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More on exposed points and extremal points

of convex sets in R” and Hilbert space

Stoyu T. BAROV

Abstract. Let V be a separable real Hilbert space, £k € N with k& < dimV, and
let B be convex and closed in V. Let P be a collection of linear k-subspaces
of V. A point w € B is called exposed by P if there is a P € P so that
(w+ P)N B = {w}. We show that, under some natural conditions, B can be
reconstituted as the convex hull of the closure of all its exposed by P points
whenever P is dense and Gs. In addition, we discuss the question when the set
of exposed by some P points forms a Gs-set.
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1. Introduction

Throughout this paper V stands for a separable real Hilbert space. Thus V is
isomorphic to either R™ or 1. Let k € N with & < dim V, B be convex and closed
in V and let Gi(V) consist of all k-dimensional linear subspaces of V with the
natural topology; see Definition 1. Let P C Gi(V) and w € B. We say that w is
exposed by P if (w+ P)N B = {w} for some P € P. This definition generalizes
each of the both concepts—an exposed point and a 0-exposed point—as defined in
[6] and [1] respectively, that is, a point of B C R™ that is exposed by G,,_1 (R™).
By X;f (B, P) we denote the set of all exposed by P points in B. Next, if C C V
then we say that C' is a P-imitation of B if B4+ P = C + P for every P € P.
Further, X (B, P) stands for the set of extremal points of B with respect to P
and is defined as X}(B,P) = N{C C B: C is a closed P-imitation of B}. The
following exposed point theorem is proved in [5, Theorem 10].

Theorem 1. Let k € N with k < dimV, let B C V be closed and convex, and
let P be a Gs-subset of Gi(V) such that P C int P. Then X¥(B,P) is dense in
th (Ba P)
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One of the goals of the current paper is to make use of the exposed point the-
orem and to prove the following theorem of Krein—Milman type; for example, see
[15, Theorem 9.4.6]. It allows us, under some natural conditions, to reconstitute
a closed convex set B in V as the convex hull of the closure of the set of all
exposed by P—a dense Gs-subset of G (V)—points in B. In this connection,
let us mention the theorem of V.L. Klee, see [12, Theorem 2.3], which is about
a reconstruction of a locally compact closed convex set B in a normed linear
space, and B contains no line. Further, it is worth pointing out the theorem of
V. Kanellopoulos, see [11, Theorem 1.1], that is of a similar type and is also an
extension of Asplund’s theorem, see [1], and Straszewicz theorem, see [16]. Recall
that a k-hyperplane is a plane with codimension k& and a halfspace of a plane L
in V is any subset of L that consists of a hyperplane of L along with one of its
sides. For the concept of a derived face the reader can refer to Definition 2. We
have the following reconstitution theorem:.

Theorem 2. Let k € N with k < dimV, let B C V be closed and convex that
contains no k-hyperplane and let P be a dense Ggs-subset of Gy (V). If there is
no derived face of B that is a halfspace of a k-hyperplane then

(X5(B.P)) = (X5(B,P)) = B.

Let us point out that the requirement for P to be Gy in both Theorem 1
and Theorem 2 cannot be omitted as Example 1 shows. Now, we need to make
a couple of definitions. If H C R" is a linear subspace of R™ and k£ € N with
k < dim H then we define G, (H) as Gx(H) = {L € Gx(R™): L C H}. A compact
and convex set B in R" is called a conver body if dim B = n. Next, let us
discuss the following question: given B C R" closed and convex and 1 < k < n
when can we find a nonempty subset P in Gy (R") so that X¥(B,P) is a Gs-set?
Here, we should mention the example of V.L. Klee, see [12, Example (6.10)],
that is, a convex body B in R? such that X2(B, G2(R?)) is not G;. More refined
example is constructed by H.H. Corson in [7]—a convex body B C R? such that
X2(B,G2(R?)) is of the first category and hence does not contain a dense G-
subset of X2(B,G2(R?)). Further, S. Barov and J.J. Dijakstra in [5, Example 2]
show that there is a convex body B in R? for which the set of points exposed by
G1(R3) \ G1(H), for some linear two-dimensional plane H in R3, is not a Gs-set.
Moreover, [5, Example 3] is an expansion of Corson’s example, namely, there is
a convex body B in R" such that X¥(B,Gy(R™)) does not contain a dense G-
subset of the complete space X (B, Gr(R")) whenever 2 < k < n. In view of all
those examples the following Straszewicz-type theorem is on the “positive” side
of the discussion and is a slight improvement over [5, Theorem 3].
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Theorem 3. Let n € N with n > 2 and let B be closed and convex in R™. Let
P C Gi(R™) such that Gy(H) \ P is countable for every H € G3(R™). Then
X} (B,P) is a dense Gs-set in X!(B,P).

