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Abstract. The recently observed honey bee colony losses have already raised concerns about the future of the managed honey bees
and the bees in general. One of the most powerful approach to simulate and predict the dynamics of a complex system, which a
honey bee colony undoubtedly is, is the mathematical modelling. We have adopted a compartment model to study the behaviour
in a honey bee colony. A system of three ordinary differential equations with a control on the mites was introduced to model the
populations of the hive bees, forager bees and mites. We solve a parameter identification inverse problem to reconstruct the values,
which are directly unobservable but vital in honeybee management. We apply an adjoint equation optimization approach to solve
the inverse problem. Numerical test examples are discussed and the paper is concluded with important implications about the honey
bee management.

INTRODUCTION

In this section we first provide the reader with some basic knowledge concerning honeybee habitat. Next, we briefly
describe the Varroa mite which is the most adverse parasite of the honeybee associated with a high percentage of
colony losses over the winter.

Basic facts
The Varroa destructor mite has played a significant role in the collapse of honey bee colonies. Honeybee colonies are
complex societies in which different members of the colony play specialized functions that serve the entire colony,
thus making members of the colony highly dependent on each other. There are three basic castes of honey bees:
queen, drone and worker. Prior to birth, a queen bee is fed royal jelly, which distinguish her from the rest of the
bees. Each hive has only one queen bee. The drone bees are all male and their main purpose is to mate with the queen
bee. After mating with the queen bee, these particular drones die. The rest are removed from the hive to die in the
fall. Workers bees are divided in hive and foragers bees. The hive bees are the younger worker bees and work to
maintain the hive, clean the cells and care for the brood. When the hive bees turn approximately eight days old, their
responsibilities change as they begin to receive nectar, handle pollen, build comb, and clean the hive. As the hive bees
get closer to foraging age, they begin to work outside the hive by ventilating, patrolling, duty guarding, and going on
orientation flights to become aware with their surroundings once they begin foraging [15]. The hive bees overall have
a low mortality rate, with the majority of hive bees living to forager age [8].

At about age of 18 days, the hive bees turn to foraging [14]. Their responsibility consist of foraging nectar, pollen,
and propolis, a sealant for the hive. However, this behavioral development process is dependent on social feedback.
If there is a decline in the number of foraging bees, the hive bees will accelerate their behavioral development and
begin foraging at earlier age to compensate for the lower forager numbers [8]. Hive bees switching to foraging earlier,
known as precocious foraging, is associated with overall shorter lifespan because they are not mature enough and
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thus less effective [8]. Precocious foragers could experience lifespan of less than seven days, approximately four to
five, as foraging is more dangerous [8]. Colonies maintain a forager population of approximately 25 percent and will
compensate to preserve that ratio [14]. The reverse change could occur as well, with foragers reverting to hive bees
if there is deficit in the number of hive bees. The reverse process is known as a social inhibition and is accomplished
through the process of old forager bees delivering ethyl oleate to young hive bees by way of trophallaxis, or mouth-
to-mouth feeding [8].

The lifespan of the honey bee changes depending on the season and also depending on the caste which the bee
belongs to. In the summer season, honey bees have the shortest lifespan, with the longest lifespan occurring during the
winter months. During the winter, on average, a worker bee lives around 140 days. In the spring and fall this average
drops to 30 to 60, and in the summer it decreases to 15 to 38.

However, the queen bee’s lifespan is typically between 1 and 3 years [15]. The differences in worker bee’s
lifespan, depending on the season, could be attributed to their activity level in each season [15]. In the winter, worker
bees are less active and have slower metabolic rates, in comparison to the summer. Other exogenous factors, such as
aforementioned precocious foraging or social inhibition, viruses and food availability, all affect the lifespan of the
honeybee as well.

