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A theorem of Marc Frantz about controlled continuous ex-
tensions of functions inspired us to prove a general result con-
cerning boundary avoiding continuous selections into Banach
spaces, which has Frantz’ theorem as a corollary. In addition,
with relatively simple means we improve upon some other re-
sults of Frantz involving extensions of products and of disjoint
families of functions.

1. Introduction.

The following two extension theorems are presented in Frantz [3]. Let I
denote the interval [0, 1].

Theorem 1. Let X be a normal space, let A be a closed subset of X, and
let Y0, Y1 be disjoint closed Gδ-subsets of X. If f : A → I is a continuous
function such that for i = 0, 1, f−1(i) = Yi∩A then there exists a continuous
extension f̂ : X → I of f with f̂−1(i) = Yi for i = 0, 1.

Theorem 2. Let X be a compact metric space and let A be a closed subset
of X. If f : A → R, g : A → [0,∞), and h : X → R are continuous func-
tions such that f · g = h|A and g−1(0) ⊂ f−1(0) then there are continuous
extensions f̂ : X → R and ĝ : X → [0,∞) of f and g with f̂ · ĝ = h.

We present a general result (Theorem 4) about boundary avoiding contin-
uous selections that has Theorem 1 as a corollary. We also give a very simple
argument that shows that Theorem 2 is valid without any restrictions on the
domain X other than the necessary normality (see Corollary 8). In addition,
with Corollary 12 and Example 3 we sharpen a result in [3] concerning the
extension of pairwise disjoint collections of functions.

All spaces in this paper are assumed to be Tychonoff.

2. Boundary avoiding continuous selections.

If Y is a set then 2Y = P(Y ) \ {∅}. Let X and Y be topological spaces
and let ϕ : X → 2Y be a set-valued function. If A ⊂ Y then we put
ϕ−1[A] = {x ∈ X : ϕ(x) ∩ A 6= ∅}. The function ϕ is called lower semi-
continuous (LSC for short) if for each open set O in Y the set ϕ−1[O] is
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open in X. A function f : X → Y is called a selection of ϕ if f(x) ∈ ϕ(x)
for every x ∈ X. If Y is a metric space then we call ϕ bounded if there is an
M > 0 such that the diameter of every ϕ(x) is less than M .

Let (B, ‖ · ‖) be a Banach space and let ε > 0. Let Uε denote the open
ε-ball {y ∈ B : ‖y‖ < ε}. If C is a subset of B then intC denotes the
interior of C in B and if ε > 0 then we put

intεC = {y ∈ B : y + Uε ⊂ C}.
Note that intεC is always closed and that if C is convex then so is intεC.

A space X is called countably paracompact if every countable open cover
of the space has a locally finite open refinement that covers the space. For
normal spaces this property is equivalent to the property that for every
increasing sequence U1 ⊂ U2 ⊂ . . . of open sets with

⋃∞
i=1 Ui = X there

exist a sequence F1, F2, . . . of closed sets such that Fi ⊂ Ui for i ∈ N and⋃∞
i=1 Fi = X, see [2, Corollary 5.2.2]. Spaces that are normal but not

countably paracompact are known as Dowker spaces, see Rudin [6].

Lemma 3. Let X be a normal space, let B be a Banach space, let C be a
convex subset of B, let ϕ : X → 2C be LSC and bounded such that every
ϕ(x) is closed and convex in B, and let F1, F2, . . . be a sequence of closed
subsets of X such that Fn ⊂ ϕ−1[int1/nC] for each n ∈ N.

(a) If B is separable and every ϕ(x) is compact, or
(b) if B is separable and X is countably paracompact, or
(c) if X is paracompact

then there is a continuous selection f of ϕ with f(Fn) ⊂ intC for each n.

Proof. We may assume that Fn ⊂ Fn+1 for every n. Put F0 = ∅ and
A = X \

⋃∞
n=1 Fn. Let M > 1 be an upper bound for the diameters of the

ϕ(x)’s. For n ∈ N put δ(n) = 1/(Mn2) and Cn = intδ(n)C. We define a
function ψ : X → 2C as follows:

ψ(x) =

{
ϕ(x), if x ∈ A;
ϕ(x) ∩ Cn, if x ∈ Fn \ Fn−1.

