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Abstract
The honeybee has a significant impact on industry and nature. In recent years, a 
mysterious disease make honeybees die, often losses reach 80–100% of the apiaries. 
The causal syndrome of such massive die-off is called Colony Collapse Disorder. 
The model adopted in the paper is constituted by a system of three ordinary dif-
ferential equations that account for the change in time of the population size of the 
hive bees, forage workers and infected foragers. It models the condition as a con-
tagion, transmitted by both bee-to-bee and bee-to-plant interaction. What is more, 
it supports both healthy and unhealthy population dynamics. We solve a parameter 
identification inverse problem to reconstruct the values, which are directly unob-
servable but vital in honeybee management. We apply an adjoint equation optimiza-
tion approach to solve this inverse problem. Numerical analysis confirms the results 
obtained theoretically.

Keywords  Honeybee population dynamics · Colony collapse disorder · Allee effect · 
Parameter identification · Adjoint equation optimization method

1  Introduction

The honeybee Apis mellifera plays a crucial role in both environmental balance and 
economy. Although it might seem odd at first glance, but the bee is looked at as one 
of the primary natural pollinators. Their contribution to pollination is evaluated to 
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exceed the value of honey products and its derivatives between 10 and 20 times. 
What is more, at the beginning of the millennium, the bee pollination activity is 
estimated to about $ 15 billion per year in US agriculture (Oldroyd 2007). Albert 
Einstein said that mankind would survive four years after the extinction of the bees. 
There would be no crops without pollination, thus animals will die of hunger—and 
the people with them.

Honeybee losses have happened many times at many places. There exist records 
for such events in the past century (Finley et al. 1996; Silver 1907), but the massive 
loss from the winter of 2006–2007 (Fact Sheet 2015) had some unique traits which 
have not been met before. There were beekeepers who suffered 80%, 90% and even 
100% losses of their apiaries and it was not an isolated case since it was observed 
in Europe, Asia, America and other places (van der Zee et al. 2012). The first and 
most specific sign is the absence of adult bees in and around the hive. Such con-
ditions have been recorded previously (Kulincevic et al. 1982), but there are other 
characteristic marks which caused the phenomenon to be named ‘Colony Collapse 
Disorder’ (CCD). Such an event happened repeatedly in recent years and could be 
described in general by its three distinctive features: (1) a massive loss of adult bees 
from colonies while no carcasses are present near the hive; (2) the availability of the 
queen and the capped brood; (3) the abandoned food supply, which is not robbed by 
scavenging species for an extended period of time. What is more, it is sometimes 
claimed that (4) during the colony collapse, Varroa mite and Nosema populations 
are not at levels known to cause a typical population decline (vanEngelsdorp et al. 
2009). Moreover, the remaining bees are unwilling to use food provision provided 
by the beekeeper (Ellis et al. 2010).

The fact all researchers agree on is that it is not a single agent that causes CCD, 
but it is a complex of reasons. Unfortunately, so far there is still no consensus on the 
factors that lead to CCD. It is believed to be either a contagious disease or to result 
from exposure to a common risk factor (vanEngelsdorp et al. 2009). In this source a 
descriptive epizootiological study is conducted and many quantitative variables are 
studied. It is found that only the fittest honeybees remain in the CCD hives, because 
they appear to be more symmetrical than their counterparts in the «healthy» hives. 
Another interesting fact is that the latter might have developed tolerance to certain 
stressors, which possibly protects them. Nevertheless, the CCD colonies were found 
to be co-infected with a greater number of pathogens than the control ones, implying 
either greater pathogen exposure or reduced defenses in CCD bees.

A short list of possible hypotheses is presented in Ellis et al. (2010), including 
viruses, poor nutrition and management stress, while the author in Oldroyd (2007) 
researches different causative factors, from pesticides, genetically modified crops, 
various diseases and parasites, to narrow genetic base and cold brood (should the 
brood is raised in abnormal temperature, they become physically normal adult bees, 
but show deficiencies in learning and memory as well as they tend to get lost in the 
fields). They again conclude the CCD is caused by a combination of factors. Fur-
thermore, in Cox-Foster et al. (2007) a metagenomic approach is employed to study 
the microflora in hives affected by CCD and to investigate the contribution of differ-
ent pathogens in the colonies decline. It is found that the two dicistroviruses—Kash-
mir bee virus (KBV) and Israeli acute paralysis virus (IAPV) are present in almost 
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all of the CCD hives and in almost none of the control hives. The parasite Nosema 
ceranae is suggested to be the primary reason for a colony collapse in Spain (Paxton 
2010). It is related to heavily affected colonies, despite the fact that it is denied to 
bring about CCD on its own.

In the next section the mathematical model is described. The inverse problem is 
formulated in Sect. 3 and the numerical methods for the direct and inverse problems 
are presented in Sects. 4 and 5, respectively. In addition, a basic qualitative analysis 
is provided is Sect. 4. Numerical experiments are given in Sect. 6, while the last sec-
tion is dedicated to discussion and conclusion.

2 � Model formulation

The mathematical models are vital to understand the underlying dynamics of a honey-
bee population. They could quantitatively describe the process in a colony thus simu-
late the development of the biological system and eventually help to design an escape 
way to prevent a colony collapse. In this section we are going to briefly review the 
existing models in the literature and to introduce the one we will use from now on.

To begin with, we will shed light on how a honeybee hive works. In a usual 
one, the bees can be classified into three distinct classes. The brood, which emerge 
from the queen’s eggs, is raised by the young hive bees in a capped honeycomb 
compartment (Dornberger et  al. 2012). When they mature out of the larvae stage, 
they become part of the hive worker class. Their responsibilities include nurturing 
the brood, building the combs of the hive, and also cleaning, repairing, ventilating 
and when needed—maintaining the temperature of the brood chamber in the hive 
(Winston 1991). They also take care of the food stores. After serving in the hive 
for between 7 and 21 days (Amdam and Omholt 2003), a hive bee matures and is 
recruited into the forager class (Winston 1991). A forager makes between 5 and 20 
flights per day to pick up pollen and nectar from the plants. After serving as a forager 
bee for between 14 and 21 days during the foraging season, or up to 4 months in the 
winter, it eventually dies (Winston 1991). A healthy hive consists of between 50,000 
and 80,000 honeybees during its peak foraging season (Dornberger et al. 2012).

