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Abstract: In this paper we discuss Monte Carlo algorithm for integral equation which describes the
procedure of teaching of neuron networking. An almost optimal Monte Carlo method for integral equations
based on balancing of systematic and stochastic errors is presented. An approach to the problem of
controliing the error in non- deterministic methods is shown. Lower bounds for the number of realizations and
number of iterations in the algorithm are provided once a preliminary given error is given. Fredholm integral
equation of the second kind for neuron networks is presented and numerical results are discussed.
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Introduction

Neural networks are promising and convenient data models for computation and
representation of complex relations between inputs and outputs. They are developed in
order to allow execution of "intelligent" tasks similar to those performed by the biological
neural network — the brain. Thus, like the brain neural networks acquire knowledge
through learning and store it within inter-neuron connections, known as synaptic weights.
The reason for them to gain special attention in engineering and science is because they
have ability to represent both linear and non-linear relationships and can learn these
relationships directly from the data model. Traditional linear models are inapplicable for
modelling nonlinear data. The Monte Carlo method is a powerful tool in solving problems
in neuron networking. It is known that the algorithms based on this method give statistical
estimates for the functional of the solution by performing random sampling of a certain
random variable whose mathematical expectation is the desired functional. An almost
optimal Monte Carlo algorithm with probabilities chosen to be proportional to the function
from the linear functional under consideration and the kernel has high algorithmic
efficiency and this is one of the reasons to use it in order to solve the integral equation
describing the procedure of learning neuron networks.

Preliminaries

The human brain was always an inspiration for engineers and scientists. The
neuroscientist Warren S. McCulloch and the logician Walter Pitts, developed the first
conceptual model of an artificial neural network in 1943. This was published in the paper
"A logical calculus of the ideas imminent in nervous activity,” where a conceptual model in
which, a neuron as a single cell living in a network of cells receives inputs, processes
those inputs, and generates an output, is described. The focus on theirs and the works
after that, was not on how biological brain works, but rather on development of artificial
neural network resembling the brain as a computational model for solving certain tasks.
Main strength of neural networks is their ability to perform tasks difficult for machines —
pattern recognition. Unlike the ordinary computational systems which are linear —
executing code step by step till the last command, neural network does not follow a linear
path. Information is processed collectively, in parallel through network of nodes/neurons.

A special advantage of neural networks is their ability to adapt based on learning
and changing their internal structure making possible the existence of artificial intelligence.
Usually done by adjusting the weights. We consider a connection between two neurons
and make the pathway for the flow of information. Each connection has a weight, a
number that controls the signal between the two neurons. If the network generates a
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“good” output, there is no need to adjust the weights. However, if the network generates a
“poor” output- an error, so to speak- then the system adapts, altering the weights in order
to improve subsequent results. There are several strategies for learning. Supervised
Learning -essentially, a strategy that involves a teacher that is smarter than the network
itself. For example, let's take the facial recognition example. The teacher shows the
network a bunch of faces, and the teacher already knows the name associated with each
face. The network makes its guesses, and then the teacher provides the network with the
answers. The network can then compare its answers to the known “correct” ones and
make adjustments according to its errors. Unsupervised Learning-required when there isn't
an example data set with known answers. Imagine searching for a hidden pattern in a data
set. An application of this is clustering, i.e. dividing a set of elements into groups according
to some unknown pattern. Reinforcement Learning- a strategy built on observation. Think
of a little mouse running through a maze. If it turns left, it gets a piece of cheese; if it turns
right, it receives a little shock. Presumably, the mouse will learn over time to turn left. Its
neural network makes a decision with an outcome (turn left or right) and observes its
environment (yum or ouch). If the observation is negative, the network can adjust its
weights in order to make a different decision the next time. Reinforcement learning is
common in robotics. At time t, the robot performs a task and observes the results. [7]

Commonly Neural networks are used in optical character recognition, facial
recognition, adaptive audio filters, soft sensors, weather forecasting etc. Last years they
made possible the emerging of smart systems like self-driving cars, smart microgrids,
renewable energy sources (RES) forecasting, battery/energy storage monitoring and
forecasting, failure monitoring and anomaly detection, decision making controllers etc.

