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Abstract. Sensitivity analysis is a powerful tool for studying and
improving the reliability of large and complicated mathematical models.
Air pollution and meteorological models are in front places among the
examples of such models, with a lot of natural uncertainties in their input
data sets and parameters. We present here some results of our global sen-
sitivity study of the Unified Danish Eulerian Model (UNI-DEM). One
of the most attractive features of UNI-DEM is its advanced chemical
scheme – the Condensed CBM IV, which consider in detail a large num-
ber of chemical species and numerous reactions between them.

Four efficient stochastic algorithms (Sobol QMC, Halton QMC,
Fibonacci lattice rule and Latin hypercube sampling) have been used
and compared by their accuracy in studying the sensitivity of ammo-
nia and ozone concentration results with respect to the emission levels
and some chemical reactions rates. The numerical experiments show that
the stochastic algorithms under consideration are quite efficient for this
purpose, especially for evaluating the contribution of small by value sen-
sitivity indices.

1 Introduction

We discuss a systematic approach for sensitivity analysis studies in the area of air
pollution modelling. The Unified Danish Eulerian Model (UNI-DEM) [15,16] is
used in this particular study. Different parts of the large amount of output data,
produced by the model, were used in various practical applications, where the
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reliability of this data should be properly estimated. Another reason to choose
this model as a case study here is its sophisticated chemical scheme, where all
relevant chemical processes in the atmosphere are accurately represented.

Four efficient stochastic algorithms (Sobol QMC, Halton QMC, Fibonacci lat-
tice rule and Latin hypercube sampling) have been applied to sensitivity studies
of concentration variations of air pollutants with respect to emission levels and
some chemical reactions rates. More information on Sobol QMC algorithm can
be found in [1]. For generating Sobol quasirandom sequences we use an adaption
of INSOBL and GOSOBL routines, implemented respectively in ACM TOMS
Algorithm 647 [7] and ACM TOMS Algorithm 659 [2]. The original code can
only compute the “next” element of the sequence. The adapted code allows the
user to specify the index of the desired element. The Halton sequence is com-
pletely described in [8,9]. Fibonacci lattice rule and Latin hypercube sampling
are described in detail in our previous paper [6].

2 Description and Implementation of UNI-DEM
and Its Sensitivity Analysis Version

UNI-DEM is a powerful large-scale air pollution model for calculating the con-
centrations of a large number of pollutants and other chemical species in the
air, involved in chemical reactions with the pollutants. Among the most useful
output results are the mean values of the pollutants’ concentrations for certain
time period (day, month, year). Other accumulative functions related to them
as well as the peak values, are also calculated. These can be used in various
application areas (environmental protection, agriculture, health care, etc.).

UNI-DEM is mathematically represented by the following system (1) of
partial differential equations (PDE), in which the unknown concentrations
cs of a number of chemical species in the air (pollutants and other chemi-
cally active components) must be calculated. The main physical and chemical
processes (advection, diffusion, chemical reactions, emissions and deposition)
are represented in that system. It is computated in a large spatial domain
(4800 × 4800 km.), which covers completely the European continent and the
Mediterranean. Some typical background concentrations (which are varied both
seasonally and diurnally) are used for boundary conditions. The large size of the
computational domain and the fact that its west and north boundaries (from
where the predominating winds blow) are above the ocean (where the concen-
trations of most pollutants are, in general, stable and much lower than over the
continent) deminishes their effect on the results inside the domain. The I/O data
arrays are structured by months, so the output concentrations at the end of an
already calculated month are used as initial conditions for the next one. Initially,
when there is no such data, calculations begin with a 5-day start-up period with
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some background initial concentrations and meteo data from the previous month
in order to set up the inititial conditions.