Varroa destructor mite
The Varroa destructor mites’ natural host is the Apis cerana, the Asiatic honey bee. Its host began to shift in the late
1950’s and 1960’s to the Apis mellifera, the Western honey bee. Since then the Varroa destructor population has grown
quickly [5, 6]. The Varroa destructor female utilizes a sealed honey bee brood cell to reproduce [12]. To achieve this,
the female enters the brood cell prior to capping. Once the cell is capped, the Varroa destructor feeds on the developing
bee and begins to lay eggs. First, one male egg is laid along with several female eggs on 30-hour intervals [12]. During
this time, the mother mite prepares a place on the host for her offspring to feed, mature, and mate within the cell. The
male mites take approximately 5 to 6 days to develop, and the female about 7 to 8 [12, 14, 15]. Once the host bee is
ready to leave the cell, the adult female mite becomes attached to the bee [12]. Mature female mites attaches to the
bee during the process known as phoretic phase when the mite pierces the intersegmental membrane of the bees to
feed on the bee’s haemolymph [12]. After two weeks, the mites would lay eggs in other brood cells, beginning the
cycle again [12, 14, 15].

In the literature a number of models have been built, which account for different elements of the environment of
the hive bees, such as demographic factors, overpopulation [1], dynamics of infections, seasonal effects and population
of mites and viruses. The latter are recently developing and we adopt the model in [12]. Considering inverse problems,
such methods concerning honeybee population with absence of mites in the hive are studied in [2], while unhealthy
dynamics is examined in [3] and a fractional-order derivative model is considered in [4].

The primary aim of the present study is to propose an algorithm to solve the inverse problem of reconstructing
parameters of the model including mites dynamics. The rest of the paper is organized as follows. In Section 2 the
mathematical model is described and then the inverse problem is formulated. In the next section the adjoint optimiza-
tion method is applied. Section 4 contains the numerical solution to the direct and inverse problems. Computational
simulations are presented in Section 5 and then the paper is finalized with some conclusions.

THE THREE-DIMENSIONAL MODEL

In [8] it is investigated the population of both hive and forager bees. The authors of [12] have expanded the model
to include a third equation in the system that accounts for the population of the Varroa destructor mite in the hive.
The model accounts for the death of hive and forager bees due to Varroa destructor by adding an extra term to the
equations in [8], as well as an extra equation for the mite population. The altered model is represented by the following
equations on the time interval (0,T ):

dH
dt

= L
H +F

ω +H +F
−H

(
α −σ

F
H +F

)
−ρMH ≡ f (H,F,M), (1)

dF
dt

= H
(

α −σ
F

H +F

)
−mF −ρMF ≡ g(H,F,M), (2)
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dM
dt

= rM
(

1− M
α2H

)
−ρ2M ≡ h(H,M). (3)

In this model, H and F represent the number of hive bees and forager bees, respectively. The independent pa-
rameter L corresponds to the maximum egg laying rate of the queen, ω is a half-saturation constant that reflects the
brood mortality, α is the maximum rate at which hive bees become foragers, σ represents the social inhibition, and m
is the per capita death rate of foragers.

The additional third equation models the population of the Varroa destructor mite as logistic growth, with ρ2

accounting for the per capita death rate of the mites, M. Similarly, the additional ρMH and ρMF terms in the first
and second equations, respectively, represent the per capita deaths of the hive and forager bees due to the mite. The
first term of (3) is a logistic growth rate of the mite population with r representing the growth rate of the mites. In this
equation the term α2H is the carrying capacity of the bees in a hive.

We solve the system (1)-(3) with initial data

H(0) = H0, F(0) = F0, M(0) = M0. (4)

We will define the inverse problem for identification of the unknown parameters ppp = {ρ,r,α2,ρ2}. In absence of
mites, i. e. M(t)≡ 0, the system (1)-(3) is reduced to a system of two ODEs derived in [8]. For this model, the inverse
problem of identification of the parameters ω,α,σ and m is solved in the paper [2]. Now, we assume these parameters
to be known. In addition, if all constant coefficients of the system (1)-(3) are known, then the problem (1)-(4) is called
direct (forward) problem.