Monte Carlo algorithms for integral equations

In general, Monte Carlo numerical algorithms may be divided into two classes direct
algorithms and iterative algorithms. The direct algorithms provide an estimate of the
solution of the equation in a finite number of steps, and contain only a stochastic error. For
example, direct Monte Carlo algorithms are the algorithms for evaluating. Iterative Monte
Carlo algorithms deal with an approximate solution obtaining an improved solution with
each step of the algorithm. In principle, they require an infinite number of steps to obtain
the exact solution, but usually one is happy with an approximation to say k significant
figures. In this latter case there are two errors - systematic and stochastic [2]. The
systematic error depends both on the number of iterations performed and the
characteristic values of the iteration operator, while the stochastic errors depend on the
probabilistic nature of the algorithm. Iterative algorithms are preferred for solving integral
equations and large sparse systems of algebraic equations (such as those arising from
approximations of partial differential equations). Such algorithms are good for diagonally
dominant systems in which convergence is rapid; they are not so useful for problems
involving dense matrices.

Define an iterator of degree j as

u* N = F (Ab,u™ ™ Lt (1)
where «*' is obtained from 4" iteration. It is desired that
U su=Abk—>w (2)

Usually the degree of jis kept small because of storage requirements.
The iteration is called stationary if F, = F for all k, thatis F, is independent of k.
The iterative process is said to be linear if F, is a linear function of u™ u*™" %",
We shall consider iterative stationary linear Monte Carlo algorithms and will analyse
both systematic and stochastic errors. Sometimes the iterative stationary linear Monte
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Carlo algorithms are called Power Monte Carlo algorithms. The reason is that these
algorithms find an approximation of a functional of powers of linear operators. In literature
this class of algorithms is also known as Markov chain Monte Carlo since the statistical
estimates can be considered as weights of Markov chains.

Consider a general description of the iterative Monte Carlo algorithms. Let X be a
Banach space of real-valued functions. Let /= f(x)e X,u, =u(x,) X be defined in B
and L= L(u) be a linear operator defined on X.

Consider the sequence u,,u,,..., defined by the recursion formula

w,=L(u_ )+ k=12, (3)
The formal solution of the above is the truncated Neuman series
U, = [+ L+ LT+ L (g ),k >0, (4)

where I means the k" iteration of L.
Let's consider the integral functions.
Let u(x)e X, xeQcR* and I/(x,x") be a function defined for xeQ, x'e Q. The integral
transformation
Lu(x)= Iﬂ!(x,x')u(x')dx' (5)
maps the function «(x) into the function Zu(x), and is called an iteration of u(x) by the
integral transformation kernel /(x,x") . The second integral iteration of «(x) is denoted by
LLu(x) = L'u(x) (6)
Obviously,
Fu(x)= .[(1I;1[(x’ xM(x',x"dx'dx". (7)

In this way L'u(x),..., Lu(x),... can be defined.
When the infinite series converges, the sum is an element v from the space X which
satisfies the equation

u=La)+f (8)
The truncation error of (4) is
u, —u =L (u,—u). (9)
Let J(u,) be a linear function that is to be calculated. Consider the spaces
Tis =RxRYx..xRY,i=1,2,..k, (10)

where xdenotes the Catesian product of spaces.
Random variables 8,i=0,1,....k are defined on the respective product spaces T, and

have conditional mathematical expectations: "
EQ,=J(u,),E(6,/6,)=J(u),...E(0,16,) =T (), (11)
where J(u) is a linear functional of u.
The computational problem then becomes one of calculating repeated realizations of 8,
and combining them into an appropriate statistical estimator of .J (u, ).

As an approximate value of the linear functional J(«, ) is set up
1 &
J(Hk)*ﬁz{%}ﬁ (12)
s=1
where {6,}, is the s" realization of the random variable 6, .

1
The probable error », of the above is then », =co (6, )N 2,

where ¢=~0.6745[4] and o(6,) is the standard deviation of the random variable 6, .

