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Throughout this paper all spaces are assumed to be Hausdorff and all maps are
continuous surjections. If A is a set then |A| stands for the cardinality of A. For a
topological space X we define the following conditions: .

(i) X has a point-countable cover F such that for each z € K NU, with K compact
and U open in X, there is a finite V C F and a finite closed cover W of a neighborhood
of £ in K for which W refines V and VYV Cc U.

(ii) X has a point-countable cover F such that for each compact K and an open
cover U of K there is a finite V C F that refines I/ and is refined by a finite closed
cover of K.

(j) X has a family F = |J,, Fp, Fn is a point-finite cover for X for all n, such that
the following holds:

(j1) for each compact K C X and n € N{K N F : F € F,} admits a finite closed
refinement covering K;

(j2) if z € F,, and F,, € F, then (Fy,) is an outer base (for the definition see [3])
at z in X.

Now, if X is a space and V be a finite cover of it, then let us call V to be a minimal
cover with respect to a finite closed refinement if V admits a finite closed refinement
covering X and W does not for each W C V, W # V.

The main purpose of this note is to establish the following theorems.

Theorem 1.1 ([!]). The following properties of a space X are equivalent:

(a) X is a quotient compact-covering s—image of a metric space;

(b) X is a k—space satisfying (i);

(c) X is a k—space satisfying (ii). :

Theorem 1.2. For a topological space X the following are equivalent:

_(a) X is an image under a quotient compact-covering map from a metric space
with compact fibers;

b) X is a k—space satisfying (j).
0 prove Theorem 1.1 and Theorem 1.2 we apply the lemma below. This lemma
may hold some independent interest.
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By Theorem 1.1 (F, X) : M(F) — I is not compact-covering. Moreover, if U is open
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