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COVERS OF TOPOLOGICAL SPACES AND
COMPACT-COVERING MAPS

STOYU BAROV

Abstract. In this paper, we characterize spaces which are
quotient compact-covering s-images of metric spaces. We
show that X is a quotient compact-covering s-image of a
metric space if and only if X is a quotient countable-compact-
covering s-image of a metric space.

1. Introduction

Throughout this paper, we denote by (M,B) a space M with a
point-countable base B. All maps are assumed to be continuous
surjections and all spaces are Hausdorff.

The starting point of this note is the question posed by E. Michael
and K. Nagami [11]: Is every quotient s-image of a metric space
also a compact-covering quotient s-image of a metric space?

Huaipeng Chen [3] answered that question in the negative. G.
Gruenhage, E. Michael, and Y. Tanaka [6, Theorem 6.1] showed
that X is a quotient s-image of a metric space if and only if X is
a sequence-covering quotient s-image of a metric space. In light
of the above results, it is natural to ask whether every quotient
countable-compact-covering s-image of a metric space is also a quo-
tient compact-covering s-image of a metric space. The main pur-
pose of this paper is to give a positive answer to this question.
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Now, we state our main theorem. For the definitions of all con-
cepts, see section 2.

Theorem 1.1. The following are equivalent for a topological space
X.

(a) X is a quotient countable-compact-covering s-image of a
metric space.

(b) X is a k-space satisfying (i).
(c) X is a k-space satisfying (ii).
(d) X is a quotient compact-covering s-image of a space having

a point-countable base.
(e) X is a quotient (ω0+1)-compact-covering s-image of a met-

ric space.

To show Theorem 1.1, we use the idea of the construction origi-
nated in the proof of [6, Theorem 6.1]. However, to get our theorem,
we extend significantly the argument. Also, let us point out that
the equivalency of (c) and (d) in the above theorem can be derived
directly from [8, Theorem 1] in combination with Lemma 3.2.

We establish our terminology in section 2. In section 3, we prove
some lemmas. In section 4, we establish Theorem 1.1.

2. Notations and definitions

The cardinality of an arbitrary set A is denoted by |A|; if X is a
space and V is a family of subsets of X then we say that V covers
A ⊂ X if A ⊂ ⋃V. Now, suppose X is a topological space and F is
a network for X such that for each x ∈ X there exists a countable
V ⊂ F , which is a network at x. Giving F the discrete topology,
the countable product Fℵ0 is metrizable. Let M(F) ⊂ Fℵ0 be
the set of all (Vn) ∈ Fℵ0 such that, for some x ∈ ⋂

n Vn, every
neighborhood of x contains some Vk. Actually, {x} =

⋂
n Vn, since

X is Hausdorff. In this way, we define a map ϕX,F : M(F) → X
which is continuous and onto. This construction is well known.
(For instance, see [12] or [11].) As far as other topological concepts
are concerned, we follow [5].

Further, let us define the following conditions.
(*) X has a point-countable family F such that if x ∈ K ∩ U ,

with K compact in X and U open in X, then there are
finite collections Vx ⊂ F and V ′x such that

⋃Vx ⊂ U and
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V ′x is a finite closed refinement of Vx that is a cover for a
neighborhood of x in K.

(i) X has a point-countable family F such that, if K is a count-
able and compact subspace of X and P is an open (in X)
cover of K then there exists a finite V ⊂ F refining P and
which is refined by a closed finite cover V ′ of K.

(ii) X has a point-countable family F such that, if K ⊂ X is
compact and P is an open (in X) cover of K, then there
exists a finite V ⊂ F refining P and which is refined by a
closed finite cover V ′ of K.

To this end, one can see that actually (*) and (ii) are equivalent.
Also, let us point out that by Lemma 3.2, F in (*) (and, also, F in
(ii)) is a point-countable strong k-network in the sense of [8].

Definition 2.1. (see [4] or [9]) Let X be a topological space and
let α be an ordinal. Then α-th derivative of X, denoted by D(α)X,
is defined inductively as follows:

D(0)X = X,

D(α+1)X = D(α)X\{x : x is an isolated point in D(α)X},
D(α)X =

⋂
β<α D(β)X for limit ordinals α.

The smallest α for which D(α)X = D(α+1)X is called the Cantor-
Bendixson height of X and denoted by CB(X).

Definition 2.2. ([4]) For α < ω1, a map f : X → Y is called
α -compact -covering if every countable and compact K in Y , with
D(α)K = ∅, is the image of some compact C in X.