A review of the existing dynamics models is done in Becher et al. (2013), where 
they are classified as colony, varroa, and foraging models. A link between the 
dynamics of a colony and of bee infection and diseases is incorporated in a model in 
Russel et al. (2013). The main finding in Russel et al. (2013); Torres et al. (2015) is 
the fact that the shortage of nutrition and the pheromone-driven social inhibition are 
the main causes of colony failure. A model taking into consideration the seasonal 
effects is developed in Switanek et al. (2017). Factors like infestation with parasites 
and viruses are considered in Ratti et al. (2017), while in Booton et al. (2017) it is 
explored the impact of the Allee effect on honeybees colony collapse via a simple 
compartment model. Such models that include the interaction of uninfected hive and 
forager bees, infected hive bees, virusfree mites and virus-infected mites are investi-
gated in Bailey (2002); Ma et al. (2009).
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In Khoury et al. (2011, 2013) the authors propose a model describing the honey-
bee colony population dynamics of two classes: the hive bees and the forage worker 
bees. Only the population of female bees is considered since the drones do not com-
pose a significant portion of the colony and do not contribute to the hive and forag-
ing work (Bagheri and Mirzaie 2019; Yıldız 2018). In the latter source, the author 
extends the model as introducing fractional-order derivatives of the rates of change 
of the bee classes population size, which activates the memory property and cap-
tures better the underlying dynamics. In Dornberger et  al. (2012), a compartment 
model is suggested, where the honeybee population is constituted by three distinc-
tive classes—hive bees, forager bees and infected forager bees, thus modeling the 
CCD as a contagious condition (Kribs-Zaleta and Mitchell 2014).

The model considers the development of a colony through an extended forag-
ing season from early spring to late summer. The distinguishable sign of CCD is 
the massive loss of adult forage bees thus urging the hive workers to commence 
foraging, which strongly affects the colony and initiate the collapse (a hypothetical 
explanation of the strange absence of forage bees is that infested individuals evacu-
ate themselves form their hives in attempt to prevent contamination of their fellows 
(Kralj and Fuchs 2006)). The model pays a special attention to this phenomenon.

The population size of the hive bees is denoted with H. Since the queen lays eggs 
at constant rate L, the maggots could mature into young hive bees at maximal rate L 
(Kribs-Zaleta and Mitchell 2014). Since the hive workers have a lot of responsibili-
ties, their emergence is multiplied by a saturation function H

(H+�)
 , where � represents 

the minimum number of bees needed to rear the brood in order for the hive to sur-
vive (Dornberger et al. 2012). From another point of view, the value of � controls 
the rate of which the saturation function would reach 1 in case the number of hive 
workers becomes critically low. In Khoury et al. (2011, 2013) a similar saturation 
function is used, but they considered the whole population H + F instead of only the 
hive bees H. Thus the eclosion rate is given by

The population size of the healthy forager class is denoted with F, while the infected 
forager class population size—with I. After being hive bees (for a maximum of 3 
weeks), they mature and join the forager class at rate � . This process could be accel-
erated if the forager class is depleted and the hive needs more food (Kribs-Zaleta 
and Mitchell 2014). The maximal additional maturation rate is represented by � , and 
it is multiplied by another saturation function �

(F+I+�)
 , where F + I is the total num-

ber of foragers, and � is the total number of foragers, below which a maximal 
recruitment rate is accounted. In contrast, a maximum «healthy» recruitment rate is 
considered in Khoury et  al. (2011, 2013), reduced by means of social inhibition 
when the forager class population becomes large. The recruitment rate is given by

(1)�(H) = L
H

H + �
.

(2)�(F, I) = �
�

F + I + �
+ � .
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The model we follows assumes the disease transmission to be carried out via both 
bee-to-bee direct contact and contact with contaminated plants (Kribs-Zaleta and 
Mitchell 2014). The empirical analyses show that the foragers are most influenced 
by the CCD. What is more, the condition is spread through mass action between the 
foragers and the infected ones, while the foragers interact very little with the hive 
bees. Further assuming that the plants are not continuously occupied by the bees and 
the bees do not visit more plants than they are already visiting in case of plant den-
sity increase, then the disease rate is given by

where � is the bee infection rate and k = pc

b
 , where p is the plant density, c is the rate 

at which the plants clear contamination, and b is the plant contamination rate.
Finally, the CCD model follows: 

 where �1 is the natural forager mortality rate, the reciprocal of which denotes the 
average life longevity of a forager, and �2 is the death rate of infected foragers, its 
reciprocal representing the average time an infected bee remains a functional for-
ager before leaving the hive or dying (�1 ≤ �2) . All rates are given in units time−1 , 
namely days−1.

3 � Inverse problem formulation

Inverse problems for systems of nonlinear differential equations like (4) arise in biol-
ogy, epidemiology, ecology, etc. The inverse problems are ill-posed, meaning that a 
solution may not exist, may not be unique, and most importantly, may not continuously 
depend on the measurements. A class of numerical methods for solving ODE inverse 
problems are discussed in Abdulla and Poteau (2020). Another method is the ‘collage 
method’, see e. g. Kunze et al. (2004); it provides an excellent starting point for further 
optimization, in contrast to more traditional searching methods that require one first to 
select a good initial guess. A generalized collage method for solving inverse problems 
for boundary value problems is presented in Kunze et al. (2009), which is based on the 
Lax–Milgram representation theorem. An extended version of the Generalized Collage 
theorem is presented in Kunze et al. (2015) to cope with inverse problems for vector-
valued Lax–Milgram systems. In Berenguer et  al. (2016) a corresponding Galerkin 

(3)�(I) = �
I

I + k
,

(4a)
dH

dt
= �(H) − H�(F, I) = L

H

H + �
− H

(
�

�

F + I + �
+ �

)
,

(4b)
dF

dt
= H�(F, I) − �1F − F�(I) = H

(
�

�

F + I + �
+ �

)
− �1F − �

FI

I + k
,

(4c)
dI

dt
= F�(I) − �2I = �

FI

I + k
− �2I,
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method is developed and a collage theorem is presented for a related inverse problem 
as a boundary value problems for linear impulse differential equations. An approach to 
solve inverse problems of ordinary differential equation using the Banach’s fixed point 
theorem and Picard contraction mapping, borrowing from ‘fractal-based’ methods of 
approximation, is suggested in Kunze and Vrscay (1999). In the review Kunze et al. 
(2014) the contemporary fractal-based techniques and methods based on the Collage 
theorem are surveyed and the solutions to inverse problems for ordinary and partial dif-
ferential equations are commented.

