is an elementary group of rank 2.

Example 2.13. There are groups G, K with p®G = Z(p)®Z(p) = p® K, where
K is commutator socle-regular but G is not.

Proof. Let H = (a) & (b), where each of a,b is of order p. Let ® denote the
subring of E(H ) consisting (in the usual matrix representation) of the 2 x 2 upper
triangular matrices A over the field of p elements. A straightforward calculation
gives that any commutator in @ is strictly upper triangular, i.e., the diagonal en-
tries are also 0. Applying [3, Theorem 6.1], we find a group G with p?G = H
such that E(G) acts on p® G as ®. Consequently, if ¢ is any commutator in E(G),
then ¢ acts on p® G as a strictly upper triangular matrix. In particular, any commu-
tator maps the subgroup (a) to 0 and so (a) is commutator invariant. But clearly
(a) = {(a)[p] cannot have the form (p*G)[p] for any ordinal & and hence G is not
commutator socle-regular.

The construction of K is similar, but this time we take ® to be the full endo-
morphism ring of H. An application of [3, Theorem 6.1] yields a group K with
p®K = H and a function (-)* from E(H) — E(K) with the properties required
to apply Proposition 2.10. Since the finite group H is certainly commutator socle-
regular, it follows immediately from Proposition 2.10 that K is also commutator
socle-regular. |
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We remark that it is possible to give a much simpler example than the group G
constructed above — for instance, the commutative subring of diagonal matrices
would suffice — but, as we shall have need of this particular example later, we have
chosen to give this slightly more complicated construction here.

3 The various classes of socle-regularity

In previous works the authors have considered various notions of socle-regularity.
These notions have a great degree of similarity since they may be defined in a com-
mon way as follows:

A group G is said to be x-socle-regular if every x-subgroup P of G has the
property that P[p] = (p*G)[p] for some ordinal «.

When *-subgroup corresponds to fully invariant (characteristic) subgroup, we
get the notions that were called socle-regular (strongly socle-regular) groups in
[5, 6]; when x-subgroup corresponds to projection invariant (commutator invari-
ant) subgroup, we get the notion of projectively socle-regular (commutator socle-
regular) groups introduced in [8] and the present work respectively.

It is easy to see that the class of socle-regular groups contains each of the other
three classes. In this section we investigate the relationships between these differ-
ent classes; recall that it follows from examples given in [6, 8] that the strongly
socle-regular and projectively socle-regular classes are properly contained in the
class of socle-regular groups. It was also established in [5] that fully transitive
groups are socle-regular, while in [6] that transitive groups are strongly socle-
regular.

Our first example shows that the class of commutator socle-regular groups is
also properly contained in the class of socle-regular groups.

Example 3.1. There is a transitive (and hence strongly socle-regular) group which
is neither commutator socle-regular nor projectively socle-regular.

Proof. Let G be the transitive non-fully transitive group constructed as in [4]. Re-
call that G is a 2-group with 2°G = (a) & (b) = A, where o(a) =2, 0(b) =8
and the restriction of E(G) to A, E(G)I A = ®, where ® is the subring generated
by the automorphisms of A. This group has thoroughly been investigated in [12];
note that the elements of ® can be described by two families {6;,} and {¢;,}
with the parameters 1 <i,j <4 and A € {1, 3}, u € {0, £1,2}. The images
of the element a under @ are restricted to the possibilities 0, a, 4b, a + 4b and then
a straightforward, but somewhat laborious, calculation — see the Appendix for de-
tails — shows that every commutator of the form [«, ] with v, B € ® maps a +— 0.
We claim that (a) is commutator invariant in G. For if [y, §] is any commutator
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in E(G), then [y, 8](a) = [, B](a) for some «, B € ® and so, by the previous
observation, we have [y, §](a) = 0. So (a) is certainly a commutator invariant
subgroup of G. However, a direct computation shows that (a)[2] = (a) is not equal
to any of the subgroups (2°G)[2], 2°T1G)[2], (2°T2G)[2] and since (a) cannot
be of the form (2" G)[2] for any finite 7, we conclude that (a)[2] # (24G)[2] for
any ordinal A and so G is not commutator socle-regular.

However, G is transitive and hence, by [6, Theorem 4], it is strongly socle-
regular; moreover, it follows from [8, Proposition 1.13] that G is not projectively
socle-regular. |

Our next two examples demonstrate that the classes of commutator socle-
regular, projectively socle-regular groups and strongly socle-regular groups are
distinct.