Note that since intεC is closed and convex, every ψ(x) is closed (and in case
(a) compact) and convex. If ψ is LSC then according to Michael [5] it has a
continuous selection f which obviously has the property f(Fn) ⊂ Cn ⊂ intC
for each n ∈ N.

It remains to prove that ψ is LSC. Let O be open in B and let x ∈ ψ−1[O].
Select a vector a ∈ ψ(x)∩O. In order to prove that x is an interior point of
ψ−1[O] we distinguish two cases:

Case I. x /∈ A. Let n ∈ N be such that x ∈ Fn \Fn−1. So ψ(x) = ϕ(x)∩Cn

and a ∈ ϕ(x)∩Cn∩O. Since by assumption Fn ⊂ ϕ−1[int1/nC] we can find
a vector b ∈ ϕ(x)∩ int1/nC. Since 1/n > δ(n) we have b ∈ int1/nC ⊂ intCn
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and hence b + Uε ⊂ Cn for some ε > 0. Let t ∈ (0, 1] and note that by the
convexity of Cn we have a+t(b−a)+Utε ⊂ Cn. Note that a ∈ O so for some
small enough t ∈ (0, 1] the vector c = a+t(b−a) is in O∩intCn. By convexity
of ϕ(x) we have c ∈ ϕ(x). Define the open set U = ϕ−1[O ∩ intCn] \ Fn−1.
Note that x ∈ U . If y ∈ U then there is a d ∈ O ∩ ϕ(y) ∩ intCn. Since
y /∈ Fn−1 we have ϕ(y) ∩ Cn ⊂ ψ(y) and hence d ∈ O ∩ ψ(y). Conclusion:
y ∈ ψ−1[O] and U ⊂ ψ−1[O].

Case II. x ∈ A. Let n ∈ N be such that a + U2/n ⊂ O. Define the open
set U = ϕ−1[a + U1/n] \ Fn. Since x ∈ A we have x ∈ U . Let y ∈ U and
select b ∈ ϕ(y) such that ‖b − a‖ < 1/n. If y ∈ A then ψ(y) = ϕ(y) and
obviously y ∈ ψ−1[O]. So we may assume that y ∈ Fm \ Fm−1 for some
m > n. Since Fm ⊂ ϕ−1[int1/mC] we can find a vector c ∈ ϕ(y) ∩ int1/mC.
So c+ U1/m ⊂ C and b ∈ ϕ(y) ⊂ C. Put t = 1/(Mm) and note that by the
convexity of C we have b + t(c − b) + Ut/m ⊂ C. So d = b + t(c − b) is in
intt/mC = Cm. Note that since b and c are in ϕ(y) we have ‖c − b‖ ≤ M
and hence ‖d − b‖ ≤ tM = 1/m < 1/n. Also, by convexity of ϕ(y) we
have d ∈ ϕ(y). So the distance between d and a is less than 2/n and hence
d ∈ O∩ϕ(y)∩Cm = O∩ψ(y). Conclusion: y ∈ ψ−1[O] and U ⊂ ψ−1[O]. �

Theorem 4. The following statements are equivalent:
(1) X is a normal and countably paracompact space.
(2) For every separable Banach space B, every convex subset C of B, every

LSC function ϕ : X → 2C such that each ϕ(x) is compact and convex
in B, and every A ⊂ ϕ−1[intC] that is an Fσ-subset of X there exists
a continuous selection f of ϕ with A ⊂ f−1(intC) ⊂ ϕ−1[intC].

(3) For every separable Banach space B, every convex subset C of B, every
LSC function ϕ : X → 2C such that each ϕ(x) is closed and convex in
B, and every A ⊂ ϕ−1[intC] that is an Fσ-subset of X there exists a
continuous selection f of ϕ with A ⊂ f−1(intC) ⊂ ϕ−1[intC].

Theorem 5. The following statements are equivalent:
(1) X is a paracompact space.
(2) For every Banach space B, every convex subset C of B, every LSC

function ϕ : X → 2C such that each ϕ(x) is closed and convex in
B, and every A ⊂ ϕ−1[intC] that is an Fσ-subset of X there exists a
continuous selection f of ϕ with A ⊂ f−1(intC) ⊂ ϕ−1[intC].