In this section we will define the inverse identification problem, or what and how 
we would be looking for. In the real world, the values of the parameters � , � , � , �1 and 
�2 are typically unknown and their reconstruction plays a crucial role in the honeybee 
colony management. We employ the adjoint equation optimization method of Marchuk 
(1995); Marchuk et al. (1996).

The problem (4) is subjected to the following initial conditions:

where ppp = (p1, p2, p3, p4, p5) , p1 ∶= � , p2 ∶= � , p3 ∶= � , p4 ∶= �1 , p5 ∶= �2 and

Henceforward all solutions {H(t;ppp),F(t;ppp), I(t;ppp)} , ppp ∈ �adm are defined on the 
interval t0 ≤ t ≤ T  . The admissible set �adm follows the specification of the model 
(Kribs-Zaleta and Mitchell 2014) and the biology of the honey bees (Winston 1991). 
When the parameters � , � , � , �1 and �2 are known, the problem (4), (5) is well-posed 
and it is called a direct problem.

Let us assume now that the coefficients pi , i = 1,… , 5 are unknown. We will 
solve the inverse problem for determination of the unknown parameter vector 
ppp = (�, �, � ,�1,�2) at the measured values of the functions H, F, I:

The purpose of the inverse problem is to reconstruct these parameters from the 
observation data. The optimization method is a powerful tool for dealing with the 
ill-posed problems (Marchuk 1995; Marchuk et al. 1996).

(5)H(t0) = H0, F(t0) = F0, I(t0) = I0,

(6)ppp ∈ 𝕊adm =
{
ppp ∈ ℝ

5 ∶ 0 < pi < Pi, i = 1,… , 5
}
.

(7)Hobs(tk;ppp) = Xk, k = 1,… ,KH ,

(8)Fobs(tk;ppp) = Yk, k = 1,… ,KF,

(9)Iobs(tk;ppp) = Zk, k = 1,… ,KI .
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4 � Solution to the direct problem and a basic qualitative analysis

4.1 � Numerical method

Now we will briefly show how to solve the direct problem (4)–(6). It is of a par-
ticular importance, because we need to solve the direct problem a couple of times 
in order to solve the inverse problem. For simplicity of the notation, in this sec-
tion we assume that KH = KF = KI =∶ K and the points of measurements coin-
cide for the three classes.

The following piecewise-uniform mesh is introduced:

and the internal nodes between the observation times are defined as

where ∀k = 1,… ,K , tk are the time instances at which observations are taken and �k 
are the time steps corresponding to (tk−1, tk] (see Fig. 1 for an example, where K = 4

).
For solving the initial problem (4), (5) we will employ an explicit Runge–Kutta 

method, associated with a fourth order accuracy. It is a standard and widely used 
approach for a non-stiff system of ODEs.

Let us write the system (4) in the form

where RRR = (H,F, I)⊤ and the initial condition (5) RRR0 = RRR(t0) is given. The solution is 
presented in Algorithm 1.

(10)�� =
{
t0, tk = tk−1 + �kJk, tK = T

}
for k = 1,… ,K − 1,

t
j

k
= tk−1 + j�k, j = 1,… , Jk,

dRRR

dt
= GGG

(
t,RRR(t)

)
,
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4.2 � A qualitative analysis

In this subsection we introduce some basic notions and definitions that will be used 
in our computational simulations performed on the base of (the solution to) the 
inverse problem.

4.2.1 � Equilibria analysis

First, following Kribs-Zaleta and Mitchell (2014), we introduce some results from 
the equilibria analysis of the model (4a)–(4c). In Kribs-Zaleta and Mitchell (2014) 
a thorough equilibria analysis is performed. We will summarize the relevant infor-
mation. There are six equilibria of the system (4), five of which are biologically 
relevant. First to mention is the extinction equilibrium

which always exists and is stable provided that L < 𝜔(𝛼 + 𝛾).
Furthermore, there are two different disease-free equilibria, which exist if

It is the larger disease-free equilibrium that requires satisfying the inequalities. The 
smaller one exists if they are met, or if

H = 0, F = 0, I = 0,

𝛼𝜔 > 𝜇1𝜑 and 2
√
𝛼𝜇1𝜑𝜔 − 𝜇1𝜑 ≤ L − 𝛾𝜔.

L < 𝜔(𝛼 + 𝛾).

t0 t1 t2 t3=tK-1 T

t

τ2 τ4

t11 t2 t31 1 t1 t2 t3 t43 3 3 3

Fig. 1   Mesh �� (10)
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They can exist at the same time (Dornberger et al. 2012). While the smaller disease-
free equilibrium is always unstable, the larger one is stable when the basic reproduc-
tion number is below one. We will discuss it shortly.

There are two endemic equilibria as well. They exist under complicated con-
ditions, please refer to Table  1 in Kribs-Zaleta and Mitchell (2014). The larger 
endemic equilibrium is always stable, while the smaller one is always unstable.

To investigate the population dynamics of the hive, regarding its biological 
processes, the population is explored for 250 days. To simulate particular cases, 
we assume that L < 𝜔(𝛼 + 𝛾) is fulfilled. First we consider the disease-free case, 
i. e. when I0 = 0 . The respective phase plane diagram is presented on Fig. 2 (left), 
compare with Fig. 3.

