Bornologies in Metrizable spaces

1. Introduction

Notation and terminology within a metric space

Let \(\langle X, d \rangle \) be a metric space. We write \(B_d(x, \varepsilon) \) for the open ball with center \(x \in X \) and radius \(\varepsilon > 0 \). For \(A \subseteq X \), we write \(B_d(A, \varepsilon) \) for the enlargement \(\cup_{a \in A} B_d(a, \varepsilon) \).

We denote the nonempty subsets of \(X \) by \(\mathcal{P}_0(X) \) and the nonempty finite subsets of \(X \) by \(\mathcal{F}_0(X) \). The nonempty \(d \)-bounded subsets of \(X \) will be denoted by \(\mathcal{B}_d(X) \), and the nonempty \(d \)-totally bounded subsets by \(\mathcal{T B}_d(X) \). All of these families are bornologies.

Definition 1.1. Let \(\langle X, d \rangle \) be a metric space. By a bornology \(\mathcal{B} \) on \(X \), we mean a family of nonempty subsets of \(X \) that forms a cover, is stable under taking finite unions, and is stable under taking nonempty subsets.

Remark. Given a cover \(\mathcal{A} \) of \(X \) there is a smallest bornology containing \(\mathcal{A} \), namely the family of nonempty subsets of finite unions of members of \(\mathcal{A} \).

Remark. A bornology on a metrizable space that agrees with \(\mathcal{B}_d(X) \) for some metric \(d \) compatible with the topology is called a metric bornology.

Some other bornologies of interest:

1. the nonempty subsets \(\mathcal{K}_0(X) \) of \(X \) with compact closure; these form a metric bornology iff \(X \) is locally compact and separable.
2. In the case \(X' = X \), the nonempty nowhere dense subsets of \(X \).
3. the nonempty subsets of \(X \) that are functionally bounded with respect to each member of a family of functions defined on \(X \) with values in a second metric space \(\langle Y, d \rangle \).
(4) Given a sequence $\langle f_n \rangle$ of functions on X with values in $\langle Y, d \rangle$ and another function $f : X \to Y$ to which $\langle f_n \rangle$ is pointwise convergent, the family of nonempty subsets of X on which the convergence is uniform.

By a base B_0 for a bornology B, we mean a subfamily from which B can be recovered by taking nonempty subsets. Clearly,

- $B_d(X)$ has both an open base and a closed base;
- $\mathcal{K}_0(X)$ always has a closed base and has an open base iff X is locally compact.

A bornology B is called local if each $x \in X$ has a neighborhood in B. The bornology is called stable under small enlargements if $\forall B \in B, \exists \varepsilon > 0$ such that $B_d(B, \varepsilon) \in B$.

$$\text{stable under small enlargements} \implies \text{open base} \implies \text{local}$$

An important condition for a bornology that is weaker than stability under small enlargements is the following [7].

Definition 1.2. A bornology B is called shielded from closed sets if and only if for each $A \in B$, there exists a superset $B \in B$ such that each neighborhood of B contains $B_d(A, \varepsilon)$ for some $\varepsilon > 0$.

Example 1.3. In any metric space, the bornology of subsets with compact closure is shielded from closed sets.

Example 1.4. Let $X = \{(x, y) \in \mathbb{R}^2 : \text{either } x \neq 0 \text{ or } y \leq 0 \}$ equipped with the Euclidean metric. Let $B_n = \{(x, y) : y \leq n|x|\}$; then the bornology B having as a base $\{B_n : n \in \mathbb{N}\}$ is shielded from closed sets.
Given metrizable spaces X and Y equipped with bornologies \mathcal{B}_X and \mathcal{B}_Y and a function $f : X \to Y$, the property

$$(\Diamond) \quad \forall B \in \mathcal{B}_Y, \ f^{-1}(B) \in \mathcal{B}_X$$

corresponds in the case of metric bornologies to coercivity as it usually understood. On the other hand, the property

$$(\spadeclub) \quad \forall A \in \mathcal{B}_X, \ f(A) \in \mathcal{B}_Y$$

is enjoyed by Lipschitz functions with respect to the metric bornologies.

2. Bornologies of bounded/totally bounded sets

The systematic study of bornologies in topological spaces starts with a paper of S.-T. Hu that appeared 64 years ago [19]. The main result of that paper characterizes bornologies that are metric bornologies

Theorem 2.1. Let X be a metrizable topological space and let \mathcal{B} be a bornology on X. The following conditions are equivalent:

1. \mathcal{B} is a metric bornology;
2. \mathcal{B} has a countable base, a closed base and an open base;
3. \mathcal{B} has a countable base, and $\forall A \in \mathcal{B}, \exists B \in \mathcal{B}$ with $A \subseteq \text{int}(B)$.

Example 2.2. On \mathbb{R}^2 the bornology with base $\{B_n : n \in \mathbb{N}\}$ where $B_n = \{(x, y) : \text{either } |x| \leq n \text{ or } |y| \leq n\}$ is metrizable.