Proof. We will prove both theorems at the same time. Note first that if we
substitute C = B then we have Michael’s selection theorems so if (2) is valid
then X is normal in Theorem 4 and paracompact in Theorem 5. Note that
the implication (3) ⇒ (2) in Theorem 4 is trivial.

In order to prove that condition (2) in Theorem 4 implies that X is
countably paracompact we consider an countable, monotone open cover
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U1 ⊂ U2 ⊂ · · · of X. Put U0 = ∅ and define the LSC function ϕ : X → 2I

by

ϕ(x) = [0, 1/n] if x ∈ Un \ Un−1 for some n ∈ N.

Let B = R, C = I, and A = X = ϕ−1[intC]. According to condition
(2) there is a continuous function f : X → (0, 1) such that f(X \ Un) ⊂
[0, 1/(n+ 1)] for each n ∈ N. Then Fn = f−1([1/n, 1]), n ∈ N, is the closed
cover of X that proves countable paracompactness.

Let us now turn to proving that (1) implies (3) in Theorem 4 and that
(1) implies (2) in Theorem 5. So assume that X is normal and countably
paracompact (respectively paracompact) and let B, C, ϕ, and A be as in
the hypotheses of condition (3) in Theorem 4 (respectively (2) in Theo-
rem 5). With Michael we choose a continuous selection g of ϕ and we define
a function ψ : X → 2C by

ψ(x) = ϕ(x) ∩ {a ∈ B : ‖a− g(x)‖ ≤ 1}.

We intend to apply Lemma 3 to ψ. It is obvious that ψ is bounded and LSC
and that every ψ(x) is convex and compact (respectively closed). We verify
that ψ−1[intC] = ϕ−1[intC] so that A ⊂ ψ−1[intC]. Let x ∈ ϕ−1[intC]. So
there is a vector a ∈ ϕ(x) ∩ intC and hence a + Uε ⊂ C for some ε > 0.
Note that g(x) ∈ ϕ(x) ⊂ C and pick a t ∈ (0, 1] with t‖a − g(x)‖ ≤ 1. Let
b = g(x)+t(a−g(x)) ∈ ϕ(x) and note that ‖b−g(x)‖ = t‖a−g(x)‖ ≤ 1. By
convexity of C we have b+Utε ⊂ C and hence b ∈ intC. So b ∈ ψ(x)∩ intC
and x ∈ ψ−1[intC].

Since A is by assumption an Fσ-set we may choose a sequence H1 ⊂ H2 ⊂
· · · of closed subsets of X such that

⋃∞
k=1Hk = A. For every n ∈ N consider

the open set Un = ψ−1[int(int1/nC)] and note that the Un’s cover ψ−1[intC]
and hence A. SinceX is countably paracompact, which is a closed hereditary
property, we can find for each k ∈ N a closed covering Kk1 ⊂ Kk2 ⊂ · · · of
Hk such that Kkn ⊂ Un for each n ∈ N. If we define Fn =

⋃n
k=1Kkn then

the Fn’s cover A. Note that for each n ∈ N we have Fn ⊂ Un ⊂ ψ−1[int1/nC]
so we may apply Lemma 3 to ψ to obtain a continuous selection f with the
property f(A) =

⋃∞
n=1 f(Fn) ⊂ intC. Since ψ(x) ⊂ ϕ(x) for each x ∈ X, f

is also a selection of ϕ and we trivially have f−1(intC) ⊂ ϕ−1[intC]. �

Theorem 1 now follows immediately from Theorem 4 with the slight flaw
that Dowker spaces are not covered. To obtain the full strength of Theorem 1
we derive it from Lemma 3:

Proof of Theorem 1. Let X be a normal space, let A be a closed subset of
X, let Y0, Y1 be disjoint closed Gδ-subsets of X, and let f : A → I be
a continuous function such that for i = 0, 1, f−1(i) = Yi ∩ A. Choose a
continuous extension g : X → I of f such that g(Yi) ⊂ {i} for i = 0, 1. Put
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G = g−1({0, 1}) and let H2,H3, . . . be a sequence of closed subsets of X
such that

⋃∞
n=2Hn = X \ (Y0 ∪ Y1). We define for n ≥ 2 the closed sets

Fn = g−1([1/n, 1− 1/n]) ∪ (Hn ∩G).