The blue curves follow concrete solutions development and the stars denote 
the starting points. The filled circles show the equilibria states (simulated for one 
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Fig. 2   Phase plane diagram of the solution in the case I = 0 (left) and I > 0 (right)
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forage season), while the hollow circle denotes the extinction equilibrium. All 
the solutions (except in the extinction case) tend to the disease-free equilibrium, 
which is normal for a healthy colony.

It is also interesting when the unhealthy population dynamics is involved. The 
filled circles on Fig. 2 (right) designate the end points after one foraging season. 
All the solutions tend to an endemic equilibrium, which is characterized by low 
number of healthy foragers and comparable number of infected foragers. It could 
be observed on Fig. 4 as well.

Analyzing the equilibrium points (H∞,F∞, I∞) and (H∞,F∞, 0) is necessary 
because it allows the beekeepers to understand the continual death rate of the mites 
they must achieve in order to eliminate them. Knowing the percent of the mites con-
tinually dying out or being removed in a hive go to zero would aid in controlling the 
mite population and the longevity of the hive.

4.2.2 � Basic reproduction number

In the theory of contagious disease modeling, the concept of the basic reproduction 
number R0 plays a central role since it measures the transmission potential of infec-
tious diseases (Chowell and Brauer 2009). One of the fundamental results in the 
mathematical epidemiology is that there is a difference in the epidemic behaviour 
of the system depending on whether the basic reproduction number is less than one 
or more than one. It is a prominent example of the so called «threshold» behaviour.

If the system is closed, i. e. there are no vital dynamics involved, the situation is 
simple. If R0 < 1 , the disease dies out, or if R0 > 1 , the infection breaks out into 
epidemics. Unfortunately, this is not the case with the system (4) describing the hon-
eybee population dynamics. The difference is in the latter case R0 > 1 , in which 
there is also a possibility for the disease to persist in the population. Concerning a 
honeybee colony, when there are no infection, the system approaches its disease-free 
equilibrium, which is asymptotically stable. In case the contagion sticks with the 
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hive, the disease-free equilibrium is unstable and the population is in an endemic 
equilibrium, which is usually stable. Of course, if the colony is strongly influenced 
by the disease, it goes into the extinction equilibrium.

There is a change in the equilibrium behaviour (or bifurcation) at R0 = 1 , but 
the equilibrium infective population size depends continuously on R0 . This phe-
nomenon is called a forward or transcritical bifurcation. However, with a backward 
bifurcation at R0 = 1 , the equilibrium infective population size is zero for R0 < 1 
but then jumps to a positive endemic equilibrium when R0 approaches 1. Another 
difference is that in case of a forward bifurcation at R0 = 1 , for R0 < 1 the sys-
tem would return to a disease-free equilibrium I∞ = 0 if some infected individuals 
are introduced. On the contrary, if there is a backward bifurcation of R0 = 1 and 
enough infectives are introduced in the population to alter the initial state of the sys-
tem above the unstable endemic equilibrium with R0 < 1 , then the system would go 
to the stable endemic equilibrium, see e. g. Chowell and Brauer (2009) for further 
explanation.

The basic reproduction number is R0 is defined as the number of secondary 
infections caused by a single infective individual introduced into a wholly suscepti-
ble population over the course of the infection of this single infective (Chowell and 
Brauer 2009). In particular, our compartment model suggests infectives to populate 
only a single class (I). In this case, the basic reproduction number is calculated rela-
tively easy. Let us consider again the infective dynamics (4c):

which is equivalent to

It is found that R0 is defined only when the larger disease-free equilibrium exists 
(see Kribs-Zaleta and Mitchell (2014), Fig. 3). In this case, there is no infection, i. e. 
I∞ = 0 , thus the basic reproduction number reads

If R0 > 1 , then one or both endemic equilibria exist and the disease persists within 
the colony. It is also possible that no endemic equilibrium exists and the colony 
goes into extinction because of CCD. When R0 < 1 , if one disease-free equilibrium 
exists, it is always stable and the extinction equilibrium is unstable. If both disease-
free equilibria exist, the larger one is always stable while the smaller one is unstable. 
As a consequence, if the initial condition is below the latter, the colony is attracted 
to the stable extinction equilibrium due to demographic failure (Dornberger et  al. 
2012). This is a manifestation of an Allee effect.

dI

dt
= 𝛽

FI

I + k
− 𝜇2I

!

< 0,

𝛽F

𝜇2(I + k)
< 1.

(11)R0 =
�F∞

�2k
.
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4.2.3 � Allee effect

The Allee effect could be generally defined as a positive correlation between indi-
vidual fitness and population size or density. The classical view of the population 
dynamics states that due to competition for resources, a population would experi-
ence a reduced overall growth rate at higher size or density and increased growth 
rate at lower size or density. It is shown, however, that the reverse holds true for low 
population size or density since individual may require assistance or protection by 
their mates in order to survive. Density-dependent effects could be either positive or 
negative and they greatly impact the population dynamics by modifying the species’ 
population per capita growth rate (Usaini et al. 2017).

There are different characteristics after which an Allee effect could be classified. 
The component Allee effect is the positive relationship between any measurable 
component of the individual fitness and the population size or density. The demo-
graphic Allee effect is the positive relationship between the overall individual fitness 
and the population size or density. The presence of a component Allee effect does 
not necessarily lead to a demographic Allee effect, while the presence of a demo-
graphic Allee effect indicates the presence of at least one component Allee effect.

Furthermore, the Allee effect has a weak and a strong form. A population is said 
to exhibit a strong Allee effect when the growth rate is negative at low population 
size or density (Usaini et al. 2017). This directly implies the existence of a threshold 
below which the colony collapses to extinction. If the population growth rate is posi-
tive at low population size or density, the corresponding Allee effect is weak. In the 
latter case no critical thresholds exist.