Let us now assume now that the coefficients ppp = {p1 = ρ, p2 = r, p3 = α2, p4 = ρ2} are unknown. We explore
the inverse problem of reconstructing the parameters ppp ∈ Sadm = {0 < pi < pi

max, i = 1,2,3,4} through the observed
behavior

U(ti) := {H(ti),F(ti),M(ti), i = 1, . . . , Iobs; t0 = t1 < · · ·< tIobs = T} (5)

of the dynamics system (1)-(4).

ADJOINT OPTIMIZATION METHOD

We solve the point observation problem (1)-(5) via the minimization of an appropriate functional, see e. g. [7, 10]. We
are going to minimize the least-square error functional

J(ppp) = J(ρ,r,α2,ρ2) = JH(ppp)+ JF(ppp)+ JM(ppp),

where

JH(ppp) =
KH

∑
k=1

(
H(tk; ppp)−Xk

)2
,

JF(ppp) =
KF

∑
k=1

(
F(tk; ppp)−Yk

)2
,

JM(ppp) =
KM

∑
k=1

(
M(tk; ppp)−Zk

)2
.

(6)

Theorem 1 The gradient J′ppp ≡ {J′ρ ,J′r,J′α2
,J′ρ2

} of the functional J(ppp) is given by
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J′ρ(ppp) =
∫ T

0
ϕHHM+ϕF FMdt,

J′r(ppp) =
∫ T

0
ϕMM

(
1

α2

M
H

−1

)
dt,

J′α2
(ppp) =− r

α2

∫ T

0
ϕM

M2

H
dt,

J′ρ2
(ppp) =

∫ T

0
ϕMMdt,

(7)

where the functions ϕH = ϕH(t),ϕF = ϕF(t),ϕM = ϕM(t) are the unique solution to the adjoint final value problem

dϕH

dt
= a11ϕH +a12ϕF +a13ϕM +2

KH

∑
k=1

(
H(t; ppp)−X(t)

)
δ (t − tk),

dϕF

dt
= a21ϕH +a22ϕF +a23ϕM +2

KF

∑
k=1

(
F(t; ppp)−Y (t)

)
δ (t − tk),

dϕM

dt
= a31ϕH +a32ϕF +a33ϕM +2

KM

∑
k=1

(
M(t; ppp)−Z(t)

)
δ (t − tk),

ϕH(T ) = 0, ϕF(T ) = 0, ϕM(T ) = 0

(8)

and X(t),Y (t),Z(t) are interpolants of the discrete functions taking values Xk at t = tk,k = 1, . . . ,KH , Yk,k =
1, . . . ,KF , Zk,k = 1, . . . ,KM, respectively, and

a11 =− ∂ f
∂H

=−L
ω

(ω +H +F)2
+α −σ

F2

(H +F)2
+ρM,

a12 =− ∂g
∂H

=−α +σ
F2

(H +F)2
, a13 =− ∂h

∂H
=− r

α2
· M2

H2
,

a21 =− ∂ f
∂F

=−L
ω

(ω +H +F)2
−σ

H2

(H +F)2
, a22 =− ∂g

∂F
= σ

H2

(H +F)2
+ρM+m,

a23 =− ∂h
∂F

= 0,

a31 =− ∂ f
∂M

= ρH, a32 =− ∂g
∂M

= ρF, a33 =− ∂h
∂M

=−r+2
r

α2
· M

H
+ρ2.

Proof We denote δ ppp = (δρ,δ r,δα2,δρ2), δρ = εh1,δ r = εh2,δα2 = εh3,δρ2 = εh4 and δH(t; ppp) = H(t; ppp+
δ ppp)−H(t; ppp), δF(t; ppp) = F(t; ppp+ δ ppp)−F(t; ppp), δM(t; ppp) = M(t; ppp+ δ ppp)−M(t; ppp). Then, we rewrite the system
(1)-(3) at ppp := ppp + δ ppp for the triple {H(t; ppp + δ ppp),F(t; ppp + δ ppp),M(t; ppp + δ ppp)} with initial values H0,F0,M0, re-
spectively. Next, we perform the differences between the corresponding equations to obtain a system for the triple
{δH(t; ppp),δF(t; ppp),δM(t; ppp)} with zero initial conditions, which reads

d

dt
δH = L

ω(δH +δF)