For the purpose of applying Lemma 3 the role of the Banach space B is
played by R and C = I so int1/nC = [1/n, 1 − 1/n]. Define the obviously
bounded LSC function ϕ : X → 2I by

ϕ(x) =

{
{g(x)}, if x ∈ A ∪ Y0 ∪ Y1;
I, otherwise.

If x ∈ Fn then either g(x) ∈ ϕ(x) ∩ int1/nC or x ∈ Hn ∩ G which means
that x /∈ Y0 ∪ Y1 and g(x) ∈ {0, 1}. In the second case we have x /∈ A and
ϕ(x) = I which implies 1/2 ∈ ϕ(x) ∩ int1/nC. So in either case we may
conclude that Fn ⊂ ϕ−1[int1/nC] for every n ≥ 2. Observe that ϕ satisfies
all the hypotheses of Lemma 3 so there is a continuous selection f̂ of ϕ such
that f̂(

⋃∞
n=2 Fn) ⊂ (0, 1). Note that f̂ extends g (and f) so f(Yi) ⊂ {i}.

Let x ∈ X \ (Y0 ∪ Y1). If g(x) ∈ (0, 1) then x is in some g−1([1/n, 1− 1/n])
and if g(x) ∈ {0, 1} then x is in some Hm ∩ G. So x is in some Fk and
f̂(x) ∈ (0, 1). We have shown that f̂−1(i) = Yi for i = 0, 1. �

As to the question of whether it is necessary for C to be convex in Theo-
rems 4 and 5 note that if C is any open set or any set with empty interior
then (2) is always valid, the condition A ⊂ f−1(intC) being trivially sat-
isfied. According to [1, p. TVS II.14], if C is a convex set with nonempty
interior then intC is dense in C and intC = intC, which means that the
content of Theorems 4 and 5 does not change if we add the requirement that
C be closed. These observations suggest that the theorems are primarily of
interest if C is a closed set with dense interior so let us consider that case.
It is obvious that (2) is valid if C is for instance a union of two disjoint
convex and closed sets so also in this case convexity is not strictly necessary.
However, convexity plays an important role: The following proposition im-
plies that if C is a closed set with a dense and connected interior such that
condition (2) is valid then C must be convex.

Proposition 6. Let B be a Banach space and let C be a closed subset of B.
If for every LSC function ϕ : I → 2C such that each ϕ(x) is compact and
convex there is a continuous selection f of ϕ with f−1(intC) = ϕ−1[intC]
then each component of intC is convex.

Proof. Let O be a component of intC and let a and b be two distinct vectors
in O. Consider 〈a, b〉, the line segment {a + t(b − a) : t ∈ I} that connects
a and b. Since we are in a Banach space O is open and arcwise connected.
We can find an embedding α : I → O such that α(0) = a and α(1) = b. Let

s = sup{t ∈ I : 〈a, α(t)〉 ⊂ O}.
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Since a has convex neighbourhoods in O we know that s > 0. Put c = α(s)
and note that 〈a, c〉 is contained in the closure of O and hence in the closed
set C. Define the LSC function ϕ : I → 2C by

ϕ(t) =


{a}, if t = 0;
〈a, c〉, if 0 < t < 1;
{c}, if t = 1.

Let f : I → C be a continuous selection of ϕ such that f−1(intC) =
ϕ−1[intC] = I. Since f(I) ⊂ 〈a, c〉, f(0) = a, and f(1) = c the function
f must be surjective onto 〈a, c〉. So 〈a, c〉 is a subset of intC and O. If
s = 1 then 〈a, b〉 = 〈a, c〉 ⊂ O and we are finished. Note that 〈a, c〉 must
have a convex neighbourhood in O so if s < 1 then there is an ε > 0 with
〈a, α(t)〉 ⊂ O for all t ∈ (s−ε, s+ε). This result contradicts the maximality
of s. �

3. Extending products.

Put R+ = [0,∞) and R− = (−∞, 0].

Theorem 7. Let X be a normal space and let A be a closed subset of X.
If f : A→ R+, g : A→ R+, and h : X → R+ are continuous functions such
that f · g = h|A then there are continuous extensions f̂ , ĝ : X → R+ of f
and g with f̂ · ĝ = h. If in addition g−1(0) ⊂ f−1(0) then it can be arranged
that ĝ−1(0) ⊂ f̂−1(0).