Our paper is arranged as follows. In the introduction section we present and
discuss our main results. In Section 2 we introduce the main concepts and give
some basic properties and in Section 3 we prove our main theorems.

2. Definitions and preliminaries

The inner product in V is denoted by = - y and 0 always stands for the zero
vector. The norm on V is given by ||u| = v/u-u and the metric d is given by
d(u,v) = |jv — ul|. Let A be a subset of V. We have that aff A denotes the affine
hull of A, A the closure, and int A the interior of A in V. Next, (A) stands for
the convex hull of A, A means the relative boundary of A, that is, the boundary
with respect to the affine hull of A and we define A° = A\ 0A. Note that if A
is convex and nonempty in a finite-dimensional space then A° # () and A° C A.
We also define the linear space

At ={wveV:v-x=v-y forall z,y € A}.

In addition, if A is a closed linear subspace of V, then (A1)t = A and Al is
called the orthocomplement of A. Also, we define codim A = dim A+ € {0, 1,
2,...,00}. Notice that codim A = codimaff A. A plane in V is a closed affine
subspace of V; a k-plane in V is a k-dimensional affine subspace of V. Now, let L
be a plane in V. A plane H C L is called a k-hyperplane in L if dim(H+NL) = k.
In other words, a k-hyperplane is a plane with codimension k in the ambient space.
A hyperplane H of L is a plane of L of codimension 1. The two components of
L\ H are called the sides of the hyperplane H and the union of H with one of its
sides is called a halfspace of L. A halfspace of a line is called a halfline or a ray.
We say that H supports a subset A of L at x if x € HN A and A is contained
in a halfspace that is associated with H.

Definition 1. Let B = {v € V: |jv|| < 1} be the unit ball in V and let G, (V)
stand for the collection of all m-dimensional linear subspaces of V. As in [5], we
topologize G,,(V) by defining a metric ¢ on G,,(V):

Q(Ll, L2) = dH(L1 n B, L2 N B),

where dy is the Hausdorff distance, associated with d, between two nonempty
compact subsets of B; see also [14, 1.11, page 95]. With the generated topology
Gm (V) is complete; when V is finite-dimensional then G,,, (V) is even compact and
is called Grassmann manifold.
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Definition 2. Let B be a closed and convex set in V. A nonempty subset F'
of B is called a face of B if there is a hyperplane H of aff B that supports B
with the property FF = B N H. Note that F' is also closed and convex and
that codim F' > codim B. If F is a face of B we write FF < B. We say that
a subset F' of B is a derived face of B if F = B or there exists a sequence
F=F <F, <---<F,, =B for some m. Furthermore, if B C R" and FF < B
then we say that F' is a facet of B if dim F' = dim B — 1. Observe that, in this
case, F' has a nonempty interior in dB. Besides, these interiors are disjoint for
different facets of B. Therefore, by separability, a closed convex set in R™ can
have only countably many facets.

Definition 3. Let P be a collection of linear subspaces of a vector space V. We
say that an affine subspace H of V is consistent with P if there is a P € P such
that 2z + P C H for some z € H. Let B be a convex and closed subset of V.
A nonempty subset F' of B is called a P-face of B if FF = BN H for some
hyperplane H of V that supports B and that is consistent with P. A derived
P-face is a derived face of a P-face. If £k € N and k < dimV then we define the
set £¥(B,P) as the closure of

U{F: F is a derived P-face of B with codim F > k}.

We finish this section with one more definition. A continuous map f: X — Y
is called proper if the pre-image of every compactum in Y is compact. Recall
that in metric spaces a continuous map is proper if and only if it is closed and
every fibre is compact; see [8, Theorem 3.7.18].

3. Proofs of the main results

We are going to establish our main theorems. As the following theorem shows
if B° =0 or codim B > k then we have a stronger result than Theorem 2.