∂cs
∂t

= −∂(ucs)
∂x

− ∂(vcs)
∂y

− ∂(wcs)
∂z

+
∂

∂x

(
Kx

∂cs
∂x

)
+

∂

∂y

(
Ky

∂cs
∂y

)
+

∂

∂z

(
Kz

∂cs
∂z

)
(1)

+ Es + Qs(c1, c2, . . . cq) − (k1s + k2s)cs, s = 1, 2, . . . q .

cs denote the concentrations of the chemical species; u, v, w are the wind
components along the coordinate axes; Kx, Ky, Kz – the diffusion coeffi-
cients; Es – the emissions; k1s, k2s – dry and wet deposition coefficients respec-
tively; Qs(c1, c2, . . . cq) – non-linear functions, describing the chemical reactions
between species under consideration.

The above PDE system is non-linear and stiff. Both non-linearity and stiffness
are introduced mainly by the chemical scheme: the condensed CBM-IV (Carbon
Bond Mechanism) [16]. It is quite detailed and accurate, but computationally
expensive as well.

For the purpose of efficient numerical treatment, the system (1) is split
according to the major physical and chemical processes and the following 3
submodels are formed: Advection-diffusion, Chemistry & deposition and
Vertical transport (vertical wind and convection).

Spatial and time discretization makes each of the submodels a tough com-
putational task even for the most advanced supercomputer systems. Efficient
parallelization has always been a crucial point in the computer implementation
of UNI-DEM. The task became much more challenging with development of the
sensitivity analysis version of the code – SA-DEM [11–13]. It consists of the
following three parts:

– A modification of UNI-DEM with ability to modify certain parameters, sub-
ject to SA study. By now we have been interested in some chemical rate
constants as well as in the input data for the anthropogenic emissions. A
small number of input parameters is reserved for this purpose.

– A driver routine that automatically generates a set of tasks to produce the
necessary results for a particular SA study. It allows to perform in parallel
a large number of runs with common input data (reusing it), producing at
once a whole set of values on a regular mesh (used later for calculating the
sensitivity indices).

– An additional program for extracting the necessary mean monthly concen-
trations and computing the normalised ratios (to be analysed further on).

Significant improvements of the earlier versions of SA-DEM were made by
introducing two additional levels of parallelism: top-level(MPI) and bottom-
level(OpenMP). They allow us to use efficiently the computational power of
the contemporary cluster supercomputers with multicore nodes. Other impor-
tant improvement in the data management strategy reduced the number of I/O
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Table 1. Time (T) and speed-up Sp of SA-DEM (MPI only) on the Spanish super-
computer IBM MareNostrum III at BSC, Barcelona

#CPU #Nodes Advection Chemistry TOTAL

T [s] Sp T [s] Sp T [s] Sp E [%]

10 1 83460 10 77273 10 171707 10 100%

40 3 19448 43 16946 46 40471 42 106%

80 5 9874 85 9047 85 22261 77 96%

160 10 5250 159 4562 169 12875 133 83%

320 20 2895 288 2403 322 8233 209 65%

640 40 1522 548 1269 609 5387 319 50%

960 60 1215 687 822 940 4075 421 44%

operations and pipelined most of them with the computationally intensive stages,
reducing significantly the CPU idle time in the parallel MPI processes.

In Table 1 we show some scalability results from experiments with SA-DEM
on one of the largest supercomputers in Europe – IBM MareNostrum III (in
BSC, Barcelona, Spain). It consists of 3028 nodes IBM dx360 M4 (16 core) with
32 GB RAM per node. It is seen from Table 1 that the chemical stage (the most
computationally expensive) scales very well (shows almost linear speed-up in the
whole range of experiments). Advection stage scales pretty well in most of the
experiments, with understandable slow-down in the highly parallel experiments.
It is caused by the significant boundary overlapping of the domain partitioning
when approaching the inherent partitioning limitations. In general, SA-DEM
performs quite efficiently and show relatively high scalability on such a large
supercomputing system.

3 Sensitivity Studies with Respect to Emission Levels

In the huge output data stream of UNI-DEM are the mean monthly concen-
trations of more than 30 pollutants. We consider 2 of them: ozone (O3) and
ammonia (NH3). In particular, we present some results of a sensitivity study of
the mean monthly concentrations of ammonia in Milan.