Proof. Let f̃ , g̃ : X → R+ be Tietze extensions of f and g. Define the
obviously continuous functions f̂ , ĝ : X → R+ by

f̂(x) =
f̃(x)− g̃(x) +

√
(f̃(x)− g̃(x))2 + 4h(x)

2
and

ĝ(x) =
g̃(x)− f̃(x) +

√
(f̃(x)− g̃(x))2 + 4h(x)

2
.

Some straightforward algebra shows that f̂ · ĝ = h and that whenever f̃(x) ·
g̃(x) = h(x) we have f̂(x) = f̃(x) and ĝ(x) = g̃(x) which means that f̂ and
ĝ are extensions of f and g.

If we have g−1(0) ⊂ f−1(0) or, equivalently, f−1(0) = h−1(0)∩A then we
choose g̃ as above but we let f̃ be a Tietze extension of f ∪ (0|h−1(0)). We
then define f̂ and ĝ as above. If ĝ(x) = 0 then h(x) = f̂(x) · ĝ(x) = 0 and
hence f̃(x) = 0. Substitution of this information into the definition of f̂ gives
f̂(x) = −g̃(x) + g̃(x) = 0 and we may conclude that ĝ−1(0) ⊂ f̂−1(0). �

The following result is Theorem 2 without the restrictions on the domain.
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Corollary 8. Let X be a normal space and let A be a closed subset of X.
If f : A → R, g : A → R+, and h : X → R are continuous functions such
that f · g = h|A and g−1(0) ⊂ f−1(0) then there are continuous extensions
f̂ : X → R and ĝ : X → R+ of f and g with f̂ · ĝ = h.

Proof. Let f̃ , g̃ : X → R+ be continuous extensions of |f | and g such that
f̃ · g̃ = |h| and f̃−1(0) = h−1(0). If we put f̂ = (f̃ |h−1(R+))∪ (−f̃ |h−1(R−))
and ĝ = g̃ then f̂ is continuous and f̂ · ĝ = h. �

A natural question is how this corollary extends to the complex numbers.
Let C+ stand for C with the negative real numbers removed.

Corollary 9. Let X be a normal space and let A be a closed subset of X.
If f : A → C, g : A → C+, and h : X → C are continuous functions such
that f · g = h|A and g−1(0) ⊂ f−1(0) then there are continuous extensions
f̂ : X → C and ĝ : X → C+ of f and g with f̂ · ĝ = h.

Proof. Let f̃ , g̃ : X → R+ be continuous extensions of |f | and |g| such
that f̃ · g̃ = |h| and g̃−1(0) ⊂ f̃−1(0). Put O = g̃−1((0,∞)) and Gn =
g̃−1([1/n,∞)) for n ∈ N. Since g(A) ⊂ C+ we can find a continuous function
θ : A ∩ O → (−π, π) such that g(x) = |g(x)|eiθ(x) for each x ∈ A ∩ O. Let
θ1 : G1 → (−π, π) be a Tietze extension of θ|A∩G1. Proceeding inductively,
let θn+1 : Gn+1 → (−π, π) be a Tietze extension of θn ∪ (θ|A ∩Gn+1). Put
θ̃ =

⋃∞
n=1 θn and note that since O =

⋃∞
n=1 intGn we have that θ̃ : O →

(−π, π) is a continuous extension of θ.
Define for x ∈ X,

ĝ(x) =

{
g̃(x)eiθ̃(x), if x ∈ O;
0, if x /∈ O,

and

f̂(x) =

{
h(x)/ĝ(x), if x ∈ O;
0, if x /∈ O.

