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RINGS WHOSE ELEMENTS ARE REPRESENTED BY
AT MOST THREE COMMUTING IDEMPOTENTS

PETER V. DANCHEV

Abstract. We completely characterize up to an isomorphism those rings
whose elements are expressed as the sum of two, respectively three, commuting
idempotents or are minus an idempotent. This strengthens well-known joint
results in the subject due to Hirano-Tominaga (Bull. Austral. Math. Soc.,
1988), Ahn-Anderson (Rocky Mount. J. Math., 2006), Danchev-McGovern (J.
Algebra, 2015), Ying et al. (Can. Math. Bull., 2016), as well as own results
established by Danchev (Bull. Iran. Math. Soc., 2019) and (Boll. Un. Mat.
Ital., 2019).

1. Introduction and Motivation

Everywhere in the text of the present paper, suppose that all rings R into
consideration be assumed associative, containing the identity element 1, which
differs from the zero element 0. Our standard terminology and notation are
mainly in agreement with [8]. For instance, U(R) stands for the group of units
in R, J(R) stands for the Jacobson radical of R, Nil(R) stands for the set of all
nilpotents in R and Id(R) stands for the set of all idempotents in R. All other
unexplained explicitly notions and notations will be stated in the sequel.

The classical concept of a Boolean ring means that each element is an idempo-
tent. These rings are known to be a subdirect sum of family of copies of the field
of two elements Z2. In [7] this was enlarged to rings for which the elements are
sums of two idempotents. To pay attention on the sign ”-”, in [1] were described
rings whose elements are idempotents or minus idempotents (actually, this was
slightly extended in [6]). This makes sense to explore rings for which their el-
ements are representable by commuting idempotents only (see, e.g., [4], [5] and
[9]).

So, motivated by the aforementioned principal results, we shall explore here the
rings having elements represented either as a sum of at most three idempotents
or elements which are minus an idempotents. These considerations allow us to
obtain some new results in that topic as follows.
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2. Main Results

It is rather easy to verify that the next three conditions for any ring R are
equivalent:

(1) ∀x ∈ R: x = e+ f for some two commuting idempotents e, f ∈ R.

(2) ∀x ∈ R: x = e− f for some two commuting idempotents e, f ∈ R.

(3) ∀x ∈ R: x = −e− f for some two commuting idempotents e, f ∈ R.

That is why, it is quite natural to consider the following new class of rings as
follows:

2.1. Rings whose elements are sums of two commuting idempotents
or minus an idempotent. We deal here with rings whose elements depend on
commuting idempotents only. They can be expressed as sums of two idempotents
or are minus an idempotent.

So, we come to our first main tool.

Definition 2.1. We shall say that the ring R belongs to the class P1 if, for every
element r from R, there exist two idempotents e, f of R such that r = e + f or
r = −e.

This notion extends the concept of weakly Boolean rings, where each element
is idempotent or minus an idempotent. These rings R are characterized thus:
R ∼= B is Boolean or R ∼= Z3 or R ∼= B × Z3 (see, for example, [1] and [6]).

Likewise, the above notion generalizes the considerations in [7] of rings whose
elements are sums of two commuting idempotents.

We now proceed by giving up a spectacular proof of the following first main
result.

Theorem 2.2. A ring R lies in the class P1 if, and only if, R ∼= R1×R2, where
either

(i) R1 = {0}, or R1
∼= B is a Boolean ring (and so it is a subdirect product of

family of copies of the field Z2), or R1
∼= Z4, or R ∼= B × Z4;

and

(ii) R2 = {0} (which is mandatory when J(R1) 6= {0}), or R2 is a ring which
is a subdirect product of family of copies of the field Z3.

Proof. ”⇒”. First, let 3 = −e for some e ∈ Id(R). By squaring, we get that
9 = −3, i.e., 12 = 4.3 = 0.

Let us now 3 = e + f for some two commuting e, f ∈ R. Again by squaring,
we derive that 9 = 3 + 2f , that is, 6 = 2ef . Moreover, multiplying the initial
equality by f , we deduce that 2f = ef and, by squaring, that 4f = 2f = 0.
Hence 6 = 2.3 = 0, as expected.

Furthermore, with the Chinese Remainder Theorem at hand, one writes that
R ∼= R1×R2, where both rings R1, R2 remain from the class P1 with the properties
4 = 0 in R1 and 3 = 0 in R2.

We next will describe all direct factors in the following manner:
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Describing R1. Assume R1 6= {0}. Adapting the ideas for proofs from [4] and
[5], one deduces that the quotient R1/J(R1) is a Boolean ring with either zero
J(R1) or nil J(R1) = {0, 2}. Furthermore, exploiting the method of proof in [2,
Proposition 17], it follows that R1 is either a Boolean ring or the indecomposable
ring Z4 or the direct product of two such rings.

