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Abstract. Training of deep neural networks is difficult due to vanishing 

gradients. Therefore, a pre-training procedure based on restricted Boltzmann 

machines is suggested to resolve this problem. However, new developments in 

deep learning aim to resolve the problem with vanishing gradients by using 

rectifier linear units (ReLU). This study compares the performance of a RBM 

pre-trained auto-encoder with sigmoid activations to the performance of auto-

encoder with ReLU activation. The results showed that the ReLU auto-encoder 

achieved better reconstruction and saved training time, since it doesn't require 

pre-training. 
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1 Introduction 

Auto-Encoders are deep feed forward neural networks used for dimensionality 

reduction [1]. The advantage of the auto-encoder over methods such as Principal 

Component Analysis (PCA) is that they can capture non-linear dependencies. 

Since the auto-encoders have many hidden layers, it is hard to train using error back-

propagation [2] [3]. The reason for such difficulties is that the gradients are vanishing. 

Therefore, unsupervised pre-training procedure based on restricted Boltzmann 

machines (RBM) is used [3] [4]. The RBMs are stochastic neural networks which can 

learn the probability distribution of input data [5] [6]. RBMs are used for feature 

extraction [7] [8] [9] [10], and anomaly detection [11]. 

A study by Tan et al. [12] compared a stacked auto-encoder, a stacked auto-encoder 

with RBM pre-training, and an auto-encoder with RBM pre-training. The results 

showed that the best performance was achieved by the stacked RBM pre-trained auto-

encoder. Nuha et al. [13] showed pre-training with RBM increases the training time 

even for auto-encoder with just one hidden layer. 

This RBM pre-training technique is used in different applications [14] [15] [16] [17] 

[18] [19]. Also, RBMs are used as part of the error back-propagation training at each 

iteration [20]. 

Recent developments in deep learning, however, have resolved the problem with 

vanishing gradients by using rectifier linear unit (ReLU) [21] and weight initialization 

techniques such as Xavier [22]. This allowed for very deep networks to be trained such 

as MobileNetV2 [23], Xception [24], UNet [25], SegNet [26]. A study by Zhou et al. 



[27] in which stacked auto-encoders are compared with auto-encoders trained with only 

back-propagation also shows that the back-propagation algorithm results in better 

models than the greedy layer-wise training without fine-tuning. 

The previous studies by Hinton [3], Tan [12], Nuha [13] and Zhou [27] use sigmoid 

activations. The sigmoid activation has derivative which has maximum value of  
1

4
. This 

can cause the gradients to vanish during back-propagation. 

This study aims to compare a deep auto-encoder trained by back-propagation with 

RBM pre-training to an auto-encoder of the same architecture trained directly with by 

back-propagation. It will try to address the problem of vanishing gradients by using 

ReLU activations. It will try to push the number of hidden layers in the auto-encoder 

further than the previous studies. Hinton and Tan used 7 hidden layers, Zhou 1 to 3, and 

Nuha just 1. 

2 Network Architecture and Datasets 

The auto-encoders are first compared on the MNIST dataset. This dataset consists of 

hand-written digits represented as gray-scale images with resolution of 28 by 28 pixels. 

It has 60000 training images and 10000 testing images. The comparison of the auto-

encoders is done on the 10000 testing images. 

The auto-encoders are fully connected and symmetric from the middle layer. Each 

auto-encoder has the same architecture, 784-512-256-128-64-32-64-128-256-512-784, 

which has 10 hidden layers. 

With this architecture 3 auto-encoders are trained:   

• RBM + sigmoid RBM pre-trained auto-encoder which has sigmoid 

activations.  

• sigmoid Auto-encoder which is not RBM pre-trained and has sigmoid 

activations.  

• ReLU Auto-encoder which is not RBM pre-trained and has ReLU 

activations.  

The hidden layer with 32 units is called bottleneck. The part of the auto-encoder 

before the bottleneck is called encoder and the part after is called decoder. The auto-

encoder in this study maps 784-dimensional space into 32-dimensional space. 

2.1 RBM Pre-Training 

The restricted Boltzmann machine is a stochastic neural network, which can learn the 

probability distribution of data. It has visible units and hidden units, where each visible 

unit corresponds to a dimension of the input data and each hidden unit is latent variable. 

It is a special case of the Boltzmann machine in which the visible units only depend 

on the hidden units, and the hidden units only depend on the visible units. 

The probability of visible values 𝒗 and the hidden features 𝒉 is 

𝑝(𝒗, 𝒉) =
1
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𝑍 = ∑𝒗 ∑𝒉 𝑒−𝐸(𝒗,𝒉), 
(2) 

 

where 𝐸 is the energy function. 

The RBMs used in the pre-training algorithm have continuous visible units and 

discrete hidden units. This type of RBM is known as Gaussian-Bernoulli RBM [28] and 

its energy function is 
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where 𝑊 ∈ 𝑅𝑉𝑥𝐻  is the weight matrix, 𝒂 ∈ 𝑅𝑉 are the visible biases, 𝒃 ∈ 𝑅𝐻 are the 

hidden biases, 𝑉 is the number of visible units, and 𝐻 is the number of hidden units. 