Theorem 4. Let k € N with k < dimV, let B C V be closed and convex, and
let P be somewhere dense in Gi(V).
(a) If B° =0 and P is Gs, or
(b) if codim B > k
then B = X;f(B,’P).
PRrOOF: The theorem follows directly from [5, Theorem 12] and [5, Remark 2]. O

Let Dy (B) be the union of all derived faces of B that are halfspaces of k-
hyperplanes. Theorem 2 follows immediately from the following more general
result having in mind that Dy(B) = () by assumption of Theorem 2, and that
(XF(B,P)) C (Xk(B,P)) holds generally.
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Theorem 5. Let k € N with k < dimV, let B C V be closed and convex that
contains no k-hyperplane and let P be a dense Gs-subset of G(V). Then

(X¥(B,P)UDy(B)) = (XF(B,P)UDy(B)) = B.

PRrROOF: If codim B > k then the theorem follows from Theorem 4. So, without
loss of generality, we can assume that codim B < k. Next, we will show the
following key claim.

Claim 1. We have B = (£¥(B, G, (V)) U Dy (B)).

PROOF: Indeed, striving for a contradiction assume that B ¢ (£F(B,G,(V)) U
Dy(B)). Consider the collection

F ={F: F is a derived face of B such that
F ¢ (E"(B,Gi(V)) UDx(B))}.

Since B is a derived face of itself we have that B € F. By the definition of
EF(B,Gr(V)), we have that if F' € F then codim F < k. Thus we can choose an
F € F with a maximal codimension. By [4, Lemma 17|, we get that F'° # (). Set
L = aff F' and observe that codim I < k. Next, since B contains no k-hyperplane
we have that F' # L. Therefore, we can pick a point z € JF. By Hahn—Banach
theorem, we consider a supporting hyperplane H; at = to F' in L. Suppose that
H; C F. Then we must have that codim H; = k 4+ 1 and codim L = k. By the
structure of closed convex sets, see [10, §2.5], we have that if y € L then either
(y—z+H,) C F or (y—z+H;)NF = (. Next, let [ C L be a line through z with
[ L Hy. Observe that, S = [NF is either a nondegenerate line segment or a ray
such that in both cases x is an end point. Clearly, F' = |J{z —x + H;: z € S}.
Further, if S is a ray then we get that F' is a halfspace of the k-hyperplane L.
Hence F' C Dy(B), a contradiction. If S is a line segment then there is a w € L
such that S = ({z,w}). In this case F = Hy U (w — x + Hy). Consequently,
OF C &¥(B,Gk(V)) since codim H; = codim(w — x + H;) = k+ 1. Hence F =
(OF) C (E¥(B,Gk(V))), a contradiction again. Therefore, H; ¢ F and we can
pick an y € H1\F. Further, since F is closed and convex, we can find the (unique)
F-supporting hyperplane H through y in L so that d(Hs, F)) = d(y, F') > 0; see
[13, page 347]. Notice that Hy # Hy and y € Hy N Hy. Furthermore, by [3,
Lemma 8|, there is a line [ € G; with y+1 C L and ;[ F — V is proper, where
W2 V — I+ denotes the orthogonal projection along ! onto I*+. Now, let z € F.
If 2 € OF then, by Hahn—Banach theorem, there is a face F’ of F that contains 2.
Clearly, F’ is a derived face of B with codim F’ > codim F. By the choice of F
we get that F' C (E¥(B,Gr(V)) U Dk(B)). Hence z € (£¥(B,Gr(V)) U Di(B)).
That argument also implies that F C (€¥(B,G(V)) U Dx(B)). Now, suppose
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that z € F°. Since ¢;| F — V is proper, we get that K = (z + )N F' is a line
segment. So K C (E¥(B,Gr(V)) U Di(B)) since the end points of K are in OF.
Hence F C (E¥(B,G(V)) UDi(B)). We arrive at a contradiction. Consequently,
we obtain that B C (£¥(B, Gr(V)) UDg(B)). Thus the claim holds. O

Further, since codim B < k, by [5, Theorem 4] and [5, Lemma 9], we have
that £8(B,P) = E¥(B,Gr(V)) = XF(B,P) = XF(B,Gr(V)). Now, we can ap-
ply the exposed point theorem, see [5, Theorem 10], to get that le(B,”P) =
XF(B,P). Consequently, B = (£¥(B,Gr(V)) UDy(B)) = (Xk(B,P) U Dy(B)).
Since ( X}(B,P)UDy(B)) C ( Xk(B,P)UD(B) ), the theorem follows. O