There are two approaches which correspond to two special cases of the operator L: L is
a matrix and « and f are vectors; and L is an ordinary integral transform
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L(w)= [ 10 yuCy)dy (13)
and u(x) and f(x) are functions.

In this paper we consider the second case. The equation (8) becomes

u(x):j[(x,y}:(_v)dy+f(x) oru=Lu+j. (14)

Monte Carlo algorithms frequently involve the linear functionals of the solution of the
following type

J(u) = [ h(eyu(x)ds = (u,h) (15)
Q

In fact the last equation defines the inner product of a given function A(x)e X with the
solution of the integral equation (14).
Sometimes the adjoint equation is also used

v=Lv+h (16)
In our example X = X" =L,. Note also, that if i(x),u(x) e L, then the inner product (15) is
finite. In fact,

]
Uﬂl:(x)u(x)dxi < LJh(x)u(x){d’c < { nhldxj-ﬂu :a[r}z <o, (17)
One can also see, that if u(x)e L, and I(x,x") e L, (QxQ) then Lu(x)eL,;:

|Lu(x) s{fnwuldx'}' < [ P oe x| u (e, (18)
Let us integrate the last inequality with respectto x:

[ |euf dv< [ [ 1oy de [ u (e e < (19)

From the last inequality follows that L'u(x),..., Lu(x),... also belongs to I’ (22).

If it is assumed that ||I”| <1, where m is a natural number, then the Neuman series
converges.
u=SLf (20)
i=0
It is easy to show that:
J=(hu)=(f.v). (21)
Let us multiply (14) by « and (16) by v and integrate. We abtain
(vou) =(u, Lv)+ (v £ ) (viu) =(L‘v,u)+(h.u). (22)
Since
(L'v‘ u) = Iﬂ Lv(xu(x)dx = L In " (o, x ") v(x Yu(x)dxdx ' = -
= .[n Iﬂ! (', x ) v(x Yu(x)dxdx' = In Lu(x"W(x")dx'=(v,Lu),
we have
(L'v,u)=(v,Lu). (24)

Thus (h,u)=(f.v). The kernel /(x,x") is called transposed kernel.

Consider the Monte Carlo algorithm for evaluating the functional (15). It can be seen that
when /(x,x")=0. evaluation of the integers can pose a problem. Consider a random point

£ e with a density p(x) and let be N realizations of the random point & (i =1,2,...,N). Let
a random variable #(£) be defined in Q such that
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EO(£)=1J. (25)

Then the computational problem becomes one of calculating repeated realizations of &
and of combining them into an appropriate statistical estimator of J. Note that the nature of
the every process realization of ¢ is a Markov process. We will consider only discrete
Markov processes with a finite set of states, the so called Markov chains. An
approximation value of the linear functional J is

L&
J~—A7§(t9)_r =0v, (26)

where (0)5 is the s™ realization of the random variable &.

The random variable whose mathematical expectation is equal to .J(u) is given by the
following expression

h(&,) <
ol h] = 220! ¥ i 27
where
IE.,6) .
W,=\W,=W_—L2 j=12,., 28
‘ AT @)

&,&,... is a Markov chain in Q with initial density function p(x) and
transition density function p(x,y).
For the case where L is a matrix, the equation can be written as
w=Lug+ L7 [+t Lf + f = (T=L)(I-L)" f+Lu,, (29)
where I is the unit or identity matrix,
L z{['f}:,-:. U, =(u,°,...,uﬂ)r
and matrix /- L is supposed to be non-singular.

It is well known that if all eigenvalues of the matrix L lie within the unit circle of the
complex plane then there exist a vector « such that

u :limuk. (30)
which satisfies the equation
u=Lu+f. (31)
Now we consider the problem of evaluating the inner product
J(u)=(hu)=3 hu,, (32)
i=l
where heR™ is a given vector column.