Definition 2.3. ([10]) A map f : X → Y is compact-covering
(countable-compact-covering, respectively) if every compact (count-
able and compact, respectively) K ⊂ Y is the image of some com-
pact C ⊂ X.

Definition 2.4. ([11]) A map f : X → Y is called an s-map if each
fiber f−1(y) is separable.

3. Some lemmas

In this section, we establish two lemmas to prepare the ground-
work for the proof of our main results. We begin with a lemma
that is fundamental for proving our main theorem.
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Lemma 3.1. Let X be a metrizable space and U be a finite non-
empty collection of subsets of X. Then the following are equivalent.

(a) U admits a finite closed refinement that covers X.
(b) If E is a countable and compact subspace of X with CB(E)

≤ |U|, then {U ⋂
E : U ∈ U} admits a finite closed refine-

ment that is a cover of E.

Proof: (a) ⇒ (b) is trivial.
(b) ⇒ (a). We will prove this by induction on n, where n = |U|.
Step 1. Assume that |U| = 1, i.e., U = {U}. If for every countable

and compact E ⊂ X, with CB(E) = 1, we have that U ∩E covers
E, then obviously U = X. Hence, the lemma holds when |U| = 1.

Step 2. Let U = {U0, ..., Un} and let us assume that for every
metrizable space Y and for every finite collection U∗ of subsets of
Y , with 1 ≤ |U∗| ≤ n, we have that the lemma holds. Clearly, U
must be a cover of X. Let us suppose that for every 0 ≤ i ≤ n
there is a finite closed refinement Wi of U that covers Ui. Then
we consider W =

⋃n
k=0Wk and VUi =

⋃{W ∈ W : W ⊂ Ui}.
Obviously, {VUi : 0 ≤ i ≤ n} would be a finite closed refinement
of U that covers X. This argument shows that it suffices to prove
that there is a finite closed refinement W0 of U that is a cover of
U0. Let us find W0 with the required properties.

Set

Ui = U \ {Ui},
P ∗ = U0 \ U0,

C = P ∗ ∩ (
n⋂

i=0

Ui),

P = P ∗ \ C.

Now, we prove that

P ∗ ⊂ P and P = P ∗.
Indeed, since P ∗∩U0 = ∅, we have that P ∗∩C = ∅ and therefore,

P ∗ ⊂ P . In addition, since P ⊂ P ∗, we get that P = P ∗.
To this end, we can assume that P ∗ 6= ∅, since otherwise we are

done.
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Claim 1. For every x ∈ P there is a finite closed refinement of
U that covers a neighborhood of x in X.

Proof of Claim 1: Let x ∈ P . Then x /∈ ⋂n
i=0 Ui. So, there

is 0 ≤ j ≤ n such that x /∈ Uj . We show that there is a finite
closed refinement V of Uj that covers a neighborhood of x in X.
Indeed, suppose that every finite closed refinement of Uj does not
cover a neighborhood of x. We take a decreasing base (Oi) at x.
By the inductive hypotheses for every i ∈ N, we pick a countable
and compact space Si such that

Si ⊂ Oi, CB(Si) ≤ n, and

Uj does not have a finite closed refinement that covers Si.

Next, we consider E =
⋃

i Si
⋃{x}. Clearly, E is a countable

and compact space with CB(E) ≤ n + 1. Consequently, there is a
finite closed refinement {VU : U ∈ U} of U that covers E. We may
also assume that VU ⊂ U for all U ∈ U . Obviously, x 6∈ VUj , and
we can find l ∈ N such that

Ol ∩ VUj = ∅.
Now, Sl must have a finite closed cover that refines Uj . That,

however, contradicts the choice of Sl. Hence, the claim results.

By Claim 1, for every x ∈ P, we can pick a neighborhood Vx

such that Vx is covered by a finite closed refinement of Uj for some
0 ≤ j ≤ n. Let

V =
⋃

x∈P

Vx,

A = P \ V and B = P ∩ V.

Observe that P ⊂ B and A is closed in X. Furthermore,

A = P \ V ⊂ P \ P = P ∗ \ P = C.

Hence, A ⊂ C and therefore,

A ⊂
n⋂

i=0

Ui.

Claim 2. There is a locally finite family W in X \A consisting
of open sets such that the following hold.

(a) {W : W ∈ W} refines {Vx : x ∈ P}.
(b) W covers B.
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Proof of Claim 2: For every x ∈ B, we choose a neighborhood
Ox of x such that Ox ⊂ Vy for some y ∈ P . Consider

V = {Ox : x ∈ B} ∪ {X \ P}.
Observe that V is an open cover of X \ A. Thus, we can find a
locally finite (in X \A) cover W∗ of X \A such that W∗ refines V.
Set

W = {W ∈ W∗ : W ∩B 6= ∅}.
Now, notice that W is a locally finite family in X \ A that refines
{Ox : x ∈ B}. Therefore, {W : W ∈ W} refines {Vx : x ∈ P}.
Moreover, we have that W covers B. That completes the proof of
the claim.