Due to the conditional independence assumption in the RBM, the visible and hidden 

units can be updated simultaneously according to 
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(4) 
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(5) 

For each layer of the encoder part a RBM is trained with visible units representing 

the input data for the layer and the hidden units the activation. Once the RBM is trained 

the activation probabilities of the hidden units are calculated for each input data-point, 

and these probabilities become the input data for the next RBM. 

Finally the auto-encoder is initialized by setting the weights, and biases of the 

encoder part to the weights and the hidden biases of the corresponding RBM, and the 

weights and biases of the decoder part are set to the transposed weights and visible 

biases of the corresponding RBM. 

In the last step the auto-encoder is trained with the error back-propagation algorithm. 

2.2 Training of RBMs 

Restricted Boltzmann machines are trained by minimizing the negative log-likelihood 

of the data, given the parameters of the RBM,   
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where 𝑁 is the size of the input data, and 𝒗(𝑛) is the nth sample of the input data. To 

minimize this function the derivative with respect to each parameter has to be 

calculated, 
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where 𝔼[𝑓(𝑥, 𝑦)|𝑥] = ∑𝑦 𝑝(𝑦|𝑥)𝑓(𝑥, 𝑦) , and <•>  is average. Since the two 

expectations are computationally difficult to estimate contrastive divergence [?] is used 

to approximate the derivative, 
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where 𝒗(𝑛)(𝑘) are the visible units sampled from 𝒉(𝑛)(𝑘 − 1), and 𝒉(𝑛)(𝑘) are the 

hidden units sampled from 𝒗(𝑛)(𝑘). The visible units 𝒗(𝑛)(0) are set to the values of 

the nth data point. 

Following [3], 𝑘 = 1 and the values of the visible and simple units are not sampled 

from the RBM, but instead the values of the hidden units are set to the activation 

probabilities and the values of the visible units are set to the mean value of the Gaussian 

distribution. The standard deviation is set to 1 for each visible unit, and only the weights 

and biases are updated. 

3 Methods 

Each RBM was trained using the AdaMax algorithm with the default parameters and a 

batch size of 250. The initial parameters of the weights of the RBMs were drawn from 

Gaussian distribution, 𝑁 (0,
2

𝑉+𝐻
), (Xavier) and the biases are set to zero. 

The first two RBMs (784x512 and 512x256) were trained for 400 iterations, the third 

(256x128) for 600, fourth (128x64) 1000, and the last (64x32) for 3000. The error 

function used is the mean squared error,  

ℰ =
1
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where 𝑁 is the number of data points, 𝑦𝑖(𝑛) is the nth target, and 𝑦̂𝑖(𝑛) is the output 

of the network for the nth input. 

Then the auto-encoders were trained with the AdaMax algorithm with default 

parameters, for 20 iterations with batch size of 32. The auto-encoder RBM + sigmoid 

was initialized to the weights of the RBMs, and the other two auto-encoders were 

initialized with the Xavier initialization drawn from Gaussian distribution. The ReLU 

units have a maximum value of 1. 

For the RBMs was used custom implementation of the AdaMax algorithm and the 

calculation of the derivatives. For the fine tuning of the auto-encoders was used 

TensorFlow 2.4. 



4 Results  

 

Fig. 1. Training error of the auto-encoders - RBM + sigmoid (Blue), sigmoid 

(Orange), and ReLU (Green) 

Fig. 2. An example of the reconstruction error of 8 samples of the MNIST dataset. 

Figure 1 shows the training error for each auto-encoder. The network RBM + 

sigmoid is trained starts from the lowest error, due to the pre-training, but the error 

declines slower than ReLU and converges at higher error. The auto-encoder sigmoid 

starts at much higher error and the error declines very slow. It would require a lot more 

iterations to achieve good performance.  

Figure 2 shows 8 randomly chosen samples of the MNIST dataset compressed and 

reconstructed with each of the auto-encoders. Best performing is the ReLU auto-

encoder, and the worst is the sigmoid auto-encoder. The pre-trained auto-encoder 

(RBM + sigmoid) has similar performance as the ReLU. 



5 Conclusion 

The results showed that the RBM pre-training significantly improves the performance 

of the auto-encoder when using sigmoid activations, however the benefits of the ReLU 

activation offset the benefits of the RBM pre-training. The ReLU auto-encoder 

performed better than the RBM + sigmoid when trained the same number of iterations, 

but didn’t need pre-training which is quite expensive. The pre-training required 

approximately 4.93 ∗ 1012 multiplications. 

The reason that the ReLU activation is better is that it has derivative of exactly 1 or 

0, which helps with the problem of vanishing gradients. The maximum value of the 

sigmoid derivative is 
1

4
 which causes the network to either be impossible to train or take 

too long time when many layers are used. 

Using ReLU activations and Xavier initialization outperforms the RBM pre-training. 

Provided the additional computational cost, the pre-training becomes inefficient. 

In future research can be explored whether the RBM pre-training can improve the 

performance of the convolutional auto-encoders. 
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