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INVO-CLEAN UNITAL RINGS

Peter V. Danchev

Abstract. We define and completely describe the structure of invo-clean
rings having identity. We show that these rings are clean but not (weakly)
nil-clean and thus they possess independent properties than these ob-
tained by Diesl in [7] and by Breaz-Danchev-Zhou in [2].

1. Introduction and background

Throughout the present paper, all rings R considered shall be assumed to be
associative and unital containing the identity element 1 which differs from the
zero element 0. As usual, U(R) denotes the set of all units of R, Inv(R) the
subset of U(R) consisting of all involutions of R, Id(R) the set of all idempo-
tents of R and Nil(R) the set of all nilpotents of R. Traditionally, J(R) stands
for the Jacobson radical of R. All other notions and notations, not explicitly
stated herein, are at most standard.

The following concept appeared in [9].

Definition 1.1. A ring R is called clean if each r ∈ R can be expressed as
r = u + e, where u ∈ U(R) and e ∈ Id(R). If, in addition, the existing
idempotent e is unique, then R is said to be uniquely clean.

A clean ring R with ue = eu is said to be strongly clean. If again the existing
idempotent e is unique, the ring is called uniquely strongly clean.

It is well known that uniquely clean rings being abelian clean rings are
strongly clean. The converse, however, does not hold in general.

In particular, in [7] was introduced the following concept:

Definition 1.2. A ring R is called nil-clean if each r ∈ R can be written as
r = q + e, where q ∈ Nil(R) and e ∈ Id(R). If, in addition, the existing
idempotent e is unique, then R is said to be uniquely nil-clean.
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A nil-clean ring R with qe = eq is said to be strongly nil-clean. If again the
existing idempotent e is unique, the ring is called uniquely strongly nil-clean.

It is well known that uniquely nil-clean rings being abelian nil-clean rings
are strongly nil-clean. Also, commutative nil-clean rings are always uniquely
nil-clean (compare with [6]), and even it was proved in [7, Corollary 3.8] that
strongly nil-clean rings and uniquely strongly nil-clean rings do coincide in
general.

On the other hand, the latter concept of nil-cleanness was extended in [6]
and [2] respectively by defining the notion of weak nil-cleanness as follows:

Definition 1.3. A ring R is called weakly nil-clean if every r ∈ R can be
presented as either r = q+ e or r = q− e, where q ∈ Nil(R) and e ∈ Id(R). If,
in addition, the existing idempotent e is unique in the sense that there exists
a unique idempotent e such that exactly one of r = q + e or r = q − e holds,
then R is said to be uniquely weakly nil-clean.

A weakly nil-clean ring with qe = eq is said to be weakly nil-clean with the

strong property. If again the existing idempotent e is unique, the ring is called
uniquely weakly nil-clean with the strong property.

It was established in [2] and [6] that weakly nil-clean rings are themselves
clean. Likewise, in [2] was established a complete characterization of abelian
weakly nil-clean rings as those abelian rings R for which J(R) is nil and R/J(R)
is isomorphic to a Boolean ring B, or to Z3, or to B ×Z3. (See also [4] for the
general case as well as [11] for a slightly different characterization.) We notice
also that uniquely weakly nil-clean rings were classified in [3] as the abelian
weakly nil-clean rings.

Definition 1.4. A ring R is said to be invo-clean if every r ∈ R can be written
as r = v + e, where v ∈ Inv(R) and e ∈ Id(R). If, in addition, the existing
idempotent e is unique, then R is called uniquely invo-clean.

An invo-clean ring with ve = ev is said to be strongly invo-clean. If again the
existing idempotent e is unique, the ring is called uniquely strongly invo-clean.

Interestingly, any idempotent is an invo-clean element due to the record
e = (2e− 1) + (1 − e), because (2e− 1)2 = 1 and (1− e)2 = 1− e.

Moreover, simple examples of invo-clean rings that could be plainly verified
are these: Z2, Z3, Z4, Z6, Z8. Oppositely, both Z5 and Z7 are not invo-clean
but however they are clean being finite.

The objective of this article is to explore (strongly, uniquely) invo-clean rings
by giving a complete description of their algebraic structure. As an applica-
tion, we will characterize some related classes of rings. Our scientific work
is organized in the next section, and in closing we end with two challenging
questions.
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2. Invo-clean rings

We begin with two useful technicalities.