Example 3.2. There exists a fully transitive commutator socle-regular group that
is neither projectively socle-regular nor strongly socle-regular.

Proof. Suppose that G is the example constructed by Corner in [4] of a non-tran-
sitive fully transitive group with

PG = H = PLp)
Ro

and having the property that E(G )| p®G = ® acts as a dense algebra of endomor-
phisms of H. We claim that G is commutator socle-regular.

To see this, let C be an arbitrary commutator invariant subgroup of the group G.
If min C[p] is finite, then with Proposition 2.8 at hand we have C[p] = (p" G)[p]
for some finite integer #; if not, then we have C[p] < (p®G)[p]. Now suppose
that 0 # ¢ € C[p] and let x be an arbitrary element of (p®G)|[p] which is lin-
early independent of c. It is straightforward to show that there is a commuta-
tor ¢ € E({c) ® (x)) with ¢(c) = x; say ¢ = fg —gf for f.g € E({c) ® (x)).
Now, as observed by Corner [4, p. 19], the density property of ® means that every
endomorphism of a finite subgroup of p®G extends to an endomorphism of G;
in particular f, g extend to mappings f’, g’ of G and so there is a commutator
¢ = f'g' — g’ f' € E(G) such that ¢'(c) = ¢(c) = x. Since C|[p] is obviously
commutator invariant in G, it follows that x € C[p]. Consequently, if the socle of
an arbitrary commutator invariant subgroup of G is contained in p® G, then it must
equal p®G itself. It now follows immediately that G is commutator socle-regular.

However, G is not projectively socle-regular — see [8, Proposition 1.7] as well
as it is not strongly socle-regular — see [6, Theorem 2.3]. o

Example 3.3. There is a projectively socle-regular group (and hence strongly
socle-regular p-group for p > 2) which is not commutator socle-regular.
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Proof. We utilize the group G constructed previously in Example 2.13 having
p?G = H = (a) ® (b), where each of a, b is of order p and where E(G) acts
on H as the subring ® of E(H ) consisting (in the usual matrix representation) of
the 2 x 2 upper triangular matrices A over the field of p elements. We have seen
in that example that G is not commutator socle-regular.

We claim, however, that G is projectively socle-regular. Observe firstly that the
only idempotent matrices in ® are the trivial zero and identity matrices along with
the four matrices Ay = (§9), A2 = (§1). A3 =(33)and Ay = (}}); this is
easily verified by a simple matrix calculation.

Now suppose that 0 # P is a projection invariant subgroup of G. If ming P[p]
is finite, then we have P[p] = (p" G)[p] for some finite n by [8, Proposition 1.1].
If ming P|p] is infinite, then P[p] is a projection invariant subgroup of the group
H = p®G. It follows from Corner’s construction that if 7z is an idempotent in &,
then the corresponding extension 7* € E(G) is also an idempotent, since the map-
ping (-)* is actually a semigroup homomorphism from the multiplicative semi-
group of E(H) to that of E(G), and 7*} H = 7. Since P|[p] is projection invariant
in both p®G and G, it follows that A; (P[p]) < P[p]for1 <i < 4.

Let (0,0) # (ua,vb) € P[p], where u, v are integers. If both u, v # 0, then
applying A and Aj to the element (ua, vb) gives us that both (ua, 0) and (0, vb)
belong to P[p] and it follows readily that P[p] must then be all of H, i.e., we
have P[p] = (p®G)[p]. If u = 0,v # 0, then applying A4 to (0, vh) we get that
the element (va, 0), and hence also (a, 0), belongs to P [p]; this again implies that
Plp]l = H = H|[p]. If finally u # 0, v = 0, then an identical argument using A,
yields the same result. In summary, we deduce that P[p] = (p®G)[p], and G is
therefore projectively socle-regular, as required.

By taking p # 2, we obtain with [8, Proposition 1.5] at hand that G is strongly
socle-regular, as asserted. o

Note that it follows immediately that the group in Example 3.2 has a projection
invariant subgroup which is not commutator invariant, while the group in Exam-
ple 3.3 has a commutator invariant subgroup which is not projection invariant.

Our final example shows that full transitivity is not enough to ensure commuta-
tor socle-regularity; our construction is given as a 2-group, but this was merely to
simplify calculations and plays no real part.

Example 3.4. There exists a fully transitive (and hence socle-regular) group that
is not commutator socle-regular.