In this section we present some results of our research on the sensitivity of
UNI-DEM output (in particular, the ammonia mean monthly concentrations)
with respect to the anthropogenic emissions input variation. The anthropogenic
emissions input consists of 4 different components E = (EA,EN,ES,EC) as
follows:

EA − ammonia (NH3); ES − sulphur dioxide (SO2);
EN − nitrogen oxides (NO + NO2); EC − anthropogenic hydrocarbons.

The domain under consideration is the 4-dimensional hypercube [0.5, 1]4. Poly-
nomials of 2-nd degree have been used as an approximation tool [5]. The input
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data have been generated by the improved version of SA-DEM code, specialized
for sensitivity studies (see the previous section).

Table 2. Relative error for the evaluation of f0 ≈ 0.048.

# samples n Relative error

Sobol Halton FIBO LHS

210 5.56e−04 3.15e−05 2.09e−04 5.37e−04

212 1.16e−04 1.14e−04 4.32e−05 2.27e−04

214 3.14e−05 1.27e−05 2.25e−05 6.28e−05

216 8.78e−06 8.20e−06 8.70e−06 7.74e−05

218 1.75e−06 2.40e−06 1.79e−06 3.80e−06

220 4.97e−07 1.03e−06 4.21e−07 7.16e−06

The results for relative errors for evaluation of the quantities f0, total
variances and first-order and total sensitivity indices using various stochastic
approaches for numerical integration are presented in Tables 2, 3 and 4, respec-
tively. The quantity f0 is presented by 4-dimensional integral whereas the rest of
quantities under consideration are presented by 2-dimensional integrals following
the ideas of correlated sampling technique to compute sensitivity measures in a
reliable way [10,14].

Homma and Saltelli discuss in [10] which of the two formulae below gives

better estimation of f2
0 =

(∫
Ud

f(x)dx
)2

in the expression for total variance

and Sobol global sensitivity measures. The first formula is

f2
0 ≈ 1

n
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i,1, . . . , x

′
i,d) (2)

where x and x′ are two independent sample vectors, and the second one is

f2
0 ≈

{
1
n

n∑
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}2
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In case of estimating sensitivity indices of a fixed order, the first formula (2) is
better (as recommended in [10]).

The results in Table 2 show that the algorithms using generalized Fibonacci
numbers and LHS simulate the behaviour of Sobol QMCA, but for higher dimen-
sions their efficiency decrease. The particular case study confirms the conclusion
that these algorithms are suitable and more efficient for smooth functions with
comparatively low dimensions. From Tables 2 and 3 we can conclude that all
stochastic approaches under consideration give reliable relative errors for suffi-
ciently large number of samples. The most efficient in terms of computational
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Table 3. Relative error for the evaluation of the total variance D ≈ 0.0002.

# samples n Relative error

Sobol Halton FIBO LHS

210 2.28e−03 1.40e−02 1.63e−01 1.74e−02

212 9.38e−04 7.81e−03 2.39e−02 1.04e−02

214 1.92e−04 1.77e−03 2.90e−03 1.04e−02

216 5.86e−05 5.96e−04 2.65e−04 3.65e−04

218 8.61e−06 1.48e−04 3.01e−04 1.21e−05

220 1.60e−06 4.77e−05 1.19e−04 5.96e−05

Table 4. Relative error for estimation of sensitivity indices of input parameters using
various Monte Carlo and quasi-Monte Carlo approaches (n ≈ 65536).