Describing R2. Assume R2 6= {0}. Since 3 = 0, it is not too hard to verify that
the equality r3 = r is valid for every element r ∈ R2. Thus, in accordance with
[7], R2 has to be a subdirect product of copies of the Z3’s.

”⇐”. Given an arbitrary element x ∈ R. By definition, in B every element
is an idempotent. Besides, it is shown in [7] that any element from R2 is a sum
of two idempotents. Thus, simple arguments lead to the fact that this is also
automatically true in B ×R2 too.

What remains to show is that in Z4 and B ×Z4 every element is a sum of two
idempotents or is minus an idempotent. But in the first situation this follows by
a direct check, while in the second one this is almost obvious, bearing in mind
that in B it is also fulfilled that 2 = 0 (whence the signs ”+” and ”-” amounts),
and that in the ring Z4 the elements 0, 1, 2 are always sums of two idempotents
and 3 is minus an idempotent, that is, 3 = −1. �

Remark 2.3. It is worthy noticing that the rings from Theorem 2.2 (i) somewhat
arisen also in [6, Proposition 1.19].

Likewise, it is not too surprised that the class P1 is simultaneously strictly
contained in the class C of rings investigated in [5] and in the class of rings
studied in Theorem 4.4 of [9], which classes are also different as, moreover, even
that from [5] is more general containing the field Z5. By the way, concerning the
latter ring class, the aforementioned characterization result in [2, Proposition 17]
is better than that in [9, Theorem 4.4]. However, in the cited Proposition 17 from
[2] there is a shortcoming, namely in condition (b) the possibility R2 = {0} is
omitted. Indeed, the examples stated below specify that omission.

Example 2.4. The direct products Z2 × Z3, Z2 × Z4 and Z3 × Z3 are from the
class P1.

However, considering the direct product Z4×Z3, what can be said is that it is
not in the class P1, since the element (3, 1) is not presentable as the sum of two
idempotents and it is also not minus an idempotent, bearing in mind that the
only idempotents in both Z3 and Z4 are the trivial ones, namely 0, 1. This clarifies
why R2 = {0} whenever J(R1) 6= {0}, because J(Z4) = {0, 2}. Nevertheless, it
can be presented as (3, 1) = (0, 1)− (1, 0) = −(0, 1)− (1, 1), as required.

Next, continuing in a direction of common generalization of the previous con-
cept P1, it is also pretty easy to check that the next four conditions for any ring
R are equivalent:

(1) ∀x ∈ R: x = e+ f + h for some three commuting idempotents e, f, h ∈ R.

(2) ∀x ∈ R: x = e+ f − h for some three commuting idempotents e, f, h ∈ R.

(3) ∀x ∈ R: x = e− f − h for some three commuting idempotents e, f, h ∈ R.
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(4) ∀x ∈ R: x = −e−f−h for some three commuting idempotents e, f, h ∈ R.

That is why, it is quite natural to consider the following new class of rings as
follows:

2.2. Rings whose elements are sums of three commuting idempotents or
minus an idempotent. We can now enlarge somewhat the above Definition 2.1
to the following new point of view:

Definition 2.5. We shall say that the ring R belongs to the class P2 if, for every
element r from R, there exist three idempotents e, f, h of R such that r = e+f+h
or r = −e.

We are now in a position to proceed by proving the following second main
result.

Theorem 2.6. A ring R lies in the class P2 if, and only if, R ∼= R1 × R2 × R3,
where either

(i) R1 = {0}, or R1 is a commutative ring of even characteristic not exceeding
4 such that the factor-ring R1/J(R1) is a Boolean ring (and thus it is a subdirect
product of family of copies of the field Z2), and either J(R1) = {0} or J(R1) =
2Id(R1);

and

(ii) R2 = {0}, or R2 is a ring which is a subdirect product of family of copies
of the field Z3;

and

(iii) R3 = {0} (which is mandatory when J(R1) 6= {0}), or R3
∼= Z5 as either

R1 = {0} or R1 is Boolean, and R2 = {0}.

Proof. ”⇒”. Write −3 = −e, that is, 3 = e and 9 = 3, whence 6 = 2.3 = 0.
If now −3 = e + f + h, then by a multiplication of both sides by e, we find

that −4e = ef + eh and, multiplying by f , we have −5ef = efh and finally,
multiplying by h, it follows that 6efh = 0.

On the other hand, squaring −3 = e+f+h, we obtain that 12+8e = 2fh which
multiplied by 3e gives that 60e = 0. Similarly, 60f = 60h = 0. Consequently,
−3 = e + f + h implies that −180 = 60e + 60f + 60h = 0, i.e., 4.9.5 = 0, as
expected.