Proof. Let H be the finite group (a1) ® (az) @ (a3), where a; has order 2! for
i =1,2,3. Let ¢;; denote the canonical projection of H onto a;; let 0;;,i < J,
be the forward shift mapping a; — 2/7'a; and denote by t;;, j > i, the back-
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ward shift mapping a; +— a;. Set ® to be the subring of E(H) generated by the set
{e11, (e22 + €33), 012,013, T21, 023, T31, T32}. [t is easy to check that the ring gen-
erators are linearly independent of additive orders 2, 23.2.2,2,22 2,22 5o that
additively they generate a subgroup of order 2'2. Hennecke [14] has shown that
this subring acts fully transitively on G and has order 2!3, so that additively ® is
not the direct sum of the subgroups generated by the elements listed above. How-
ever, the product 132023 = 2e5; is an element of ® and it follows easily that the
enlarged set S = {2e22, €11, (€22 + €33), 012,013, 721, 023, 731, T32} of linearly
independent elements generates the ring ® additively since the subgroup generated
by S has order 2!3. Hence to check the possible actions of commutators from ®
on G, it suffices to consider commutators involving the elements of S. Moreover,
since a commutator [«, 8] = —[B, @], we can reduce the calculations by half. On
the other hand, a straightforward, but rather tedious, direct calculation — see the
Appendix — shows that the commutators of the additive generators of ® map a5 to
either 0, 2a, or 4as. It follows that the cyclic subgroup (2a») is then mapped to 0
by the commutators of ®.

Use Corner’s realization result to construct a 2-group G such that 2°G = H
and E(G) acts on 2°G as ®. It follows immediately that G is fully transitive,
whence by [5, Theorem 0.3] it is socle-regular. Furthermore, the action of E(G)
assures that the subgroup (2a») is commutator invariant in G. However, the socle
of (2a3) is just the subgroup itself since a, has order 4 but

2°G)[2] = (a1) ® (2a2) & (daz), (2°T'G)[2] = (2a2) & (4a3),
2T2G)[2] = (4as),
so that (2a») is not a socle of the form (2% G)[2] for any infinite «; since it is clearly

not of the form (2" G)[2] for any finite n, we conclude that G is not commutator
socle-regular, as required. o

Nevertheless, in some specific cases, the concepts do coincide. As usual, for
each cardinal k¥ > 0, the k-power subgroup G ®) denotes the direct sum D, G of
Kk copies of G.

Theorem 3.5. Let k > 1. The following conditions are equivalent:

(1) G is socle-regular,

(i) G® js socle-regular,
(i) G®) is strongly socle-regular,
(iv) G¥ is projectively socle-regular,

V) G is commutator socle-regular.



On commutator socle-regular Abelian p-groups 15

Proof. In view of [8, Theorem 2.4], it suffices to obtain only the equivalence
(i1) < (v). The implication (v) = (ii) is trivial, and the reverse implication follows
easily from Proposition 2.2 above. |

A direct consequence is the following:

Corollary 3.6. If G is a commutator socle-regular group, then G®) js commutator
socle-regular for any k > 0.

Proof. As we have seen above, every commutator socle-regular group is socle-
regular. Thus [5] applies to show that G®) s socle-regular. We now employ
Theorem 3.5 to conclude that this k-power group is commutator socle-regular,
as desired. |

Another consequence is that summands of commutator socle-regular groups
need not be again commutator socle-regular.

Corollary 3.7. A summand of a commutator socle-regular group is not necessarily
commutator socle-regular.

Proof. Let G be the socle-regular group from Example 3.1 above, which is not
commutator socle-regular. However, it follows from Theorem 3.5 that G & G is
commutator socle-regular. o

Nevertheless, in a certain specific case the following direct summand property
holds:

Theorem 3.8. Suppose that A = G & H and H is separable. Then A is commu-
tator socle-regular if, and only if, G is commutator socle-regular.