Sensit. index Ref. value Sobol Halton FIBO LHS

S1 9e−01 5.78e−06 2.95e−04 3.62e−04 9.79e−03

S2 2e−04 1.52e−03 3.49e−02 1.74e−01 6.60e−01

S3 1e−01 4.39e−05 2.30e−03 3.22e−03 8.65e−03

S4 4e−05 2.87e−03 1.21e−01 4.87e−01 6.70e−01

Stot
1 9e−01 5.19e−06 2.97e−04 4.61e−04 4.31e−04

Stot
2 2e−04 1.36e−04 3.24e−02 3.45e−01 2.94e+01

Stot
3 1e−01 4.65e−05 2.25e−03 1.96e−03 1.10e−02

Stot
4 5e−05 1.57e−03 1.20e−01 5.06e−01 2.41e+02

complexity is the algorithm of Sobol, followed by Halton algorithm. The evalu-
ated sensitivity measures, presented in the tables, are obtained either by multi-
dimensional integrals (total variances) or by ratios of multidimensional integrals
(Sobol global sensitivity indices). One can notice also from results in Table 4
that the order of relative error is different for different quantities of interest
(see column Reference value) for the same sample size. It depends both on the
integrand dimension and the magnitude of estimated quantity. The algorithms
using generalized Fibonacci numbers and LHS are characterized with unreliable
relative errors for small in value sensitivity measures.

4 Sensitivity Studies with Respect to Chemical Reactions
Rates

Another part of our research was to study the sensitivity of the ozone concen-
tration values in the air over Genova with respect to the rate variation of some
chemical reactions of the condensed CBM-IV scheme [15], namely: ## 1, 3, 7, 22
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(time-dependent) and 27, 28 (time independent). The simplified chemical
equations of those reactions are as follows:

[#1] NO2 + hν =⇒ NO + O; [#22] HO2 + NO =⇒ OH + NO2;
[#3] O3 + NO =⇒ NO2; [#27] HO2 + HO2 =⇒ H2O2;
[#7] NO2 + O3 =⇒ NO3; [#28] OH + CO =⇒ HO2.

The domain under consideration is the 6-dimensional hypercube [0.6, 1.4]6).
Polynomials of second degree have been used for approximation again (see [4]).

Table 5. Relative error for the evaluation of f0 ≈ 0.27.

# samples n Relative error

Sobol Halton FIBO LHS

210 1.62e−04 1.60e−04 2.08e−03 3.73e−04

212 4.54e−05 5.55e−05 1.40e−04 2.41e−04

214 3.59e−06 2.70e−05 3.98e−04 7.53e−05

216 4.70e−06 1.60e−06 2.61e−04 2.02e−04

218 5.90e−07 1.02e−06 7.29e−06 2.82e−05

220 1.36e−07 5.56e−07 4.57e−07 1.04e−05

Table 6. Relative error for the evaluation of the total variance D ≈ 0.0025.

# samples n Relative error

Sobol Halton FIBO LHS

210 5.75e−03 4.86e−02 6.73e+00 1.91e−02

212 2.43e−03 1.25e−03 5.27e−01 9.99e−02

214 9.90e−05 1.65e−03 1.02e−01 1.62e−02

216 5.81e−05 4.34e−04 1.97e−03 3.56e−05

218 7.71e−06 3.79e−04 4.53e−03 7.78e−03

220 1.75e−06 3.34e−05 9.33e−03 2.78e−04

The relative errors for evaluation of the quantities f0, total variances, first-
order and total sensitivity indices using various stochastic approaches for numer-
ical integration are presented in Tables 5, 6 and 7 respectively. The quantity f0
is presented by 6-dimensional integral, whereas the rest of the quantities under
consideration are presented by 2-dimensional integrals, following the ideas of
correlated sampling.

From these tables we can see that Sobol QMCA gives better results than
Halton QMCA and the difference is 1–2 orders. Quasi-MC lattice rule based on
generalized Fibonacci numbers and Latin hypercube sampling produce better
results for 6-dimensional integrals in comparison with 12-dimensional integrals.
More results in favour of this conclusion can be found in [3].
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Table 7. Relative error for estimation of sensitivity indices of input parameters using
various Monte Carlo and quasi-Monte Carlo approaches (n ≈ 65536).