It is obvious that f̂ and ĝ extend f and g, that f̂ · ĝ = h, and that f̂ and ĝ
are continuous at points in O. What remains is to verify the continuity at
points in X\O. Let x ∈ X\O and y ∈ X. Then g̃(x) = ĝ(x) = f̂(x) = 0 and
since g̃−1(0) ⊂ f̃−1(0) we have also f̃(x) = 0. Note that ĝ(y) = f̂(y) = 0 or
|ĝ(y) − ĝ(x)| = |ĝ(y)| = g̃(y) = |g̃(y) − g̃(x)| and |f̂(y) − f̂(x)| = |f̂(y)| =
|h(y)|/g̃(y) = f̃(y) = |f̃(y) − f̃(x)|. Since g̃ and f̃ are continuous we have
that ĝ and f̂ are continuous at x. �

The two restrictions, g(A) ⊂ C+ and g−1(0) ⊂ f−1(0), are essential as
the following examples show. Let D be the unit disk {z ∈ C : |z| ≤ 1}.
Choose X = D and A = ∂D = {z ∈ C : |z| = 1}.
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Example 1. For z ∈ ∂D, f(z) = z and g(z) = 1/z and let h be the constant
function 1 on D. If f̂ extends f over D then according to Brouwer f̂(z) = 0
for some z ∈ D which contradicts f̂ · ĝ = 1.

Example 2. For z ∈ ∂D, let f(z) = z and g(z) = 0 and for z ∈ D let
h(z) = 1 − |z|. If f̂ extends f over D then f̂(z) = 0 for some z ∈ D \ ∂D
which contradicts f̂(z) · ĝ(z) = 1− |z| > 0.

4. Extending pairwise disjoint collections.

We call two functions f, g : X → R disjoint if their product f · g is the zero
function. Frantz [3] presents the following two propositions.

Proposition 10. Let A be a closed subset of a normal space X and let
the functions f1, f2, . . . , fn : A → R be continuous and pairwise disjoint.
Then there exist pairwise disjoint continuous extensions f̂1, f̂2, . . . , f̂n of the
respective fi over all of X.

Proposition 11. Let A be a closed subset of a metric space X and let
{fγ : γ ∈ Γ} be a set of continuous and pairwise disjoint functions from A

to R. Then there exist a set {f̂γ : γ ∈ Γ} of pairwise disjoint continuous
functions from X to R such that f̂γ |A = fγ for each γ ∈ Γ.

Frantz states that Proposition 10 is also valid for countably infinite collec-
tions of functions but that the proof is rather technical and will be included
in later work. We observe, however, that this result can easily be obtained
as a corollary to Proposition 11.

Corollary 12. Let A be a closed subset of a normal space X and let the
functions f1, f2, . . . : A→ R be continuous and pairwise disjoint. Then there
exist pairwise disjoint continuous extensions f̂1, f̂2, . . . of the respective fi

over all of X.

Proof. Let f̃i : X → R be a Tietze extension of fi for each i ∈ N. Consider
the metric space RN and let πi : RN → R be the projection on the i-th
coordinate. Define the map F : X → RN by πi ◦F = f̃i for every i ∈ N. Let
B stand for the closure of F (A) in RN. If i 6= j then πi · πj |F (A) is the zero
function and hence by continuity πi ·πj |B is zero as well. So Proposition 11
implies that there are pairwise disjoint continuous extensions gi : RN → R
of πi|B, i ∈ N. Then the functions f̂i = gi ◦ F are as required. �

Example 3. It can be shown that Proposition 11 fails for any space X
that contains an uncountable product of nontrivial spaces, which answers a
question raised in [3]. The same examples also show that Corollary 12 does
not extend to families of functions with cardinality ℵ1.

Let X contain the space Y =
∏

γ∈Γ Yγ , where Γ is uncountable and every
Yγ consists of at least two points. Let πγ : Y → Yγ be the projection. We
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may assume that every Yγ contains only two points, aγ and bγ . Define for
each γ ∈ Γ a point xγ ∈ Y by πγ(xγ) = bγ and πβ(xγ) = aβ for β 6= γ and
note that D = {xγ : γ ∈ Γ} is a discrete space. Define a ∈ Y by πγ(a) = aγ

for all γ ∈ Γ and note that A = D ∪ {a} is the one-point compactification
of D and hence A is closed in X. Define for γ ∈ Γ, fγ : A → R as the
characteristic function of the singleton {xγ}. So F = {fγ : γ ∈ Γ} is an
uncountable pairwise disjoint family of continuous functions. According to
[4, Theorem 1.9] the Cantor cube Y satisfies the countable chain condition
which means that every pairwise disjoint collection of open sets in Y is
countable. So no continuous extension of the family F over Y (and hence
over X) is pairwise disjoint.
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