Henceforth, the Chinese Remainder Theorem applies to write that R ∼= R1 ×
R2×R3, where all of the three rings R1, R2, R3 are also of the class P2 as well as
4 = 0 in R1, 9 = 0 in R2 and 5 = 0 in R3.

However, we claim even that 3 = 0 in R2. Indeed, assume first that 4 = −e.
Thus, by squaring, it follows that 16 = e = −4 and hence 20 = 0. Since 20 ∈
U(R2) as 9 = 0, we get the desired contradiction 1 = 0.

After that, suppose 4 = e+f+h. By a subsequent multiplication of both sides
with e, f and h, respectively, one infers that 3e = ef+eh, that 2ef = efh and that
efh = 0. We, therefore, arrive at 2ef = 2fh = 2eh = 0. Taking into account that
9 = 0, the multiplication by 5 of these equalities gives that ef = fh = eh = 0.
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Consequently, 3e = 3f = 3h = 0 and, finally, 12 = 3e + 3f + 3h = 0. Since
4 ∈ U(R2) as 3 ∈ Nil(R2), we deduce after all the wanted equality that 3 = 0.

We next will describe all direct factors in the following manner:

Describing R1. Here 4 = 0. As in [4, Theorem 2.12], we can derive the wanted
isomorphic structure.

Describing R2. Here 3 = 0. It is routinely checked that y3 = y for all y ∈ R2,
so that [7] is applicable to infer to wanted description.

Describing R3. Here 5 = 0. If now, an arbitrary z ∈ R3 is minus an idempotent,
then z2 = −z and hence z3 = z. If reciprocally z is a sum of three idempotents,
then processing as in [4], we can get that z3 = −z and, henceforth, [3] applies to
conclude that R3 is exactly the five element field, as desired.

”⇐”. Given an arbitrary element x ∈ R. Referring to [4] and [7], respectively,
in R1 each element x1 is a sum of three idempotents, whereas in R2 each element
x2 is a sum of two idempotents. Regarding R3

∼= Z5 = {0, 1, 2, 3, 4 | 5 = 0}, the
elements 0, 1, 2, 3 are sums of three idempotents, while 4 = −1 is obviously minus
an idempotent. That is why, plain calculations demonstrate that x = (x1, x2, 0)
with x1 6= 0 is a sum of three idempotents as well as that x = (x1, 0, x3) with 2x1 =
0 and x3 ∈ R3 is either a sum of three idempotents or is minus an idempotent,
too, as expected. �

Remark 2.7. It is worthy noticing that the proved above last theorem somewhat
improves on [4, Theorem 2.2].

Moreover, the above statement can be reformulated in the following way: Either
R = {0}, or R ∼= K × P for some two rings K and P having the properties that
K = {0} or K ∼= B is Boolean (and thus K ⊆

∏
λ Z2 for some ordinal λ) or

K/J(K) ∼= B with J(K) = 2Id(K) as char(K) = 4, and P = {0} or P ⊆
∏

µ Z3

for some ordinal µ, or R ∼= Z5, or R ∼= B × Z5.

Example 2.8. Certainly, the rings Z2 ×Z3, Z2 ×Z4, Z3 ×Z4 and Z2 ×Z5 lie in
the class P2.

However, considering the direct products Z3×Z5 and Z4×Z5, one says that they
are both not in the class P2, because the elements (1, 4) and (2, 4), respectively,
are not presentable as the sum of three idempotents or minus an idempotent since
the only idempotents in Z3, Z4, Z5 are the trivial ones, namely 0 and 1.

So, inspired by the examples alluded to above, we end our work with the
following three problems of some interest and importance:

Problem 2.9. Classify the structure of those rings R for which, for each x ∈ R,
there are commuting e1, e2, e3 ∈ Id(R) with x = e1 + e2 + e3 or x = e1 + e2 − e3.

It is not too hard to see that any element of R is a sum of four idempotents.
In fact, one writes that x − 1 = e1 + e2 + e3 or x − 1 = e1 + e2 − e3. Thus
x = 1 + e1 + e2 + e3 or x = e1 + e2 + (1− e3).

Problem 2.10. Classify the structure of those rings R for which, for each x ∈ R,
there are commuting e1, e2, e3 ∈ Id(R) with x = e1 + e2 + e3 or x = e1 − e2 − e3.
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Using the above tactic for the element x − 2, it is not too difficult to observe
that any element of R is a sum of five idempotents.

Problem 2.11. Classify the structure of those rings R for which, for each x ∈ R,
there are commuting e1, e2, e3 ∈ Id(R) with x = e1 + e2 + e3 or x = −e1− e2− e3.

The meaning of the last problem is to describe those rings having an element
x or −x as a sum of three commuting idempotents. Here, incidentally, the field
Z7 will occur.
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