Lemma 2.1. Homomorphic images of invo-clean rings are again invo-clean.

Proof. Since homomorphic images of involutions and idempotents are again
involutions and idempotents, the assertion follows easily. �

Lemma 2.2. If R is an invo-clean ring, then 24 = 0. In particular, 6 ∈
Nil(R).

Proof. Write 3 = v+ e, where v is an involution and e is an idempotent. Thus
(3−v)2 = 3−v implies that 5v = 7, whence 24 = 0 by squaring both sides of the
equality. In addition, 63 = 216 = 24.9 = 0, hence 6 ∈ Nil(R), as asserted. �

Remark 2.3. If R is a nil-clean ring it was proved in [7] that 2 ∈ Nil(R),
whereas if R is a weakly nil-clean ring it was established in [6] and [2] that
6 ∈ Nil(R).

The following technicality is our critical tool (see [4], too).

Lemma 2.4. Suppose R is a ring with u ∈ U(R) and e ∈ Id(R) such that

u2e = eu2 = e and u = e+ q, where q ∈ Nil(R). Then e = 1.

Proof. Letting u = e+ q for some e ∈ Id(R) and q ∈ Nil(R) with qt = 0, t ∈ N

say, we obtain that u2 = e+eq+ qe+ q2 and hence u2e = e = e+eqe+ qe+ q2e
which forces that (q+ q2)e = −eqe. Similarly, eu2 = e insures that e(q+ q2) =
−eqe. Thus e commutes with the nilpotent (q+ q2)n = [q(1+ q)]n = qn(1+ q)n

for all n ∈ N, and therefore the same is valid for u. Furthermore, u− (q+ q2) =
e−q2 with u−(q+q2) = u2 = e−q2 being a unit, one sees that u2−(2q3+q4) =
e− (q2+2q3+ q4) = e− (q+ q2)2. Putting u3 = u2+(q+ q2)2, we observe that
u3 is a unit since u2 commutes with (q+q2)2 and that u3 = e+q3(2+q). In the
same manner u4 = u3−2(q+q2)3 = e−q4(5+6q+2q2), u5 = u4+5(q+q2)4 =
e+q5(14+28q+20q2+5q3) and u6 = u5−14(q+q2)5 = e−q6c, where c = f(q)
is a function (polynomial) of q. Repeating the same procedure t-times, we will
find a unit ut such that ut = e + qt · a = e for some element a depending on
q; a = −1 = −q0 provided t = 2. This yields that e = 1, which exhausts our
claim. �

Remark 2.5. Notice that the method used in [11] cannot be applied in the proof
of Lemma 2.4, because u2(1 − e) = u2 − u2e = u2 − e = 1 − e holds, provided
a priory that u2 = 1 only. But this is not deducible at once, namely the fact
that u has to be an involution (and hence a unipotent) will follow after certain
additional arguments.

For applicable purposes we detect that the following is true (compare with
[11] as well):
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Corollary 2.6. If R is a ring with u ∈ Inv(R) such that u = e+q for e ∈ Id(R)
and q ∈ Nil(R), then e = 1.

Proof. Just take u ∈ Inv(R) in Lemma 2.4 and this allows us to infer that
e = 1, as promised. �

Proposition 2.7. If R is an invo-clean ring with 2 ∈ U(R), then Nil(R) =
J(R) = {0}.

Proof. If q ∈ Nil(R), write q = v + e where v ∈ Inv(R) and e ∈ Id(R).
Thus −v = −q + e, where −v ∈ Inv(R) and −q ∈ Nil(R). Appealing to
Corollary 2.6, we conclude that e = 1. Therefore, q = v + 1 and hence q2 =
2 + 2v = 2(1 + v) = 2q. This leads to q(2 − q) = 0. Since 2 − q ∈ U(R), we
finally infer that q = 0, as expected.

Concerning the second part, given z ∈ J(R) we have z = v + e for v, e as
above. Consequently, z − v = e ∈ U(R) ∩ Id(R) = {1} means that z = v + 1
and since 2 − z ∈ U(R) the same trick as above works to get that z = 0, as
promised. �

Proposition 2.8. If R is an invo-clean ring with Id(R) = {0, 1} and 2 ∈ U(R),
then R ∼= Z3.

