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ogical space (X, ©) we denote by 2% the set of all non-
q et © t(}goﬂ%e topology @y on the set 2% generated by the base Bozn{?f}%celgs}-
{ sub<se Cpe9X: Fe U 1}s3 can(IXe}d Tychonoff topology. The topological space (‘2X’
e (U=t ted briefly by 277 §
joil 2 de;? that a topological space X is a HS-space if, for every subspa |
. : ’ ce 4.
.v \Wtehesr:ﬁgp Z-Z: 9ar_, 9XT defined by the formula i,(B)=clyB, for, eve{y BegA’ isi
-‘]‘[i‘nuous map. (BY clyB we denote, as usual, the closure of the subset B of X in|
an X) The class of all HS-spaces (resp., all,tTspaces, -for. i=1,23; 3.5x4)
§ i e denoted by #& (resp» by Ty i=1,2, 3, 3.5, 4)} 2
in [f, Theorem 11 H. -J. Schmidt proved that K Ty Ty Rawe lis and
fipoli noted in [] that the proof of this theorem is incorrect, but_the question of
1 correctness of the statement is open. In this paper we give a partial solution of
s problem. More precisely a) we give an internal (i. e. in terms of the space only)
Y sncterization of HS-spaces (see Theorem 3); b) we introduce a large class of spac-
sulled A% (see Definition 8), where Schmidt’s statement is true (see Theorem 9,
itere a stronger result is proved); as a corrollary we obtain, using an example con-
ntted by Vaughan in [7], that the Theorem from 1. 1 of [?] is not true (see Re-
uk 15); ¢) we show that the class & is invariant under closed mappings (see
Th;‘).re.m 9); d) we prove that Schmidt’s statement is true iff the statement ‘#% (1T,
‘;66455 frue (see Theorem 6). Moreover, some new classes of spaces are introduced
ﬂﬂtatio;fé lllfl’de_ef- 13) and some new problems are -formulated. For all notions and

elined here see |3].
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I1. Definition ([*>]). A topological space X is called a gF-space if for evy

t A of X and for every x¢clyAN A, there exists a subset B of A such tulf

clyB\B.
The class of all gF-spaces will be denoted by g#. .
12. Remark. Every Frechet-Urysohn 7T,-space (and hence every Tyspace il
table character) is a gF-space.
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: space ¥ and let t be an infinite regular cardinal number.
> Humdgfifcgpand (9 Y)=1 O svery yEY s e there 2xist a K-
: embedding ¢ : X —/Z such that ¢ (X) is a closed nowhere

inclusions gFcXcH'cH" are strong even in the

stion. Is it true that A7"'=X"% or, equivalently, is it true that
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