By Claim 2, if W ∈ W, then W ⊂ Vx for some x ∈ P . Therefore,
for each W ∈ W, we can pick a finite closed refinement OW of U
such that ⋃

OW = W.

Let
O∗ =

⋃

W∈W
OW ,

V ∗
Ui

=
⋃
{O∗ ∈ O∗ : O∗ ⊂ Ui} and VUi = V ∗

Ui
∪A for 0 ≤ i ≤ n.

Observe that V ∗
Ui

is closed in X \ A for every 0 ≤ i ≤ n. Fur-
thermore, we have that every VUi is closed in X because A is closed
in X. Moreover, since A ⊂ ⋂n

i=0 Ui, we have that

VUi ⊂ Ui.

Claim 3. P ∗ ⊂ P ⊂ int(
⋃n

i=0 VUi).

Proof of Claim 3: By our construction, we have that
⋃n

i=0 V ∗
Ui

=⋃O∗ =
⋃

W∈W W , B ⊂ ⋃W, and P ⊂ B. Thus,

P ∗ ⊂ P ⊂ B ⊂
⋃
W = int(

⋃
W) ⊂

⋃
O∗ =

n⋃

i=0

V ∗
Ui
⊂

n⋃

i=0

VUi .

That completes the proof of the claim.

Let

FU0 = U0 \ int(
n⋃

i=0

VUi).
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Now, by Claim 3, we have that

FU0 ⊂ U0 \ P ∗ = U0 \ (U0 \ U0) = U0.

We let
W0 = {VUi : 0 ≤ i ≤ n} ∪ {FU0}.

Observe that W0 is a finite closed refinement of U as well as a cover
of U0.

So, that completes Step 2 and the proof of the lemma. ¤
Now, for the lemma below we need the following concept. Let Y

be a space and X ⊂ Y . If V is a finite cover of X, then let us call
V a minimal cover of X with respect to a finite closed refinement if
V admits a finite closed (in X) refinement covering X and W does
not admit such a refinement whenever W ⊂ V and W 6= V (see [1]).

The proof of the next lemma follows the idea of the proof of [2,
Lemma 3.2].

Lemma 3.2. Suppose that a topological space Y has a point-count-
able cover F and X ⊂ Y is a metrizable subspace of Y . Then
|P| ≤ ℵ0, where P is the set of all finite subcollections of F that
are minimal covers of X with respect to a finite closed refinement.

Proof: For each n ∈ N, let

Gn = {V : V ∈ P, |V| = n}.
Obviously, it suffices to show that Gn is countable for all n. Suppose
that Gn is uncountable for some n. Let us get a maximal S ⊂ F
such that S ⊂ V for uncountably many V ∈ Gn and let H = {V ∈
Gn : S ⊂ V}. Clearly, 0 ≤ |S| < n. Then any finite closed (in X)
refinement of S does not cover X. By Lemma 3.1, applied to X
and U = {S ∩X : S ∈ S}, we can find a countable set E ⊂ X for
which {S ⋂

E : S ∈ S} does not admit a finite closed refinement
covering E. (If |S| = 0 then we let E = {x} for some x ∈ X.)
Clearly, if V ∈ Gn, then {V ∩ E : V ∈ V} admits a finite closed
refinement that is a cover of E. Consequently, for every V ∈ Gn,
we can choose some FV ∈ V such that FV /∈ S and FV ∩E 6= ∅. Set

F∗ = {FV : V ∈ H}.
But E is countable, so E intersects only countably many elements
of F . Hence, the set F∗ is countable. So, we can find F ∈ F∗ that
lies in uncountably many V ∈ H. Let S1 = S⋃{F}. Obviously,
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S ⊂ S1,S 6= S1 (since F∗ ∩ S = ∅) and S1 ⊂ V for uncountably
many V ∈ Gn, a contradiction with the choice of S. That completes
the proof. ¤

Remark 3.3. (a) Lemma 3.2 is valid if we assume only that X is
separable. The proof in this case is very simple and it follows di-
rectly from [1, Lemma 1.3 and Lemma 2.1].For our goals, this mod-
ification of Lemma 3.2 is sufficient since it is applied to a metrizable
compact in a space Y that is a quotient s-image of a metric space.
Let us recall that by [6] if Y is a quotient s-image of a metric space,
then every compact in Y is metrizable and therefore is separable.