(ω +H +F)2
+Hσ

HδF −FδH
(H +F)2

−δH
(

α −σ
F

H +F

)
−ρMδH −ρHδM−MHδρ +O(ε),

d

dt
δF = Hσ

FδH −HδF
(H +F)2

+δH
(

α −σ
F

H +F

)
−mδF −ρMδF −ρFδM−FMδρ +O(ε),
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d

dt
δM = rM

Mα2δH −Hα2δM+HMδα2

α2
2 H2

+(rδM+Mδ r)
(

1− M
α2H

)
−ρ2δM−Mδρ2 +O(ε).

On the second stage, we calculate the increment of the functional J(ppp) to obtain:

J(ppp+δ ppp)− J(ppp) =
KH

∑
k=1

(
δH(tk; ppp)+H(tk; ppp)−Xk

)2 −
KH

∑
k=1

(
H(tk; ppp)−Xk

)2

+
KF

∑
k=1

(
δF(tk; ppp)+F(tk; ppp)−Yk

)2 −
KF

∑
k=1

(
F(tk; ppp)−Yk

)2
+

KM

∑
k=1

(
δM(tk; ppp)+M(tk; ppp)−Zk

)2 −
KM

∑
k=1

(
M(tk; ppp)−Zk

)2

=
KH

∑
k=1

δH(tk; ppp)
(
δH(tk; ppp)+2(H(tk; ppp)−Xk)

)
+

KF

∑
k=1

δF(tk; ppp)
(
δF(tk; ppp)+2(F(tk; ppp)−Yk)

)

+
KM

∑
k=1

δM(tk; ppp)
(
δM(tk; ppp)+2(M(tk; ppp)−Zk)

)
= 2

KH

∑
k=1

δH(tk; ppp)(H(tk; ppp)−Xk)+
KH

∑
k=1

(
δH(tk; ppp)

)2

+2
KF

∑
k=1

δF(tk; ppp)(F(tk; ppp)−Yk)+
KF

∑
k=1

(
δF(tk; ppp)

)2
+2

KM

∑
k=1

δM(tk; ppp)(M(tk; ppp)−Zk)+
KM

∑
k=1

(
δM(tk; ppp)

)2

= 2
KH

∑
k=1

∫ T

0
δH(tk; ppp)(H(tk; ppp)−Xk)δ (t − tk)dt +2

KF

∑
k=1

∫ T

0
δF(tk; ppp)(F(tk; ppp)−Yk)δ (t − tk)dt

+2
KM

∑
k=1

∫ T

0
δM(tk; ppp)(M(tk; ppp)−Zk)δ (t − tk)dt +O(ε). (9)

Following the technology of paper [10], we multiply the equations for {δH(t; ppp),δF(t; ppp),δM(t; ppp)} by smooth
functions ϕH(t) such that ϕH(T ) = 0, ϕF(t) such that ϕF(T ) = 0, ϕM(t), such that ϕM(T ) = 0. We integrate both
sides of the results from 0 to T and add them together.

∫ T

0
ϕH

d

dt
δH +ϕF

d

dt
δF +ϕM

d

dt
δMdt

=
∫ T

0
ϕH

[
δH

(
L

ω
(ω +H +F)2

−σ
HF

(H +F)2
−α +σ

F
H +F

−ρM
)

+δF
(

L
ω

(ω +H +F)2
+σ

H2

(H +F)2

)
−δM(ρH)−δρ(HM)

]
dt

+
∫ T

0
ϕF

[
δH

(
σ

HF
(H +F)2

+α −σ
F

H +F

)
−δF

(
σ

H2

(H +F)2
−m−ρM

)

−δM(ρF)−δρ(FM)

]
dt +

∫ T

0
ϕM

[
δH

(
r

α2
· M2

H2

)
+δM

(
r−2

r
α2

· M
H

−ρ2

)

+δ r
(

M
(

1− M
α2H

))
+δα2

(
r

α2
2

· M2

H

)
−δρ2(M)

]
dt +O(ε).