Recently it has been studied how the mechanisms evoking an Allee effect influ-
ence the dynamics of a population at higher population size or density. It has been 
found that the combined impact of an infectious disease and a strong Allee effect 
could lead to an increase of the survival threshold, thus driving the population to 
inevitable extinction. The presence of a backward bifurcation involves the exist-
ence of a forward and a saddle-node bifurcations. When the two endemic equilibria 
merge and disappear, it is only the extinction attractor left. If the pathogenicity of 
the disease is very high, a second saddle-node bifurcation exists and is separate from 
the first one. In some cases, increasing R0 could be beneficial since it facilitates 
endemic persistence rather than extinction, see e. g. Usaini et al. (2017) for further 
detail.

Considering the honeybee population dynamics, there are two cases where an 
Allee effect operates. If R0 < 1 and both disease-free equilibria exist, an Allee effect 
emerges as it might repel the system from the smaller disease-free equilibrium and 
drive it to extinction, as we mentioned earlier. When R0 > 1 , an Allee effect sepa-
rates the larger endemic equilibrium from colony extinction, see again Fig. 3 and 4 
in Kribs-Zaleta and Mitchell (2014) for a visualization.
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5 � Solution to the inverse problem

5.1 � The adjoint equation optimization approach

Very often, the pointwise observation inverse problems are solved via the minimiza-
tion of appropriate functionals, see e.  g. Marchuk (1995), Marchuk et  al. (1996)) 
and for an application (Atanasov et  al. 2021). We will minimize the least-square 
functional

where

The formulated inverse problem could be solved by gradient methods, see e. g. (Ma 
and Jiang 2007).

5.2 � The gradient method

Theorem 1  The gradient J�
ppp
≡ (J�

�
, J�

�
, J�

�
, J�

�1
, J�

�2
) of the functional J(ppp) is given by

where the functions �H = �H(t) , �F = �F(t) , �I = �I(t) are the unique solutions to 
the adjoint final-value problem

(12)J(ppp) = J(�, �, � ,�1,�2) = JH(ppp) + JF(ppp) + JI(ppp),

JH(ppp) =

KH∑

k=1

(
H(tk;ppp) − Xk

)2
,

JF(ppp) =

KF∑

k=1

(
F(tk;ppp) − Yk

)2
,

JI(ppp) =

KI∑

k=1

(
I(tk;ppp) − Zk

)2
.

(13)

J�
�
(ppp) = ∫

T

0

H
�

F + I + �
(�H − �F)dt,

J�
�
(ppp) = ∫

T

0

FI

I + k
(�F − �I)dt,

J�
�
(ppp) = ∫

T

0

H(�H − �F)dt,

J�
�1
(ppp) = ∫

T

0

F�Fdt,

J�
�2
(ppp) = ∫

T

0

I�Idt,
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Proof  We denote �ppp = (��, ��, �� , ��1, ��2) , �� = �h1 , �� = �h2 , 
�� = �h3 , ��1 = �h4 , ��2 = �h5 and �H(t;ppp) = H(t;ppp + �ppp) − H(t;ppp) , 
�F(t;ppp) = F(t;ppp + �ppp) − F(t;ppp) , �I(t;ppp) = I(t;ppp + �ppp) − I(t;ppp) . Then we write the sys-
tem (4) at ppp ∶= ppp + �ppp for the triplet {H(t;ppp + �ppp),F(t;ppp + �ppp), I(t;ppp + �ppp)} with ini-
tial data {H0,F0, I0} . Next, we perform the differences between the corresponding 
equations to obtain a system for the tuple {�H(t;ppp), �F(t;ppp), �I(t;ppp)} with zero initial 
conditions. After some algebra, we obtain:

Let us find the increment of the functional J(ppp) (12):

(14)

d�H

dt
= −L

�

(H + �)2
�H +

(
�

�

F + I + �
+ �

)
(�H − �F) + 2

KH∑

k=1

(H(t;ppp) − X(t))�(t − tk),

d�F

dt
=

H��

(F + I + �)2
(�F − �H) + �1�F + �

I

I + k
(�F − �I) + 2

KF∑

k=1

(F(t;ppp) − Y(t))�(t − tk),

d�I

dt
=

H��

(F + I + �)2
(�F − �H) + �

Fk

(I + k)2
(�F − �I) + �2�I + 2

KI∑

k=1

(I(t;ppp) − Z(t))�(t − tk),

�H(T) = 0, �F(T) = 0, �I(T) = 0.

(15)

d

dt
�H =

(
L

�

(H + �)2
− �

�

F + I + �
− �

)
�H +

H��

(F + I + �)2
�F +

H��

(F + I + �)2
�I

− H
�

F + I + �
�� − H�� + O(�⋅),

(16)

d

dt
�F =

(
�

�

F + I + �
+ �

)
�H −

(
H��

(F + I + �)2
+ �1 + �

I

I + k

)
�F

−

(
H��

(F + I + �)2
+ �

Fk

(I + k)2

)
�I

+ H
�

F + I + �
�� −

FI

I + k
�� + H�� − F��1 + O(�⋅),

(17)
d

dt
�I = �

I

I + k
�F +

(
�

Fk

(I + k)2
− �2

)
�I +

FI

I + k
�� − I��2 + O(�⋅).
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Since �H(tk;ppp) = O(�) , �F(tk;ppp) = O(�) , �I(tk;ppp) = O(�) we can write the increment 
of the functional J(ppp) is integral form as

Following the main idea of the adjoint equation method, see e. g. Marchuk (1995), 
we multiply the equation (15) by a smooth function �H(t) such that �H(T) = 0 , 
equation (16) by a function �F(t) such that �F(T) = 0 and equation (17) by a func-
tion �I(t) , �I(T) = 0 (later these functions would be fully identified). We integrate 
both sides of the results from 0 to T and add them together:

J(ppp + �ppp) − J(ppp) =

KH∑

k=1

(�H(tk;ppp) + H(tk;ppp) − Xk)
2 −

KH∑

k=1

(H(tk;ppp) − Xk)
2

+

KF∑

k=1

(�F(tk;ppp) + F(tk;ppp) − Yk)
2 −

KF∑

k=1

(F(tk;ppp) − Xk)
2

+

KI∑

k=1

(�I(tk;ppp) + I(tk;ppp) − Zk)
2

−

KI∑

k=1

(I(tk;ppp) − Zk)
2 =

KH∑

k=1

�H(tk;ppp)
(
�H(tk;ppp) + 2(H(tk;ppp) − Xk)

)

+

KF∑

k=1

�F(tk;ppp)
(
�F(tk;ppp) + 2(F(tk;ppp) − Yk)

)

+

KI∑

k=1

�I(tk;ppp)
(
�I(tk;ppp) + 2(I(tk;ppp) − Zk)

)

= 2

KH∑

k=1

�H(tk;ppp)(H(tk;ppp) − Xk) + 2

KF∑

k=1

�F(tk;ppp)(F(tk;ppp) − Yk)

+ 2

KI∑

k=1

�I(tk;ppp)(I(tk;ppp) − Zk)

+

KH∑

k=1

(�H(tk;ppp))
2 +

KF∑

k=1

(�F(tk;ppp))
2 +

KI∑

k=1

(�I(tk;ppp))
2.

(18)

J(ppp + �ppp) − J(ppp) =2

KH∑

k=1
∫

T

0

�H(t;ppp)(H(t;ppp) − X(t))�(t − tk)dt

+ 2

KF∑

k=1
∫

T

0

�F(t;ppp)(F(t;ppp) − Y(t))�(t − tk)dt

+ 2

KI∑

k=1
∫

T

0

�I(t;ppp)(I(t;ppp) − Z(t))�(t − tk)dt + O(�).



	 A. Z. Atanasov et al.

1 3

Integrating by parts the left-hand side and using the fact that �H(T) = 0 , �H(0) = 0 , 
�F(T) = 0 , �F(0) = 0 , �I(T) = 0 , �I(0) = 0 , we obtain:

Then, placing the expressions for 
d�H

dt
 , 
d�F

dt
 , 
d�I

dt
 from (14) in (19) and using (18), 

after some algebraic manipulations we find

Now, taking h2 = h3 = h4 = h5 = 0 , dividing both sides of the latter equality by �h1 
and passing to the limit � → 0 , we obtain the formula for J′

�
 in (13). In the same 

manner one can check the validity of the other four formulae in (13).	�  ◻

Using the main property of the Dirac-delta function ∫
T

0

�(t)�(t − tk)dt = �(tk) , 

tk ∈ (0, T) , where �(t) is a continuous function, we could rewrite the problem (14) in 
the equivalent form

∫
T

0

(
�H

d

dt
�H + �F

d

dt
�F + �I

d

dt
�I
)
dt

= ∫
T

0

�H

(
L

�

(H + �)2
− �

�

F + I + �
− �

)
�Hdt

+ ∫
T

0

�H

H��

(F + I + �)2
�Fdt + ∫

T

0

�H

H��

(F + I + �)2
�Idt

− ∫
T

0

�HH
�

F + I + �
��dt − ∫

T

0

�HH��dt

+ ∫
T

0

�F

(
�

�

F + I + �
+ �

)
�Hdt − ∫

T

0

�F

(
H��

(F + I + �)2
+ �1 + �

I

I + k

)
�Fdt

− ∫
T

0

�F

(
H��

(F + I + �)2
+ �

Fk

(I + k)2

)
�Idt + ∫

T

0

�FH
�

F + I + �
��dt

− ∫
T

0

�F

FI

I + k
��dt + ∫

T

0

�FH��dt − ∫
T

0

�FF��1dt + ∫
T

0

�I�
I

I + k
�Fdt

+ ∫
T

0

�I

(
�

Fk

(I + k)2
− �2

)
�Idt + ∫

T

0

�I

FI

I + k
��dt − ∫

T

0

�I I��2dt + O(�).

(19)
∫

T

0

(
�H

d

dt
�H + �F

d

dt
�F + �I

d

dt
�I
)
dt = −∫

T

0

�H
d�H

dt
dt − ∫

T

0

�F
d�F

dt
dt − ∫

T

0

�I
d�I

dt
dt.

J(ppp + �ppp) − J(ppp) ≡ J(� + �h1, � + �h2, � + �h3,�1 + �h4,�2 + �h5) − J(�, �, � ,�1,�2)

= �� �
T

0

�HH
�

F + I + �
dt + �� �

T

0

�HHdt − �� �
T

0

�FH
�

F + I + �
dt

+ �� � 0T�F

FI

I + k
dt − ���FHdt + ��1 �

T

0

�FFdt

− �� �
T

0

�I

FI

I + k
dt + ��2 �

T

0

�I Idt + O(�).
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and solve it instead of (14).

5.3 � Algorithm

We now present a numerical algorithm for solving the nonlinear optimization prob-
lem (7)–(9), (12). It is a conjugate gradient method, seeking for the minimizer p̌pp , 
which is detailed in Algorithm 2.

In application, the threshold �ppp is chosen according to the practical needs and the 
values of the descent parameter rrrl are chosen empirically, please see the next section 
for further details.

6 � Numerical examples

We now present numerical tests with the proposed method for the parameter recon-
struction of CCD from limited observation data. All computations are performed in 
MATLABⓇ environment.

(20)

d�H

dt
= −L

�

(H + �)2
�H +

(
�

�

F + I + �
+ �

)
(�H − �F), t ∈ (0,T), t ≠ tk, k = 1,… ,KH ,

d�F

dt
=

H��

(F + I + �)2
(�F − �H) + �1�F + �

I

I + k
(�F − �I), t ∈ (0,T), t ≠ tk, k = 1,… ,KF ,

d�I

dt
=

H��

(F + I + �)2
(�F − �H) + �

Fk

(I + k)2
(�F − �I) + �2�I , t ∈ (0,T), t ≠ tk, k = 1,… ,KI ,

[
�H

]
t=tk

= 2
(
H(tk;ppp) − Xk

)
, k = 1,… ,KH ,[

�F

]
t=tk

= 2
(
F(tk;ppp) − Yk

)
, k = 1,… ,KF ,[

�I

]
t=tk

= 2
(
I(tk;ppp) − Zk

)
, k = 1,… ,KI ,

�H(T) = 0, �F(T) = 0, �I(T) = 0,
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In order to test the accuracy and robustness of the proposed method, we first 
investigate an artificially constructed example. In it, we choose the values of the 
coefficients �, �, � ,�1,�2 according to the typical values explained in Kribs-Zaleta 
and Mitchell (2014). Then, through solving (4) with the given values of the coeffi-
cients, we obtain measured values of the functions H, F, I as (7)–(9).