Proof. Each element r of R can be written as either r = v + 1 or r = v,
where v ∈ Inv(R). However, 1−v

2
is always an idempotent, whence 1−v

2
= 0 or

1−v

2
= 1. In the first case v = 1, while in the second one v = −1. Consequently,

all the elements of R are {0,−1, 1, 2}. But it must be that 2 = −1, because only
2.(−1) = 1 or 2.2 = 1 is possible. So, 3 = 0 and R = {0, 1, 2}, as needed. �

Proposition 2.9. If R is an invo-clean ring with 2 ∈ Nil(R), then R is nil-

clean with bounded index of nilpotence. In particular, an invo-clean ring is

nil-clean if and only if 2 is a nilpotent.

Proof. Given r ∈ R, we write r = v + e, where v2 = 1 and e2 = e. But
(1+ v)2 = 2+2v = 2(1+ v) and hence (1+ v)3 = 2(1+ v)2 = 22(1+ v), etc. by
induction we derive that (1+v)n+1 = 2n(1+v) for all n ∈ N. Thus (1+v)t = 0
for some appropriate natural t, that is, 1 + v ∈ Nil(R). Furthermore, one may
write that r = (v + 1)− (1− e), whence R is nil-clean, as claimed.

For the second part, given q ∈ Nil(R), we write that q = i + e for some
i ∈ Inv(R) and e ∈ Id(R). Thus −i = (−q) + e and, since −i ∈ Inv(R) and
−q ∈ Nil(R), Corollary 2.6 is applicable to infer that q = i+ 1. Furthermore,
one verifies that q2 = 2q and hence, by induction, qn+1 = 2nq for all n ∈ N.
Thus qk = 0 for some fixed k ∈ N, as required. �

Under certain additional circumstances the converse is true; even more a
criterion when a nil-clean ring is invo-clean is deducible.

Proposition 2.10. Suppose that R is a nil-clean ring. Then R is invo-clean

if and only if any q ∈ Nil(R) satisfies the equation q2 + 2q = 0.
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Proof. “⇒” As in Proposition 2.9, we derive that q2 = 2q. Substituting q by
−q, we are set.

“⇐” Writing r = q + e = (1 + q) − (1 − e) for any r ∈ R with q ∈ Nil(R)
and e ∈ Id(R), one checks that (1+ q)2 = 1+2q+ q2 = 1 and (1− e)2 = 1− e,
as required. �

As an interesting consequence, we obtain the following one.

Corollary 2.11. Suppose R is a nil-clean ring of characteristic 2. Then R is

invo-clean if and only if the index of nilpotence of R is 2.

Remark 2.12. In regard to the above statement, it is worth noticing that Z8

is both invo-clean and nil-clean containing the element 2 of nilpotence index
3. However, it is readily seen that 2 satisfies the equality q2 + 2q = 0 because
22 + 2 · 2 = 8 = 0.

Likewise, Z16 = Z24 is a nil-clean ring which is not necessarily invo-clean
(compare with Corollary 2.11 above). In fact, Z16 is indecomposable, that is,
the only idempotents are 0 and 1 as well as all involutions are 1, 7, 9 and 15. So,
the unit 5 cannot be represented as a sum of an involution and an idempotent,
as expected.

Proposition 2.13. The (finite or infinite) direct product of invo-clean rings

is again invo-clean.

Proof. This fact has routinely technical check, so we leave it to the reader. �

So, consulting with [6, Proposition 1.9(ii)], we come to the following:

Example 2.14. The ring Z3×Z3 is invo-clean but not weakly nil-clean. Also,
referring to [2], Z9 is a weakly nil-clean ring but an easy computation shows
that it is not invo-clean. Thereby these two notions are independent each to
other.

We now come to our main result in which we give a complete description of
invo-clean rings.

Theorem 2.15. A ring R is invo-clean if and only if R ∼= R1 × R2, where

R1 is an invo-clean ring of characteristic at most 8 which is nil-clean, and

R2 is either {0} or a commutative semiprimitive (and hence reduced) invo-

clean ring of characteristic 3 such that each its element is the sum of two

idempotents (respectively, of two involutions). In addition, R2 can be embedded

as an isomorphic copy in the direct product of copies of Z3.