On the other hand, from the equalities ϕH(T ) = 0, δH(0) = 0, ϕF(T ) = 0, δF(0) = 0, ϕM(T ) = 0, δM(0) = 0
the integration by parts yields

∫ T

0
ϕH

d

dt
δH +ϕF

d

dt
δF +ϕM

d

dt
δMdt =−

∫ T

0
δH

dϕH

dt
dt −

∫ T

0
δF

dϕF

dt
dt −

∫ T

0
δM

dϕM

dt
dt. (10)

Also, using the expressions for
dϕH

dt
,

dϕF

dt
,

dϕM

dt
from (8) in (10) and employing (9), after some tedious algebra

we find
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J(ppp+δ ppp)− J(ppp) = J(ρ + εh1,r+ εh2,α2 + εh3,ρ2 + εh4)− J(ρ,r,α2,ρ2) =

δρ
∫ T

0
ϕHHM+ϕF FMdt −δ r

∫ T

0
ϕMM

(
1− M

α2H

)
dt −δα2

∫ T

0
ϕM

(
r

α2
2

· M2

H

)
dt +δρ2

∫ T

0
ϕMMdt +O(ε).

Now, taking h2 = h3 = h4 = 0, dividing the both sides of the last expression by εh1 and passing to the limit ε → 0,
we obtain the formula for J′ρ(p) in (7). In the same manner one can check the validity of the other formulae in (7). �

NUMERICAL SOLUTIONS

In this section, we will briefly present the numerical solutions to the direct and inverse problems, respectively. While
the former will be given in brief, the latter will be described by a computational algorithm, which core is constituted
by the adjoint optimization method, proposed in the section before.

Solution to the direct problem
Now we will briefly mention how to solve the direct problem (1)-(4). Such models generally do not feature a closed-
form solution, so we have to solve it numerically. For this purpose, we introduce the piecewise-equidistant temporal
mesh (11)

ωτ =
{

t0, ti = ti−1 + τiJi, tIobs = T
}

for i = 1, . . . , Iobs −1, (11)

and the following subinterval splitting:

ti
j = ti−1 + jτi, j = 1, . . . ,Ji,

where ∀i = 1, . . . , Iobs −1, ti are the time instances at which observations are taken, ti
j, j = 1, . . . ,Ji and τi are the time

nodes and the time step corresponding to (ti−1, ti].
There are a number of numerical methods to solve the initial value problem (1)-(4). Some of them are applied in

[2, 3]. A regular Runge–Kutta method also does the job.

Solution to the inverse problem
After solving the direct problem, we use the solution to take measurements and to test the inverse problem solution
approach. Here we will provide the numerical algorithm to solve the inverse problem (1)-(5):

1. Choose an initial approximation ppp0 ∈ Sadm and set l := 0.

2. Solve the direct problem (1)-(4) using the current value pppl .

3. Find the observations (5) and interpolate them to obtain X(t), Y (t), Z(t).

4. Solve the adjoint problem (8).

5. Calculate the gradient (7).

6. Using a gradient-based method, compute the new parameter values pppl+1 by the iterative formula

pppl+1 = pppl −rrrJ′(pppl). (12)

7. If ‖�pppl‖< εppp, then return p̌pp := pppl+1 and stop the procedure; else set l := l +1 and go to Step 2.

In the algorithm the optimum found is denoted by p̌pp; rrr > 0 (12) is a descent vector parameter and it is derived
empirically, please see the next section for a example. The tolerance εppp is chosen according to the purpose of the
algorithm, and �pppl := pppl+1 − pppl .

080026-6



COMPUTATIONAL EXPERIMENTS

In this section we supply numerical results to demonstrate the features of the algorithm. We first solve the direct
problem.