Example 2.3. On $\{ (x, y) \in \mathbb{R}^2 : \text{either } x \neq 0 \text{ or } y \leq 0\}$, the bornology with base $\{B_n : n \in \mathbb{N}\}$ where $B_n = \{(x, y) : y \leq n|x|\}$ is not metrizable.
Related facts [3] :

- If X is metrizable and noncompact, then there are uncountably many distinct metric bornologies;

- If d is a compatible metric for X and B is a bornology on X, then there is a metric ρ uniformly equivalent to d such that $B = B_\rho(X)$ if and only if B has a countable base and is uniformly stable under small enlargements: for some $\delta > 0$ and each $A \in B$, $B_d(A, \delta) \in B$.

Remark. Given a countable family of metric spaces $\{\langle X_n, d_n \rangle : n \in \mathbb{N}\}$, their product equipped with the product topology is metrizable. While the box bornology in general fails to have a countable base, the product bornology generated by $\{\pi_n^{-1}(B_n) : B_n \text{ is } d_n \text{ - bounded}\}$ is a metric bornology which respects the bornologies of the factors [6].

In finite dimensional Euclidean space, bounded sets are totally bounded. So one may ask: when is a metric bornology a bornology of totally bounded sets with respect to a remetrization? The following results were obtain by Beer, Levi and Costantini [8].

Theorem 2.4. Let $\langle X, d \rangle$ be a metric space. The following conditions are equivalent:

(1) There exists an equivalent metric ρ such that $\mathcal{B}_d(X) = \mathcal{T} \mathcal{B}_\rho(X)$;

(2) $\langle X, d \rangle$ is separable;

(3) There exists an equivalent metric ρ with $\mathcal{B}_d(X) = \mathcal{T} \mathcal{B}_\rho(X) = \mathcal{B}_\rho(X)$.

For a general result that describes when a bornology on a metrizable space is a bornology of totally bounded subsets, we give this result.

Theorem 2.5. Let X be a metrizable space and let \mathcal{B} be a bornology on X. The following conditions are equivalent:
(1) $\mathcal{B} = \mathcal{T}\mathcal{B}_d(X)$ for some compatible metric d;

(2) there exists an embedding ψ of X into a completely metrizable space Y with the following property:

$$\mathcal{B} = \{ E \in \mathcal{P}_0(X) : \psi(E) \text{ is relatively compact in } Y \};$$

(3) there is a star-development $\langle \mathcal{U}_n \rangle$ for X such that

$$\mathcal{B} = \{ E \in \mathcal{P}_0(X) : \forall n \in \mathbb{N}, \mathcal{U}_n \text{ admits a finite subcover of } E \}.$$

3. Bornological convergence of nets of closed sets

We denote the closed subsets of $\langle X, d \rangle$ by $\mathcal{C}(X)$. We begin with the definition of bornological convergence of a net of closed sets with respect to a prescribed bornology.

Definition 3.1. Let \mathcal{B} be a bornology on a metric space $\langle X, d \rangle$. A net $\langle C_\lambda \rangle$ of closed subsets of X is declared (\mathcal{B}, d)-convergent to $C \in \mathcal{C}(X)$ provided whenever $B \in \mathcal{B}$ and $\varepsilon > 0$, then eventually both

$$C \cap B \subseteq B_d(C_\lambda, \varepsilon) \text{ and } C_\lambda \cap B \subseteq B_d(C, \varepsilon).$$

When this occurs, we write $C = (\mathcal{B}, d) - \lim C_\lambda$

Remark: \mathcal{B} can be replaced by any base for \mathcal{B} without changing the convergence.

Remark: Following the seminal paper of Lechicki, Levi, and Spakowski on the subject [20], specialists consider bornological convergence more generally in three senses: (1) general nets of subsets are considered; (2) the bornology is replaced by an ideal of subsets; (3) the convergence is split into upper and lower halves.

Example 3.2. When $\mathcal{B} = \mathcal{B}_d(X)$ we get *Attouch-Wets convergence* [1, 2, 14], also known as *bounded Hausdorff convergence* [21]. In the context of
normed linear spaces, this convergence is stable with respect to duality [2] and operator norm convergence of a sequence of continuous linear transformations means AW-convergence of the associated sequence of graphs [21].

Example 3.3. When $\mathcal{B} = \mathcal{P}_0(X)$ we get convergence in the *Hausdorff metric topology* because $\{X\}$ is a base for the bornology.