(b) Let us point out that [7, Lemma 7] is similar in spirit to our
Lemma 3.2.

4. Proof of Theorem 1.1

Having proved the lemmas in section 3, we can go to the proof
of Theorem 1.1.

Proof of Theorem 1.1: (a)⇒(b). Let f : (M,B) → X be a
quotient countable-compact-covering s-map from a metric space.
Denote F = {f(B) : B ∈ B} and pick a countable and compact
subspace K of X. Let P be a finite open (in X) cover of K.
Find a compact C ⊂ M such that f(C) = K. Consider P ′ =
{f−1(P ) : P ∈ P}. Clearly, P ′ is an open cover of C. So, we can
find a finite W ⊂ B that covers C and refines P ′. Let W ′ be
a finite closed refinement of W such that

⋃W ′ = C. Set V =
{f(W ) : W ∈ W} and V ′ = {f(W ′) : W ′ ∈ W ′}. For the compact
K and the cover P, clearly V and V ′ are as required. The fact that
X is a k-space follows directly from [6, Theorem 6.1]. We are done.

(b)⇒(c). Let K be compact in X. Let x ∈ K and let U be open
in X such that x ∈ U . To this end, observe that it suffices to find
finite collections Vx and V ′x as in (*). Arrange the set Fx = {V :
V ∈ F , x ∈ V ⊂ U} in a sequence (Vn). Let us fix a base (Wn) at
x in K such that

Wn+1 ⊂ Wn and Wn ⊂ U for all n.

Suppose that there are no collections Vx and V ′x as in (*). For
i ∈ N set

Pi = {Vj : 1 ≤ j ≤ i}.
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By Lemma 3.1, for every i ∈ N we find a countable and compact
Ki ⊂ Wi such that {Ki∩P : P ∈ Pi} does not admit a finite closed
(in K) refinement covering Ki. Let

K∗ =
⋃
n

Kn

⋃
{x}.

Then for K∗ and U , we can not find V and V ′ as in (i), a contra-
diction with the hypothesis. Hence, the implication holds.

(e)⇒(c). Using the proof of (a)⇒(b), we see that X satisfies
condition (i′), a modification of (i), namely, (i′) is the same as
(i) providing that the countable and compact space K satisfies
D(ω0+1)K = ∅ instead of being only countable and compact. Then
we follow the proof of (b)⇒(c), choosing Ki’s to satisfy CB(Ki) ≤ i
for every i ∈ N.

(c)⇒(d). Here we can directly apply [8, Theorem 1], along with
Lemma 3.2. Also, one may use [7, Theorem 2]. Alternatively, we
could apply [1, Theorem 1.1] which is established independently
from [8, Theorem 1]. However, for the sake of completeness, we
give the proof in detail. Indeed, we show that ϕX,F : M(F) → X is
a quotient compact-covering s-map. It is an s-map because F is a
point-countable family. Now, by [6, footnote 16], it suffices to show
that ϕX,F is compact-covering. Let K be non-empty and compact
in X. Consider the set S which contains all finite subcollections of
F that cover K and that are minimal with respect to a finite closed
refinement.

By Lemma 3.2 or by Remark 3.3, S is a countable set. Arrange
all elements of S in a sequence (Vn). Denote by (V ′n) a sequence of
closed finite covers of K such that V ′n refines Vn and

⋃V ′n = K for
all n. Set

C = {(Vn) ∈ ∏
n Vn : ∃(V ′

n) ∈ ∏
n V ′n such that (V ′

n) has
the finite intersection property and V ′

n ⊂ Vn for all n}.
Let us check that C is closed in the compact space

∏
n Vn. Let

(Wn) ∈ ∏
n Vn\C. Set

Fk = {(V ′
n) ∈ ∏

n V ′n : V ′
i ⊂ Wi, i = 1, k and

⋂k
i=1 V ′

i 6= ∅}.
Clearly, Fi+1 ⊂ Fi and Fi is closed in

∏
n V ′n for all i. If Fi 6= ∅ for

all i, then
⋂∞

i=1 Fi 6= ∅, which leads to (Wn) ∈ C, a contradiction.
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Thus, Fk0 = ∅ for some k0. Then U =
∏k0

i=1 Wi ×
∏∞

i=k0+1 Vi is a
neighborhood of (Wn) such that U

⋂
C = ∅. Hence, C is closed in∏

n Vn. It is easy to verify that C ⊂ M(F) and ϕX,F (C) = K.
(d)⇒(a) follows from [11, Theorem 1.4] and (d)⇒(e) is trivial.

That completes the proof. ¤
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