Proof. Treating the necessity, by virtue of Lemma 2.2 we know that 6n = 0
for some n ∈ N. Since (2n, 3n) = 1, i.e., there exist non-zero integers k, l such
that 2nk + 3nl = 1, it follows that R = 2nR ⊕ 3nR because 2nR ∩ 3nR =
{0}. In fact, to show that this intersection is zero, given x = 2na = 3nb for
some a, b ∈ R, we have 2nak = 3nbk. However, a(1 − 3nl) = 3nbk whence
3n(al + bk) = a. Multiplying both sides by 2n, we derive that 0 = 2na = x,
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as required. Furthermore, 3nR ∼= R/2nR as well as 2nR ∼= R/3nR, so that
R ∼= R1 × R2, where we put R1 = R/2nR and R2 = R/3nR. Certainly,
using the same trick, one can also decompose R as R ∼= (R/8R) × (R/3R)
because (8, 3) = 1. Next, since R → R/2nR = R1 and R → R/3nR = R2 are
epimorphisms, it follows from Lemma 2.1 that both R1 and R2 are invo-clean.
Hence, in view of Lemma 2.2, 6 ∈ Nil(R1) and 6 ∈ Nil(R2). But it is obviously
true that 2 ∈ J(R1) whence 3 ∈ U(R1) which assures that 2 ∈ Nil(R1) and
even employing the second part of Lemma 2.2 we will have 23 = 8 = 0 in R1.
In accordance with Proposition 2.9, the ring R1 has to be nil-clean.

Regarding the second direct factor, 3 ∈ J(R2) ensures that 2 ∈ U(R2) and
thus owing to Proposition 2.7 we obtain 3 ∈ Nil(R2) = J(R2) = {0} which
amounts to 3 = 0 in R2. Next, given arbitrary a ∈ R2, we write 2a = v + e
where v ∈ Inv(R2) and e ∈ Id(R2) whence a = v+1

2
+ e+2

2
. It is readily verified

that both v+1

2
and e+2

2
are idempotents, as asserted. But R2 being reduced

is necessarily abelian whence commutative. On the other side, we can write
a − 1 = v + e with v, e as above, which means that a = v + (1 + e). Since
(1 + e)2 = 1 + 3e = 1, we are done. That is why, with a modification of the
Chinese Reminder Theorem at hand, we deduce that R2

∼= R2/J(R2) can be
embedded in the direct product of invo-clean domains of characteristic 3 which,
in conjunction with Proposition 2.8, are isomorphic to Z3, as claimed.

The sufficiency follows immediately from Proposition 2.13. �

As a nontrivial immediate consequence, which seems not to have a direct
proof, is the following one:

Corollary 2.16. If R is an invo-clean ring, then J(R) is nil with index of

nilpotence not exceeding 3.

Proof. According to Theorem 2.15, one can decompose the invo-clean ring R as
R ∼= R1 ×R2, where R1 is a nil-clean ring and R2 is a ring with zero Jacobson
radical. Since J(R) ∼= J(R1), we next just apply [7] to get the desired claim.

Concerning the second part that the index of nilpotence of R is at most 3,
writing j = v + e for any j ∈ J(R) with v ∈ Inv(R) and e ∈ Id(R), we have
j − v = e ∈ U(R) ∩ Id(R) = {1}. Hence j = v + 1 and so j2 = 2j which yields
j3 = 4j and 4j2 = 8j. Since 2j ∈ J(R), repeating the same procedure for this
element, we deduce that (2j)2 = 2(2j), that is, 4j2 = 4j. Thus 8j = 4j, i.e.,
4j = 0 = j3, as required. �

Another consequence gives a comprehensive description of invo-clean rings
having the strongly property in the following manner:

Corollary 2.17. A ring R is strongly invo-clean if and only if R ∼= R1 × R2,

where R1 is a strongly invo-clean ring of characteristic less than or equal to 8
which is strongly nil-clean, and R2 is either {0} or a commutative semiprimitive

(and hence reduced) invo-clean ring of characteristic 3 which can be embedded

as an isomorphic copy in the direct product of copies of Z3.
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Proof. To treat the necessity, the first part concerning the full classification of
the subring R1 as well as some facts for the subring R2 follow directly from
Theorem 2.15. As for the more concrete classification of the subring R2 having
characteristic 3, one observes that since any involution v and any idempotent
e satisfy v3 = v and e3 = e and they also commute, every element y = v + e
in R2 satisfies the equation y3 = y. Therefore, applying [8], the ring R2 must
be commutative. (Note that it is trivially seen that R2 is also a von Neumann
regular ring and this also yields that J(R2) = {0}.) Further on, the description
of R2 follows repeating the same trick as that from Theorem 2.15.