Proof. Suppose that G is commutator socle-regular and X is a commutator invari-
ant subgroup of A. If ming (X [p]) is finite, then, by Proposition 2.8, we have that
X[p] = (p" A)[p] for some finite n. So, supposing ming (X [p]) is infinite, then
X[p] < (p®A)[p] = (p®G)[p], as H is separable. However, X is a commutator
invariant subgroup of A and so X[p] is a commutator invariant subgroup of A
which is actually contained in G. Since endomorphisms of G extend trivially to
endomorphisms of A, it is easy to see that X [p] is actually a commutator invariant
subgroup of G and so X [p] = (p*G)|p] for some ordinal A. Thus

(P*G)Ip) = (P“G)Ip]
and so A > w. It follows immediately that

X[p] = (p*G)Ip] = (p*A)p]
since pAH =0.
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Conversely, suppose that A is commutator socle-regular and let Y be an ar-
bitrary commutator invariant subgroup of G. As before, if ming (Y [p]) is finite,
then Proposition 2.8 assures that Y [p] = (p" G)[p] for some positive integer n.
Suppose then that ming (Y [p]) is infinite, so that Y [p] < (p®G)[p] = (p® A)[p].
We claim that Y [p] is a commutator invariant subgroup of A. Assuming for the
moment that we have established this claim, it then follows that ¥ [p] = (p* 4)[p]
for some ordinal A. Hence Y [p] = (p*A)[p] < (p®A)[p], yielding A > w. Since
we have p* 4 = p*G for A > w, we get the desired result that ¥ [p] = (p*G)[p]
for some A. It remains then only to establish the claim.

Observe firstly that if ¢ = (g g) and ¢ = (“‘ &1 ) are arbitrary endomorphisms

AN
of A (in the standard matrix representation), then the commutator [¢, /] can be

represented as a matrix
a (leed  f)
g [B.Bil

where f : H — G, g : G — H are homomorphisms. Note, however, that as H
is separable and Y [p] < (p®G)[p], the image under g of each element of Y [p] is
necessarily 0. Identifying Y [p] with Y [p] @ 0, a straightforward calculation shows
that A(Y [p]) = [o, a1](Y [p]) and this is clearly contained in Y [p] since Y is, by
assumption, a commutator invariant subgroup of G. |

We finish with a question which we have not been able to resolve at this stage.

Question. Does there exist a commutator socle-regular group of length > w?; in

particular, is the restriction on the ordinal ¢ in Theorem 2.12 (iii) necessary?

A Appendix

Calculations for Example 3.1. Let A be the finite group 4 = (a) @ (b), where
a has order 2 and b has order 8. Let ® denote the subring of the full endomorphism
ring generated by the automorphisms. It is known from [12] that ® has order 32
and the elements of ® can be labeled as {01, 024,031, 041} (A = +1, £3) and
{b1u, D20 $3,10- Pap} (w0 = 0, £1,2). These are the mappings given by

e 015 :ar—>a,br— Ab,

e bhy:ar>a—+4b,b+— Ab,

* O3 :ar—>a,br—a+ Ab,

* Oy :a—>a+4b,b— a+ Ab,
* pipar—4b.b—2ub,
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e oy iar>0,b—>a+2ub,
* ¢p3uiat—>4b,b— a+2ub,
* Payia—0,b—2ub.

In our calculations we shall frequently make use of the following simply verified
statement without comment:

o if A,0 € {£1,+£3}, then A — o is even; in particular, if A € {£1, £3}, then
A —1liseven.

Our objective is to show that for every commutator [«, 8], where «, 8 € D,
we have that [, B](a) = 0. Clearly we may reduce the amount of calculation by
noting that [«, ] = —[B, «].

(i) Commutators of the form [0, 05] (j > 1) with A, 0 € {£1, £3}:
e [01a,610](a) = O since 01x(a) = a for all values of *,
e [01a,020](a) = a + 4(AD) — (a + 4b) = 4(A — 1)b = O since A — 1 is even,
* [01, 635](a) = Osince 01, (a) = a = O3q(a),
* [012.045](a) = a + 4Ab — (a + 4D) = 0.

(ii) Commutators of the form [6,, 0] (j > 2) with A, 0 € {£1, £3}:
* [025,0251(a) = (a + 4b) + 4(AD) —{a + 4b + 4(cb)} = 4(A —0)b = 0,
* [62,030](a) =a+4b—{a+4(a+ob)} =4(1 —0)b =0,
* [022,045](a) = (a +4b) +4(Ab) —{a+4b+4(a+0ob)} =4(A—0)b =0.

(iii) Commutators of the form [03,, 0] (j > 3) with 1,0 € {£1, £3}:
e [63, 030](a) = 0 since O3x(a) = a for all values of *,
e [03),0s0](a) =a+4(a+Ab) —(a +4b) =4(A—1)b = 0.