6.1 � The direct problem

We first solve the direct problem (4), (5) with realistic data provided in Kribs-Zaleta 
and Mitchell (2014). The maximal number of eggs laid by the queen per day is set 
to L = 2000 . As the eclosion function (1) suggests, this quantity is multiplied by the 
saturation function, where � is the number of hive bees required for the emergence 
rate to reach 1

2
L . That fraction gives the proportion of eggs which survives to eclo-

sion. We set � = 15,000 bees. In the recruitment rate (2) � represents the healthy 
dynamics and it is set to � =

1

21
 , since in natural circumstances the hive bees are 

recruited in the forager class on the 21st day after eclosion. On the other hand, it 
takes a minimum of 7 days for a bee to mature enough to be able to forage, hence 
� =

1

7
−

1

21
 , which accounts for the unhealthy dynamics. � , as � , is a half saturation 

constant and it is the number of foragers at which the additional recruitment rate is 
�

2
 . We set � = 1000 bees. The infection rate (3) of susceptible bees is assumed to be 
� = 0.8 and the infection of plants to be k = 100 . The «healthy» death occurs on the 
21st day of foraging, so �1 =

1

21
 . An infected forager remains functional until emi-

grating or dying for 1.25 days in average, thus �1 =
1

1.25
= 0.8 . All rates are meas-

ured in units days−1 . The values satisfy the relation L < 𝜔(𝛼 + 𝛾).
An extended foraging season from the end of the winter to the end of the summer 

is considered, which implies T = 250 days. We consider the healthy scenario first, 
that is I0 = 0 . We set H0 = 15,000 and conduct experiments with two types of colo-
nies, with and without presence of foragers in the beginning, F0 = 15,000 or F0 = 0 . 
Following Algorithm 1, the results are plotted on Fig. 3.

It can be easily deduced that the colony is attracted to its disease-free equilib-
rium state regardless of the starting condition. At the initial time on Fig. 3 (right), it 
could be observed the accelerated recruitment which, however, do not lead to colony 
decline. In this case we are able to calculate the basic reproduction number (11) 
R0 = 258.841 > 1.

Now we perform a simulation of the unhealthy scenario. In this case we introduce 
I0 = 10 infected bees at t0 . The experiments, again with F0 = 15,000 and F0 = 0 
demonstrate the quick spread of the disease in the beginning, and then the colony 
tends to the same endemic equilibrium state (Fig. 4) thus the disease persists with 
the hive.

6.2 � The inverse problem

Now we proceed to solve the inverse problem of identifying the parameter set 
ppp = (𝛼, 𝛽, 𝛾 ,𝜇1,𝜇2)

⊤ =
(

2

21
, 0.8,

1

21
,

1

21
, 0.8

)⊤

 solving (4)–(6). We again let 
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L = 2000 , � = 15,000, � = 1000 , k = 100 and t0 = 0 , T = 250 . We are going to 
simulate only the unhealthy scenario. This is because if no disease is involved, that 
is I0 = 0 , then from (4c) İ = 0 too and the values of � and �2 are undefined. We con-
sider H0 = F0 = 15,000 and I0 = 10.

Let us define 51 observations of type (7)–(9). We propose the following: during 
the first week, we suggest to perform 4 measurements per day, and then, from the 
t = 13th day, one measurement to be taken equidistantly for every 12 days. This is 
because the disease spreads very fast in the beginning, as we mentioned earlier.

Another interesting feature of the inverse problem is that we recover only rates. 
We set pppl ∈ �adm ≡ (0, 1)5 ∀l , see Algorithm  2. This makes the iteration pro-
cedure more ‘fragile’. As a consequence, we have to tune the values of rrrl (21), 
which cannot be the same for l = 0 and l = 1, 2,… . As we show later, the values 
of rrrl differ by orders of magnitude for different l. What is more, due to the ill-
posedness of the inverse problem, it is hard to solve if the initial approximation 
ppp0 is too far from the true values of ppp.

Now we present the solution to the inverse problem with an initial point 
ppp0 = (0.1, 0.75, 0.05, 0.05, 0.75)⊤ , which is considered close to ppp (Table  1). It 
required 16 iterations for the procedure to converge.

The values of (12) are respectively J
H
(p̌pp) = 0.0227 , J

F
(p̌pp) = 0.0248 and 

J
I
(p̌pp) = 0.6205 . The experiments are done with �ppp = 1e − 6 and the values are 

pretty small which is a necessity condition for the parameters to be reconstructed 
accurately. What is more, the root mean squared errors are RMSE

H
(p̌pp) = 0.0211 , 

Table 1   Simulation with ppp
0
 close to ppp and �

ppp
= 1e − 6

Parameter pi pi
0

p̌i ||pi − p̌i|| ||pi − p̌i||
pi

ri
0

ri
l
, l ≥ 1

� 2

21

0.10 0.0952 1.7887e−6 1.8781e−5 7.3e−14 1e−15

� 0.8 0.75 0.8000 1.6155e−6 2.0193e−6 1e−14 1.9e−11
� 2

21

0.05 0.0476 8.8612e−7 1.8608e−5 1.2e−14 9e−16

�
1

2

21

0.05 0.0476 4.9691e−6 1.0435e−4 4.1e−13 8e−15

�
2

0.8 0.75 0.8000 4.0667e−5 5.0834e−5 1e−14 1.99e−11

Table 2   Simulation with ppp
0
 far from ppp and �

ppp
= 2e − 5

Parameter pi pi
0

p̌i ||pi − p̌i|| ||pi − p̌i||
pi

ri
0

ri
l
, l ≥ 1

� 2

21

0.5 0.0963 0.0011 0.0116 2.4e−9 8.1e−15

� 0.8 0.5 0.7996 3.5732e−4 4.4665e−4 5.3e−9 1e−14
� 2

21

0.5 0.0474 2.4884e−4 0.0052 2.8e−10 1.5e−15

�
1

2

21

0.5 0.0452 0.0025 0.0518 1e−10 5.3e−12

�
2

0.8 0.5 0.7979 0.0021 0.0026 3.5e−8 1.1e−13
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RMSE
F
(p̌pp) = 0.0221 and RMSE