To define a random variable whose mathematical expectation coincides the above
functional for = Lu+ f first consider the integral equation (14) for which

Q, =[i-1,i),i =1,2....,n such that

{!(x.y):lﬁ,xeﬂj,y €Q, (33)
fx)=f,xeQ,
Then the integral equation (14) becomes
u=3 -[n, Lu(y)dy + f; (34)
for u, €0, . Denote that
u, = [, u0)dy (35)

so that one obtains for u(x)eQ,
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u(x)=Y Lu,+f. (36)
=1
From the last equation it follows that u(x)=u, and so,
U = Z'Ii;‘uf +fi (37)
i=l
or in a matrix form
wu=Lu+f, (38)
where L=y, };.;au .
The above presentation permits the consideration of the following random variable
h =
O[R]="-3W.f,. (39)
Py v=0
/
where W,=l,W, =W, _ —% y=12,.., (40)
pll’l @

and «,,q,,... is a Markov chain on elements of the matrix L created by
using an initial probability p, and a transition probability p, , for
choosing the element /, , of the matrix L.

@y

Consider the initial density vector p={p,}" €R", suchthat p,20,i,j=1,...n and 3 p =1.
i=l
Consider also a transition density matrix P={ p,.j}:H eR™, such that p, 20,i,j=1,...n

and Zp,.j =1 forany i =1,...,n [6].
J=

Define sets of permissible densities P, and P, .
The initial density vector p={p,}" is called permissible to the vector h={h}  €eR’, ie.
peP,, if p>0when A =0 and p,=0 when # =0 for i=1,..,n.

The transition density matrix P = { p,J} | is called permissible to the matrix

"
ij=

L= {1#}:I=I eR™ ie. peP,,if p,>0 when /,#0 and p, =0 when [, =0 for i, j=1,...m.
Consider the following Markov chain

T=a,—o—.—a, (41)
where a,=12,..,i for j=1,..,i are natural random numbers.
The rules for defining the Markov chain are:
Pr(an=a)=pa,Pr(af=ﬁ[aj,l=a)=pﬂﬁ. (42)

n

Assume that p={pn}:=IEPﬁ, P={pm,,} ep.

a,fi=1
Now define random variables W, ,v=1,...,i. from (40). One can see that random

variables W, can also be considered as weights on the Markov chain.

From all possible permissible densities we choose the following

||

2l

p={p.}, €F P = ; (43)
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o]

P={pwf}:.ﬁ:u €FPy = 5

= TS (44)
,Elzll["ﬂl

Such a choice of the initial density vector and the transition density matrix leads to
an Almost Optimal Monte Carlo (MAO) algorithm. The initial density vector p={p,}’ is

called almost optimal initial density vector and the transition density matrix P = { pa,,}: . is

called almost optimal density matrix. Such density distributions lead to almost optimal. The
reason to use MAO instead of Uniform Monte Carlo is that MAO normally gives much
smaller variances. On the other hand, the truly optimal weighted algorithms are very time
consuming, since to define the optimal densities one needs to solve an additional integral
equation with a quadratic kernel. This procedure makes the optimal algorithms very
expensive.

In this paper we will combine MAO algorithm described above with the idea of
balancing of the errors described in the next section.

Balancing of the errors.

We have two errors in our Monte Carlo algorithm- stochastic and systematic errors.
The systematic error depends both on the number of iterations performed and the
characteristic values of the iteration operator, while the stochastic errors depend on the
probabilistic nature of the algorithm. In order to obtain good results the stochastic error #,

must be approximately equal to the systematic error », or

n=0(1r) (45)
The problem of balancing the errors is closely connected with the problem of
obtaining an optimal ratio between the number of realizations of the random variable and

the number of iterations in each random trajectory. We will use the optimal ratio obtained
in [1].

We obtained the following lower bounds for the two errors [4]:

: 0.6745“f",1 "‘9"1',=

Wi L 14 0 46

TN W
171, el I%1E

Tod e 1= BN (47)

T

where ||f||L" )

], . |K],, are the L,norms of the right hand side, the
fraction from the linear functional under consideration and the kernel
respectively [5].