Example 1. A convex body in R™ is smooth if there is a unique supporting
hyperplane at each point of its boundary; see [9]. In [2, Section 5], for every n > 2
smooth symmetric convex bodies B(n) in R™ and dense sets P(n) in G,_1(R"™)
are constructed such that the union of all facets of B(n) is dense in the boundary
of B(n) and XJ~!(B(n),P(n)) = 0 for n > 2. This example is closely related
to Theorem 2 and Theorem 5 and shows that the Gg-condition in both theorems
cannot be omitted.

We have the following corollary that is closely related to the finite-dimensional
version of Krein-Milman theorem in [15, Theorem 9.4.6], along with [16] as well
as to [12, Theorem 2.3].

Corollary 6. Let n € N with n > 2, let B & R" be closed and convex, and let
P be a dense Ggs-subset of G, _1(R™). If every face of B is compact then

B= (X3 "(B,P)).

Example 2. Let C = {(z,y): € R and y = z?} and B = (C). Then B is
a closed and convex set in R2. Notice that at every point z of the boundary there is
a unique supporting line to B that, in fact, exposes z. Thus X, (B, G1(R?)) = C.
Although B itself contains a ray, Corollary 6 is applicable since every face of B
is compact.

Further, we are going to prove Theorem 3. Before that we need a lemma.

Lemma 7. Let n € N with n > 2 and let B be closed and convex in R".
Let P C Gi1(R™) such that G1(L) NP is a dense Gs-subset of Gi(L) for every
L € Go(R™). Then X}(B,P) is dense in X!(B,P).

PROOF: Let ¢ > 0. First of all, observe that P must be dense in G;(R™). If
n = 2 then we are done by [5, Theorem 10]. So assume that n > 3 and, in
view of Theorem 4, we may assume that dim B = n. By [5, Theorem 4] and [5,
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Lemma 9], we have that £'(B,G1(R")) = X!(B,P). Let F = HN B be a face
of B, where H is a supporting hyperplane to B.
Case 1. Let dimF' < n — 1. Then there is a hyperplane H in H such that
F CH. Let # € F. Let L be a 2-plane in H with z € L and L\ H # (. Thus
dim LN H = 1. By [5, Remark 2] we can find an [ € P such that (z+1)N H = {x}
and z + 1 C L. This implies that (x4 1) N B = {2}, i.e. z € X} (B, P).
Case 2. Let dimF = n — 1. In this case F is a facet of B. Take an z € OF.
Let y € F° and z € B°. Consider the 2-plane L = aff{z,y,2}. Put B, = LNB
and P = Gy (L — 2) N P. Now, we have that P is a dense Gj-subset of Gi(L — ).
Further, observe that F=Hn By, is a facet of By, and x € OF. Hence z €
EY(BL,G1(L — x)). Besides, by [5, Theorem 4] and [5, Lemma 9], we get that
r € X}(By, 73) Thus we can apply [5, Theorem 10] for By, in L to find an [ € P
and & € By, so that ||z — #|| < e and (Z 4+ 1) N By, = {&}. Now, clearly, we have
(2 +1)N B ={2}. Consequently, 0F C A} (B,P).

From both cases we obtain that X1(B,P) = £'(B,G1(R")) and, therefore,
X!(B,P) = X!(B,P). That completes the proof. O

Now, let us prove Theorem 3.

PROOF OF THEOREM 3: If dim B < n then, by [5, Remark 2], X} (B,P) = B
and the theorem is proved. Besides, if n = 2 then, by [5, Theorem 3], we are done
as well. So we may assume that dim B = n with n > 3. By Lemma 7 we have
that X1(B,P) = & (B, P). Now, we are going to show that X7 (B, P) is a Gs-set.
Let F,, < F,,_1--- < F1 = B be a sequence of derived faces. We call a sequence
Fp < Fp—1--- < F1 = B of derived faces regular if dim Fy, — dim Fy; = 1 for
every 1 < k < m. Also, we call a derived face F' of B regular if for F exists
a regular sequence. As it is noticed in Definition 2 the set B has countably
many facets. Consequently, we can easily get that B has countably many regular
derived faces and one of them is B itself. Next, let z € B. Inductively, we
construct a sequence x € F,, < F,,_1 < --- < F} = B of derived faces such that
the following two conditions hold:

(i) either = € F, or codim F,,, > m — 1 (or both) holds, and
(ii) if m > 2 then F,,_; < --- < F; = B is a regular sequence.