Example 3.4. When $\mathcal{B} = \mathcal{K}_0(X)$ we get convergence in the *Fell topology* [2] having as a subbase all families of the form

$$\left\{ A \in \mathcal{C}(X) : A \cap V \neq \emptyset \right\} \quad (V \text{ an open subset of } X),$$

and

$$\left\{ A \in \mathcal{C}(X) : A \cap K = \emptyset \right\} \quad (K \text{ a nonempty compact subset of } X).$$

Facts:

- Bornological convergence is in general admissible;
- Bornological limits are unique in $\mathcal{C}(X)$ if and only if the bornology is local; [20]
- Given two bornologies \mathcal{A} and \mathcal{B} on a metrizable space X with two compatible metrics d and ρ for the topology of X, then (\mathcal{A}, ρ)-convergence ensures (\mathcal{B}, d)-convergence if and only if $\mathcal{B} \subseteq \mathcal{A}$ and $\forall B \in \mathcal{B}$ and $\varepsilon > 0$, $\exists \delta > 0$ such that $B_\rho(B, \delta) \subseteq B_d(B, \varepsilon)$ [11].
- (\mathcal{B}, d)-convergence is topological on $\mathcal{C}(X)$ if and only if \mathcal{B} is shielded from closed sets.
Given a bornology \mathcal{B} on $\langle X, d \rangle$, there is a natural "pre-uniform" structure associated with (\mathcal{B}, d)-convergence, consisting of supersets of all "basic entourages" in $\mathcal{C}(X) \times \mathcal{C}(X)$ of the form

$$[B, \varepsilon] := \{(A, C) : A \cap B \subseteq B_d(C, \varepsilon) \text{ and } C \cap B \subseteq B_d(A, \varepsilon)\},$$

where $B \in \mathcal{B}$ and $\varepsilon > 0$.

- All sets of the form $[B, \varepsilon]$ form a base for a uniformity compatible with (\mathcal{B}, d)-convergence if and only if \mathcal{B} is stable under small enlargements [11, 20];

- (\mathcal{B}, d)-convergence on $\mathcal{C}(X)$ is metrizable if and only if \mathcal{B} is stable under small enlargements and has a countable base; in this case bornological convergence is actually Attouch-Wets with respect to an equivalent metric [11].

Remark: Attouch-Wets convergence of nonempty subsets means uniform convergence of distance functions on bounded subsets of X. While this fails more generally, necessary and sufficient conditions for equality have been identified by Beer, Naimpally and Rodriguez-Lopez [13].

Remark: Uniform convergence of a sequence of linear transformations between normed spaces on members of a bornology for the domain space X can expressed in terms of bornological convergence of graphs provided the bornology has a base of norm bounded sets each starshaped with respect to the origin 0_X [4].

4. APPROXIMATION

By definition, a nonempty subset E of a metric space $\langle X, d \rangle$ is d-totally bounded provided $\forall \varepsilon > 0$, $\exists F \in \mathcal{F}_0(X)$ with $E \subseteq B_d(F, \varepsilon)$.
As is well-known, we can choose the finite set F such that

$$F \subseteq E \subseteq B_d(F, \varepsilon).$$

Definition 4.1. Let \mathcal{A} be a family of nonempty subsets of X. We call E **weakly \mathcal{A}-totally bounded** if $\forall \varepsilon > 0$, $\exists A \in \mathcal{A}$ with

$$E \subseteq B_d(A, \varepsilon),$$

and **\mathcal{A}-totally bounded** if for each $\varepsilon > 0$, the approximating set from \mathcal{A} can be chosen inside E.

We denote the weakly totally bounded subsets determined by \mathcal{A} by \mathcal{A}^* and the totally bounded subsets by \mathcal{A}_*. Evidently, $\mathcal{A}_* \subseteq \mathcal{A}^*$ and the operators $\mathcal{A} \mapsto \mathcal{A}^*$ and $\mathcal{A} \mapsto \mathcal{A}_*$ are idempotent and monotone.

Proposition 4.2. Let \mathcal{B} be a bornology; then

1. \mathcal{B}^* is the closure of \mathcal{B} with respect to the Hausdorff pseudometric.
2. \mathcal{B}^* is a bornology;
3. \mathcal{B}_* contains each finite set and is stable under finite unions;
4. $\mathcal{B}^* = \{ E \in \mathcal{P}_0(X) : \exists W \in \mathcal{B}_* \text{ with } E \subseteq W \}$.

From the last proposition it easily follows $\mathcal{B}^* = \mathcal{B}_*$ if and only \mathcal{B}_* is hereditary, i.e., is a bornology [10].

We give an example from [20] showing that \mathcal{B}_* need not be hereditary.

Example 4.3. On \mathbb{R}^2 let \mathcal{B} be bornology generated by the family of vertical lines in the plane. While $[0, 1] \times (-\infty, \infty)$ is \mathcal{B}-totally bounded its subset $\{(x, 1/x) : 0 < x \leq 1\}$ is not.
Our last result also from [10] answers the question: which families of subsets are the totally bounded subsets determined by a bornology?

Theorem 4.4. Let \mathcal{A} be a family of nonempty subsets of $\langle X, d \rangle$. Then $\mathcal{A} = \mathcal{B}_*$ for some bornology \mathcal{B} if and only if \mathcal{A} contains the finite subsets, is stable under finite unions and

$$\mathcal{A} = \{ A \in \mathcal{A} : \mathcal{P}_0(A) \subseteq \mathcal{A} \}^*.$$

References