(iv) Commutators of the form [0, , 045] with A, 0 € {£1, £3}:
* [042,040](a) = (a+4b)+4(a+Ab)—{a+4b+4(a+ob)} = 4(A—0a)b = 0.

Thus we have that all commutators involving pairs of mappings 8 map a > 0.
Now consider the corresponding situation for the mappings ¢.

(v) Commutators of the form [¢1,, @] (j = 1) with u, v € {0, £1,2}:
* [P1u- d10l(a) = 4(2ub) — 4(2vb) = 0,
* [P1u. p20](@) = 4(a + 2ub) =0,
* [P1u. P3vl(a) = 4(2ub) —4(a + 2vb) = 0,
* (P10, davl(a) = 4(2ub) = 0.
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(vi) Commutators of the form [¢2,, ¢;v] (j > 2) with u, v € {0, £1, 2}:
* (P20, P2v](a@) = O since ¢pr4(a) = O for all x € {0, £1, 2},
* (P2 P3vl(a) = 4(a + 2ub) = 0,
* [p2u. pavl(@) = 0—-0 = 0.

(vii) Commutators of the form [¢3,, ¢;v] (j = 3) with u, v € {0, £1, 2}:
* [p3u. ¢3v](@) = 4(a + 2ub) — 4(a + 2vb) =0,
¢ [P3p. davl(a) = —4(2ub) = 0.

(viii) Commutators of the form [@a,, ¢p4v] with p, v € {0, £1,2}:
* [Pau. pav](a) = 0 since pax(a) = 0 forall x € {0, £1,2}.

Thus we have that all commutators involving pairs of mappings ¢ map a — 0.
Now consider the remaining “mixed” situations.

(ix) Commutators of the form [0, ¢jv] (j > 1), A € {£1, £3}, u € {0, £1,2}:
¢ [011. d10l(a) = 4(Ab) —4b = 4(A — 1)b = 0,
* [01a. $20](@) =0—-0=0,
o [012. ¢3vl(a) = 4(Ab) —4b = 4(A — 1)b = 0,
e [012 ¢av](a) =0—-0=0.

(x) Commutators of the form [0y, ¢jv] (j = 1), A € {£1,£3}, u € {0, £1,2}:
* [621. p10](a) = 44D —{4b + 4(2ub)} = 4(A — 1)b = 0,
* [021. d20](a) =0 —{0 + 4(a +2ub)} = 0,
* [021. ¢3v](a) = 4(Ab) — {4b + 4(a + 2pub)} = 4(A — 1)b =0,
* [021. pav](a) = 0 —{0 + 4(2ub)} = 0.
(xi) Commutators of the form [03,,¢;v] (j > 1), A € {£1,£3}, u € {0, £1,2}:
o [0z, p1v](a) = 4(a +4b) —4b =4(A - 1)b =0,
* [03a. ¢20](@) =00,
o (O3, ¢p3v](a) = 4(a + Ab) —4b =4(A — 1)b =0,
* [031, ¢av](a) = 0—0.
(xii) Commutators of the form [04,,¢;v] (j = 1), A € {£1,£3}, u € {0, £1,2}:
* [Oar. d10l(a) = 4(a + Ab) — {4b + 4(2ub)} = 4(A — 1)b = 0,
* [0ar. d20](@) = 0—{0+4(a +2ub)} = 0,
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o[04, P3v](a) = 4(a + Ab) — {4b + 4(a +2ub)} =4(A - 1)b =0,
* [0ar. Pavl(@) = 0—{0+ 4Q2ub)} = 0.
Since the “mixed” commutators also map a +> 0, we conclude that every com-

mutator in ® maps a + 0 so that the subgroup (a) is certainly invariant under the
action of commutators from ®.

Calculations for Example 3.4. Let G = (a1) & (az2) ® (a3), where the ele-
ments a; have order 2'. Define the following mappings G — G:

*e¢jai—ai, aj—0ifi # j,
o fori < j,oi :a; =2/ "aj, ap — 0ifk #1,
e forj <i,vj:a;i—aj,ar—0ifk #1i.

Consider the subring ® generated (as a ring) by

{e11, (e22 + €33), 012,013, T21, 023, 131, T32}.