Set F1 = B and assume that we have constructed a regular sequence x € Fj, <
Fpq1 < -+ < F, = B for some 1 < k. Clearly, codimFy, = k—-1. If z € F}
we are done. Otherwise, we will have that € dF. So we are in a position to
add one more element to the sequence under construction. We apply the Hahn—
Banach theorem to find a supporting hyperplane L at z to F, in L = aff Fj,. Set
Fri = LN Fy. Observe that, if codim Fj,1 > k we are done. Otherwise, we
would have that codim Fjyy; = k and, therefore, z € Fy41 < Fy--- < 1 = B
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would be a regular sequence. Obviously, after finitely many steps, we will have
both conditions (i) and (ii) satisfied and we will get our sequence constructed.

Claim 2. If dim F;,_1 > 3 and dim F,,,_1; — dim F,,, > 2 then every y € F,, is
an exposed by P point of B.

PRrOOF: Consider a coordinate system such that y = 0. Let H be a supporting
hyperplane at 0 to Fj,—1 in aff F},_1 such that F,, = H N F,,—1. Then the
codimension of F,, in H is at least 1. Therefore, we have room enough to find
P € PN Gi(H) such that PN F,, = {0}. Hence PN B = {0}. The claim is
proved. Il

The next claim is, in fact, [5, Claim 3] when G; (R") is replaced by P. With
this substitution its proof is virtually the same as the proof of [5, Claim 3| and,
therefore, we omit it.

Claim 3. Let F be a derived face of B. If there is a y € X)(B,P) N F° then
F C X)(B,P).

Further, we go to the following important claim.

Claim 4. The set
T={xecB\ XI}(B,’P): dim Fy,—1 =2 and F,, = {x}}
is countable.

PrOOF: Let € T and let us consider the respective sequence x € F,, <
F,_1 < F, o+ < F = B of derived faces for . Since dimB = n > 3 we
have that m > 3. Then F,,—1 < Fpn—2--- < F1 = B is a regular sequence
of derived faces. Thus Fj,—1 is a regular derived face with dim F,,—; = 2.
In addition, since F,, = {z} we get that « € 9F,,—1 and z is exposed by
P = Gy(aff F,,_; — x) \ P. Further, since P is countable, we have that the set
{y € Fyn—1: y is exposed by 73} is also countable. Now, having in mind that the
set of all regular derived faces of B is countable, we get that T must be countable
as well. That completes the proof. (I

Let z € B\ Xpl(B,P). Suppose that the sequence x € F,, < Fp_1--- <
F1 = B is not regular. Then we have dim F},,_1 — dim F},, > 2. Next, we have
that m > 2. Indeed, if m = 2 then dim B — dim F, > 1 and, by Claim 2, we
would have had z € XI} (B,P). Further, if dim F,,_; > 3 then, by Claim 2, we
would again get that x € Xg (B, P). Consequently, we have that dim F,_; = 2,
F,, = {z} and = € OF,,,—1. So we are under the hypotheses of Claim 4. Hence,
in this case, x € T with T countable. Now, let us assume that the sequence
x € Fy < Fp—1--- < Fy = B is regular. Then, notice that, codim F,,, = m — 1.
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Therefore, we get that = € F;,. Now, we apply the same argument as in the proof
of [5, Theorem 3]. Namely, consider the countable set

L ={F°: Fis a regular derived face of B with F° N X, (B,P) = 0}.

Since x € F?°

m

\ X} (B, P), by Claim 3, we have that Fy, € £. Next, every F° € L
is an open subset of a closed set in R™, hence o-compact. Since £ is countable,
UL is also g-compact with |J£ C B\ X}(B,P). Consequently, we get that
(UL)uT = B\ X (B,P) with (UL) UT being a o-compact subset of B.
Hence X}(B,P) is Gs-subset in B and, of course, in X!(B,P) as well. That
completes the proof of the theorem. O
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