In order to solve the integral equation we use Monte Carlo technique balancing of
the errors. In [1] are obtained error balancing conditions when the systematic and
stochastic errors are approximately equal, once a preliminary given error & is given.
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Theorem1. In Monte Carlo algorithm with a balancing o the errors the lower bounds
for the number of iterations and realizations are given by the following inequalities:

su-Ix],)
"2, el T
S AR L (48)
1ni\/<||h
(1399171, lel, -
S(-JK], )

Theorem 2. In Monte Carlo algorithm with a balancing of the errors one may choose
the following exact values for the number of realizations of the random variable and the
mean value of the number of steps in each random trajectory:

1.349] £ 1
e I/ ﬂtf el (50)
5([f"’("r,,)
0.6745
In—
P |&]l, VN
_| Kl YV (51)
In|[K],

Numerical example

We study the following Fredholm integral equation of the second kind which
describes the procedure of learning neuron networks:

u(x)=£k(x,x')u(x')dx'+f(.t), (52)

where x,x'eQc B u(x), f(x) & L, (), k(x,x") € L,(CxQ) .

The domain is the interval 2=[-2,2] and the kernel, right hand side and the function from
the linear functional that we want to evaluate is given by the following expressions:

k(x,x")= I—O_Pj_% +0.07, f(x)= 0.02(3.\?1 +e”’"“") @(x)=0.7((x+ 1)* cos(5x)+20)  (53)

We want to find the linear functional from the solution (qp,u) , where

J(u)= I@(x)u(x)dr =(p.u) ) (54)

The exact solution of the integral equation which describes the procedure of
learning neuron networks is 8.98635750518 [3].
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Numerical experiments.

We apply (50) and (51) to estimate N and k. In order to do this we evaluate:

I71,, =0-2510,] k]|, =0.2001, ], =27.7782. (55)

We make 20 algorithm runs on Intel Core i5-2410M @ 2.3 GHz.

We consider the almost optimal Monte Carlo algorithm based on balancing of the
errors, i.e. we choose the initial and transition probabilities in the Monte Carlo algorithm for
integral equation to be proportional to the function from the linear functional under
consideration and the kernel respectively.

We give the preliminary given error different values and estimate Nand k by
theorem 1 and theorem 2. We compare the experimental relative error with the expected
theoretical error. We can see the results in the table shown below. Theoretical or expected
relative error is obtained by dividing the preliminary given error by the exact value. We
evaluate experimental relative error by the almost optimal Monte Carlo algorithm for
integral equations based on balancing of the two errors. We can see that experimental
relative error confirms the expected theoretical error. The results are getting better when
the number of realizations increases to 10°. This shows the strength of the applied almaost
optimal Monte Carlo algorithm.

Tablel. Experimental relative error and computational time for the integral equation describing
the procedure of learning networks solved by MAO algorithm based on balancing of the errors

o N k Theoretical Experimental | Time, sec.
relative error | relative error

0.075 24581 4 0.00835 0.0033 69.2

0.04 86415 5 0.00445 0.0030 264.1

0.035 112689 5 0.00391 0.0028 322.3

0.025 221196 6 0.00282 0.0018 640.5

0.012 960050 7 0.00134 0.000991 3952.2

0.01 1382471 7 0.00110 0.000972 45423

0.008 2160371 8 0.000890 0.000883 9871.7
Conclusion

An introduction to artificial neuron networking is presented. Learning neuron
networks technique is discussed. Fredholm integral equation of the second kind which
describes the procedure of learning neuron networks is solved. An almost optimal Monte
Carlo algorithm for integral equations based on balancing of the systematic and stochastic
errors is applied. Theorems for evaluating the number of realizations of the random
variable and number of iterations in the Markov chain are presented. Numerical
experiments and results are discussed. We see that experimental relative error confirms
the expected theoretical error. It is shown that the presented almost optimal Monte Carlo
algorithm gives results which are very close to the expected error when the number of
realizations of the random variable is above 10°. It is shown that the idea of combining
MAO algorithm with balancing of the errors gives optimal results for solving this integral
equation. -
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Fig. 1. Expected and experimental relative error for the integral equation describing the procedure
of learning of neuron networks obtained with MAO algorithm based on balancing of the errors.
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