I
(p̌pp) = 0.1103 . It is approved by the negligible val-

ues of the absolute and the relative errors, see Table 1.
The next test is performed with an initial point ppp0 = (0.5, 0.5, 0.5, 0.5, 0.5)⊤ , 

which is is interpreted as far from ppp (Table 2). Now 17 iterations are required for 
convergence, but we use �ppp = 2e − 5.

The values (12) in the ‘far’ case are respectively J
H
(p̌pp) = 3.7105e + 3 , 

J
F
(p̌pp) = 3.5078e + 3 and J

I
(p̌pp) = 8.0306e + 3 . The numbers are so high, because 

they are calculated on K = 51 observations. The root mean squared errors are 
far smaller RMSE

H
(p̌pp) = 8.5297 , RMSE

F
(p̌pp) = 8.2934 and RMSE

I
(p̌pp) = 12.5484 . 

Nevertheless, almost all relative parameter errors are around and below 1%, only 
the one associated with �1 is about 5%. For more accurate reconstruction, one has 
to set smaller �ppp and to process some more iterations.

We conclude the simulations conducting a test with perturbed observations to 
investigate the effect of measurement error on the parameter recovery. Let us con-
sider the ‘close’ scenario and add a white noise to the observations (7)–(9). To say 
it more rigourously, a Gaussian noise is added to all data points such that the bias in 
a particular measurement is not greater than 1% with 95% confidence. We seed the 
random number generator for reproductivity of the results. The results are given in 
Table 3. We use �ppp = 1e − 5 and the same values of rrrl.

The values (12) of the cost functional are again relatively high: 
J
H
(p̌pp) = 2.8587e + 3 , J

F
(p̌pp) = 349.8609 and J

I
(p̌pp) = 203.2855 . The difference in the 

components of J(p̌pp) are explained by the difference in the magnitude of H(t), on one 
hand, and F(t) and I(t) on the other hand. The root mean squared errors are again 
much smaller RMSE

H
(p̌pp) = 7.4869 , RMSE

F
(p̌pp) = 2.6192 and RMSE

I
(p̌pp) = 1.9965 . 

All relative errors are less than 1e−3. The aggregated relative error, defined as 
REppp ∶=

��ppp − p̌pppert��∞∕‖ppp‖∞ , is also small REppp = 9.5823e − 4 , which implies the 
accuracy of the parameter reconstruction as well.

Generally, it could be implied that the Algorithm is very computationally efficient 
and it accurately identifies the parameters provided that the initial values are close 
to the real ones. The accuracy could be significantly improved if rrrl are fine tuned for 
different l = 1, 2,… which, in turn, requires deep a priori investigation.

Table 3   Simulation with perturbed data and �
ppp
= 1e − 5

Parameter pi pi
0

p̌i ||pi − p̌i|| ||pi − p̌i||
pi

ri
0

ri
l
, l ≥ 1

� 2

21

0.10 0.0952 4.7317e−5 4.9683e−4 7.3e−14 1e−15

� 0.8 0.75 0.8008 7.6732e−4 9.5914e−4 1e−14 1.9e−11
� 2

21

0.05 0.0476 2.8269e−5 5.9365e−4 1.2e−14 9e−16

�
1

2

21

0.05 0.0476 2.9668e−5 6.2303e−4 4.1e−13 8e−15

�
2

0.8 0.75 0.8006 5.8557e−4 7.3196e−4 1e−14 1.99e−11
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7 � Conclusion

Recently there were observed ubiquitous massive losses of honeybee colonies, 
which should be paid attention to. The model we adopt does not shed light on what 
causes the CCD, but it demonstrates how the rapid decline happens and develops. 
The provided information might give an insight into how and to what extent the 
parameters influence the system behaviour, and in turn how to mitigate and elimi-
nate the disorder’s effect on a colony. It is crucial for the professional beekeepers 
to manage their apiaries in a way that prevents the colonies from pests, contagion, 
or another disease. The summarized qualitative analysis describes the interlinkage 
between the concepts of the bifurcation, the basic reproduction number and the 
Allee effect and how they interact to abruptly change the colony development, often 
leading to inevitable collapse.

The model itself is constituted by a system of three weakly coupled ODEs, where 
the dependent variables represent the population size of the hive bees, forage bees 
and infected foragers compartments. It considers both healthy and unhealthy dynam-
ics, while accounting for disease transmission through mass action and interaction 
with plants. The tackled inverse problem in the paper focuses on recovering those 
parameters, which are determinative for the dynamics but are unobservable in prac-
tice. The adjoint state optimization approach is applied to solve the inverse problem, 
while the cost functional is minimized via a gradient method. The numerical simula-
tions outline the algorithm properties, namely its ability to reconstruct the parameter 
values in accurate manner if provided with good initial approximation as well as its 
computational inexpensiveness.

The field of possible continuation and improvement of the research is spanless. A 
piece of effort is worth putting in investigation of more complex models that account 
for more details in dynamics and interaction with the surrounding environment, for 
instance modeling food store, mite and virus dynamics, seasonal patterns or tak-
ing the memory property into account via fractional-order derivatives. Future work 
might also include deeper qualitative analysis to provide better understanding of the 
sophisticated processed involved to restore failing apiaries and to suggest methodol-
ogy for prevention of similar conditions, influencing nature, economics and industry.
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