The sufficiency follows directly from Proposition 2.13. �

Remark 2.18. In regard to Theorem 2.15 and its Corollary 2.17, does it follow
that (strongly) nil-clean rings of characteristic ≤ 8 and index of nilpotence 2
are (strongly) invo-clean? It is also worthwhile noticing that it was somewhat
surprising the fact that R2 is a commutative ring.

It was established in [10] that a ring R is uniquely clean if, and only if, R is
abelian, R/J(R) is boolean and idempotents of R lift modulo J(R). Thus we
are now ready to proceed by proving with the following.

Theorem 2.19. Any uniquely invo-clean ring is strongly nil-clean, and hence

R/J(R) is boolean and J(R) is nil.

Proof. It follows accomplishing Corollary 2.16, the fact from [10] quoted above
and [5, Theorem B]. �

Enlarging now the main concept of UU rings from [5] as those rings R such
that U(R) = 1 +Nil(R), we define R to be a ring with unipotent involutions

or briefly a UI ring, provided Inv(R) ⊆ 1 +Nil(R) (see [4, Problem 6]). Sur-
prisingly, this condition does not give nothing new. Specifically, the following
holds:

Proposition 2.20. A ring R is a UI ring if and only if 2 ∈ Nil(R).

Proof. Since −1 ∈ Inv(R), it follows that −1 ∈ 1 + Nil(R) and hence 2 ∈
Nil(R). Conversely, for any u ∈ Inv(R) we have that (1− u)2 = 2(1− u) and
thus by induction (1−u)n+1 = 2n(u−1) for any n ∈ N, so that 2k = 0 for some
k ≥ 1 implies that (1− u)k+1 = 0 whence u− 1 ∈ Nil(R) and u ∈ 1 +Nil(R),
as required. �

Referring to Corollary 2.6, or to Proposition 2.20 accomplished with [7], or to
[11], a valuable example of UI rings are all nil-clean rings. As aforementioned,
so are also all UU rings. The converse holds only if each unit is an involution.

In [5] it was proved that clean UU rings are strongly nil-clean. It is thereby
reasonably adequate to conjecture that clean UI rings are nil-clean, but in view
of Proposition 2.20 together with some standard facts this will be completely
wrong. Nevertheless, we can currently offer the following:

Proposition 2.21. Every invo-clean UI ring is nil-clean.
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Proof. An appeal to Theorem 2.15 allows us to write that R ∼= R1 ×R2 where
R1 is nil-clean and R2 is either {0} or invo-clean with 2 ∈ Inv(R). In the first
case for R2 we are finished. In the second one, since it is trivial to verify that
epimorphic images of UI rings are again UI rings, it must be that R2 is UI and
thus as observed above 2 ∈ Nil(R) which is impossible. Finally, R2 = {0} and
therefore R ∼= R1 is nil-clean, as wanted. �

Remark 2.22. A direct proof can be deduced by combining Propositions 2.9
and 2.20.

In that way, owing to [2] and Proposition 2.20, it follows at once that weakly
nil-clean UI rings are themselves nil-clean.

3. Concluding discussion

In the context considered above, we close the article with the following two
problems.

Combining the notion of invo-clean rings with that of weakly nil-clean rings,
one can state:

Problem 1. A ring R is called weakly invo-clean if, for each a ∈ R, there exist
v ∈ Inv(R) and e ∈ Id(R) such that a = v + e or a = v − e.

Describe the structure of these rings. Are they clean? However, they are ob-
viously weakly clean in the sense of [1], considered not only in the commutative
aspect.

Now, in order to expand the concept of UI rings in the light of WUU rings
from [4] and the listed there Problem 7, one may also ask:

Problem 2. Classify all WUI rings R satisfying either Inv(R) ⊆ ±1+Nil(R).

Problem 3. Characterize unitly invo-clean rings R, that are rings R with
U(R) = Inv(R) + Id(R).
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