Let us use the data provided in [8] and set the eggs laid by the queen L= 1500 and so is the maximal eclosion rate.
The constat ω = 12000, the maximal recruitment rate α = 0.25 and the social inhibition constant σ = 0.75. We assume
moderate forager mortality rate m = 0.154. As we mentioned earlier, these values are known for all experiments.

Further, let the mite-induced death rate ρ = 1e − 7, the mite growth rate r = 0.0165, the carrying capacity
coefficient α2 = 0.5 and death rate of the mites ρ2 = 0.1. An average-sized colony is assumed with H0 = F0 = 15000
and M0 = 10000. The considered time window is T = 100 days. The results of the simulation are given on Fig. 1, left.

0 20 40 60 80 100
Time t

0

0.5

1

1.5

2

2.5

po
pu

la
tio

n

104 Three-Dimensional Model

Hive bees H
Forager bees F
Mites M

FIGURE 1: Honey bee population dynamics (left) and phase plane portrait (right)

The graph demonstrates that the colony approaches its equilibrium state, which is disease-free. Better under-
standing could be provided by the phase plane portrait on Fig. 1, right. There exist a certain threshold of the initial
population of mites M0, beneath which the colony thrives in the context of the current parameter values.

We are ready to proceed to the inverse problem. Following the direct problem setting, we aim to recover the
unknown parameters ppp = {ρ,r,α2,ρ2} in case we are provided with observations of type (5). We require Iobs = 21
equidistant observations, which means we have to take measurements at every 5 days. We test the algorithm with
initial values ppp0 = (1e−4,0.01,1,0.01)	. The results are presented in Table 1.

TABLE 1: Test with εppp = 5e−6

Param pi
0 pi p̌i

∣∣pi − p̌i
∣∣

∣∣pi − p̌i
∣∣

pi ri

ρ 1e-4 1e-7 6.2704e-8 3.7296e-8 0.3730 1.4e-20
r 0.01 0.0165 0.0167 2.2676e-4 0.0137 1.2e-16
α2 1.00 0.5 0.4554 0.0446 0.0892 1.5e-12
ρ2 0.01 0.1 0.0996 3.8618e-4 0.0039 1.3e-14

The implied parameters are relatively accurately reconstructed. The relative errors in the identification of r and
ρ2 are around 1%. The error associated with α2 is below 9%. The relative error of the recovery of ρ is bigger, but this
is due to the magnitude of the parameter.

The values of the residuals (6) are JH(p̌pp) = 1.6454e4, JF(p̌pp) = 2.2868e3, JM(p̌pp) = 1.5619e3, and the root mean
square errors are RMSEH(p̌pp) = 27.9913, RMSEF(p̌pp) = 10.4353, RMSEM(p̌pp) = 8.6242, which are relatively small.
All these imply a stable and robust algorithm for parameter identification.
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CONCLUSION

We have adopted a compartment model for honey bee population dynamics which is both simple and useful. The
model could be used from the academicians and professional beekeepers for simulation to predict colony losses. The
equilibria analysis describes how the colony approaches the disease-free, endemic or extinction equilibrium for a
given set of parameters. In all cases, the ratio between the hive and forager bees is kept stable, and the model accounts
for this feature.

The novelty of the paper consists of the suggestion of a computational algorithm for identification of the im-
portant parameters concerning the mites impact on the colony life. To begin with, these parameters are unable to be
measured in practice. On the other hand, their values are vital because they could indicate for a possible problem
before being too late and give a hint for adequate precocious measures.

The inverse problem is solved via the adjoint equation optimization approach. After deriving the gradient of the
cost error functional, it is incorporated in the supplied numerical algorithm. Its properties are demonstrated through
computational experiments.

There are many possible ways to further develop the results. One is to use more sophisticated models, see e. g.
[3], or to activate the hereditary properties of the dynamics system [4]. We hope that the algorithm and its further
extensions are of help to the professionals to manage their apiaries in a right way, to prevent colony collapses if
needed, and to deal with various diseases and epidemics.
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