It is easy to check that the ring generators are linearly independent of additive
orders respectively 2, 23.2,2,2,22,2,22 so that additively they generate a sub-
group of order 2!2. Hennecke [14] has shown that this subring acts fully transi-
tively on the group G and has order 2!3, so that additively ® is not the direct
sum of the subgroups generated by the elements listed above. However, the prod-
uct 732023 = 2ep; is an element of ® and it follows easily that the enlarged set
S = {2e32, €11, (€22 + €33),012,013, 721,023, T31, 132} of linearly independent
elements generates the ring ® additively since the subgroup generated by S has
order 2!3. Hence to check the possible actions of commutators from ® on G,
it suffices to consider commutators involving the elements of S. Moreover, since
a commutator [«, ] = —[f, @], we can reduce the calculations by half.
We consider actions of commutators from S on the subgroup (a»).

(i) Commutators involving t35:
* [132, 131](@2) = 732(0) — 731(0) = 0,
* [132,023](a2) = 132(2a3) — 023(0) = 2a2 — 0 = 2ay,
* [132, 121](@2) = 132(a1) — 721(0) = 0,
* [132,013](a2) = 732(0) — 013(0) = 0,
[t32,012](a2) = 132(0) — 012(0) = 0,
[t32, €33](a2) = 732(0) — €33(0) = 0,
* [132, €22](a2) = 132(a2) — €22(0) = 0,

[132, (€33 + e22)](a2) =0,
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* [132,e11](a2) = 132(0) —e11(0) =0,

¢ [132,2e22](a2) = 2[132, €22](a2) = 0.

(i) Commutators involving t31:
¢ [131.023](a2) = 131(2a3) — 023(0) = 2a; =0,
* [t31, 21](@2) = w31(a1) — 721(0) = 0,
* [t31,013](a2) = 131(0) — 013(0) =0,
* [t31,012](@2) = 131(0) — 012(0) =0,
* [131,e33](a2) = 131(0) — €33(0) = 0,
* [131, €22](a2) = 131(a2)) — €22(0) = 0,
* [131, (€33 + €22)](az2) = 0,
* [t31,e11](a2) = 731(0) —€11(0) = 0,

* [131.2e22)](a2) = 2[r31, €22)](az) = 0.

(ii1) Commutators involving 053:
* [023, 121](a2) = 023(a1) — 121(2a3) = 0,
* [023,013](a2) = 023(0) — 012(2a3) = 0,
* [023, e33](a2) = 023(0) — e33(2a3) = —2as3,
* [023, e22](a2) = 023(a2) — €22(2a3) = 2as,
* [023, (€33 + €22)] = —2a3 + 2a3 = 0,
* [023,e11](a2) = 023(0) — e11(2a3) = 0,
¢ [023,2e22](az2) = 2[023, £22](a2) = 0.
(iv) Commutators involving 721 :
¢ [r21,013](a2) = 121(0) —013(a1) = 4as,
¢ [©21.012](a2) = 121(0) —012(a1) = —2a2 = 2az,

* [121,e33](a2) = 121(0) —e33(a1) =0,

¢ [121.e22](a2) = m1(az) —exn(ar) = —ay = ay,
* [121, (€33 + e22](a2) = —ay = ay,
* [m21.e11](a2) = 121(0) — e11(a1) = —a; = ay,

* [121.2e22](az) = 2[121, e22](a2) = 2a; = 0.
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(v) Commutators involving 013:
* [013,012](a2) = 013(0) — 012(0) = 0,

* [013,e33](a2) = 013(0) —e33(0) =0,

[013. e22](az) = 013(az) —e22(0) =0,
* [013, (e33 + €22)](az) =0,
* [013.e11](a2) = 013(0) —e11(0) = 0,

* [013,2e22](a2) = 2[013,€22] = 0.

(vi) Commutators involving o13:
* [012, e33](a2) = 012(0) — e33(0) =0,
* [012, e22](a2) = 012(a2) — €22(0) = 0,
¢ [012, (€33 + €22)](a2) = 0,
* [012, e11](a2) = 012(0) —€11(0) = 0,

* [012.2e22](az) = 2012, e22](az) = 0.

(vii) Commutators involving (ez + e33):
* [e33,e11](az) = e33(0) —e11(0) = 0,
* [e22,e11](az) = e22(0) —eq1(az) =0,
* [(e22 +e33),e11](az) = 0.

(viii) Commutators involving eq1:

* [e11.2e22](az) = 2[eq1, ex2](az) = 0.

It follows from the calculations above that the images of a, under the elements
of ® belong to the set {0, a1, 2as, 4as}. Thus the subgroup (2a») is mapped to 0

by ®; in particular (2a,) is invariant under commutators from @, as required.
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