Sensist. index Ref. value Sobol Halton FIBO LHS

S1 4e−01 1.83e−04 2.87e−03 3.82e−02 3.04e−02

S2 3e−01 2.69e−05 3.76e−03 1.03e−02 7.35e−04

S3 5e−02 1.08e−04 7.27e−03 5.48e−01 2.33e−02

S4 3e−01 1.37e−04 2.19e−03 1.07e−02 2.47e−02

S5 4e−07 2.69e−01 3.68e+01 3.40e+03 9.25e+02

S6 2e−02 2.81e−03 1.30e−02 1.32e+00 3.81e−02

Stot
1 4e−01 1.39e−04 2.79e−03 7.92e−02 2.03e−02

Stot
2 3e−01 4.32e−05 3.26e−03 3.06e−02 1.45e−02

Stot
3 5e−02 1.08e−04 6.43e−03 1.31e+00 1.55e−01

Stot
4 3e−01 3.77e−04 2.11e−03 3.84e−01 1.11e−02

Stot
5 2e−04 1.40e−03 1.38e−02 8.85e+01 1.45e+01

Stot
6 2e−02 1.29e−05 1.04e−02 2.15e+00 9.75e−01

S12 6e−03 6.03e−04 7.92e−03 3.21e+00 8.99e−02

S14 5e−03 2.17e−03 9.12e−03 8.64e+00 2.74e−01

S15 8e−06 9.33e+02 9.36e+02 9.19e+02 9.21e+02

S24 3e−03 4.97e−04 1.83e−02 1.37e+01 7.10e−01

S45 1e−05 1.48e−02 9.08e−01 4.25e+01 1.05e+01
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rates. In: Dimov, I.T., Faragó, I., Vulkov, L. (eds.) NAA 2012. LNCS, vol. 8236, pp.
247–254. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41515-
9 26

https://doi.org/10.1007/978-3-319-57099-0_32
https://doi.org/10.1007/978-3-319-57099-0_32
https://doi.org/10.1007/978-3-642-41515-9_26
https://doi.org/10.1007/978-3-642-41515-9_26


Sensitivity Analysis by QMC Algorithms for Multidimensional Integration 289

5. Dimov, I.T., Georgieva, R., Ostromsky, T., Zlatev, Z.: Sensitivity studies of pollu-
tant concentrations calculated by UNI-DEM with respect to the input emissions.
Centr. Eur. J. Math. 11(8), 1531–1545 (2013). https://doi.org/10.2478/s11533-
013-0256-2. Numerical Methods for Large Scale Scientific Computing

6. Dimov, I.T., Georgieva, R., Todorov, V., Ostromsky, Tz.: Efficient stochastic
approaches for sensitivity studies of an Eulerian large-scale air pollution model.
In: AIP Conference Proceedings, vol. 1895, no. 1, p. 050004 (2017). https://doi.
org/10.1063/1.5007376

7. Fox, B.: Algorithm 647: implementation and relative efficiency of quasirandom
sequence generators. ACM Trans. Math. Softw. 12(4), 362–376 (1986)

8. Halton, J.: On the efficiency of certain quasi-random sequences of points in evalu-
ating multi-dimensional integrals. Numerische Mathematik 2, 84–90 (1960)

9. Halton, J., Smith, G.B.: Algorithm 247: radical-inverse quasi-random point
sequence. Commun. ACM 7, 701–702 (1964)

10. Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of non-
linear models. Reliab. Eng. Syst. Saf. 52, 1–17 (1996)

11. Ostromsky, T.z., Dimov, I.T., Georgieva, R., Zlatev, Z.: Air pollution modelling,
sensitivity analysis and parallel implementation. Int. J. Environ. Pollut. 46(1/2),
83–96 (2011)

12. Ostromsky, T.z., Dimov, I., Georgieva, R., Zlatev, Z.: Parallel computation of
sensitivity analysis data for the Danish Eulerian model. In: Lirkov, I., Margenov,
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