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LTL with Past (PLTL)

Set of atomic propositions AP . An interval I ⊆ Z; σ : I → P(AP ), i ∈ I.

A ::= false | p︸︷︷︸
∈AP

| A ⊃ A | ©A | A UA︸ ︷︷ ︸
not allowed

in past formulas

| −©A | A SA︸ ︷︷ ︸
not allowed

in future formulas

σ, k |= ©A iff σ, k + 1 |= A, σ, k |= −©A iff σ, k − 1 |= A

σ, k |= A UB iff ∃k(σ, k + i |= B ∧
i−1∧
j=0

σ, k + j |= A)

σ, k |= A SB iff ∃k(σ, k − i |= B ∧
i−1∧
j=0

σ, k − j |= A)

Strictly future (past) formulas: ©F (−©P ).

Theorem 1 (Gabbay, 1989) Every LTL formula is equivalent to a

boolean combination of past formulas, strictly future formulas and atomic

propositions.
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Expressive power of LTL and propositionally quantified LTL

Every first order definable unary predicate in a vocabulary P1, . . . , Pn of unary

predicate symbols on 〈ω,<〉 can be expressed by an LTL formula, if given

atomic propositions p1, . . . , pn such that σ, k |= pi is equivalent to σ |= Pi(k)

in the f.o. sense.

Propositional Quantification:

Given X ⊆ domσ, (σX
p )i =̂σi ∪ {p} for i ∈ X and (σX

p )i =̂σi \ {p}, otherwise.

σ, i |= ∃pA iff σX
p , i |= A for some X ⊆ domσ.

Every monadic second order unary predicate can be expressed by a formula in

LTL with propositional quantification.
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Propositionally Quantified CTL∗: Kripke Models

Kripke models M =̂ 〈W,wI , R, V 〉 with (total) transition relation R ⊆W ×W
and valuation V ⊆ AP ×W .

The infinite continuations of w:

Rinf
M (w) =̂ {v ∈Wω : v0 . . .v|w|−1 = w, (∀k < ω)R(vk,vk+1)}.

Rfin
M (w) ⊆W+ is defined similarly.

Rinf
M (wI) (Rfin

M (wI)) - all the infinite (finite) runs in M .

Given a p ∈ AP and an X ⊆W , MX
p =̂ 〈W,wI , R, V

X
p 〉 where

V X
p (p, w) =̂ p ∈ X and V X

p (q, w) =̂V (q, w) for q ∈ AP \ {p}.
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Unwinding Kripke Models

MT =̂ 〈WT , wT
I , R

T , V T 〉 - the unwinding of Kripke model

M = 〈W,wI , R, V 〉:

WT =̂Rfin
M (wI), wT

I = wI , R
T (w,v) =̂v = w·v|v|−1 and V T (p,w) =̂V (p,w|w|−1).

Given w = wIw
1w2 . . . ∈ Rfin

M (wI) ∪Rinf
M (wI),

wT =̂wI wIw
1 wIw

1w2 . . .

Rfin
MT (wT

I ) ∼= Rfin
M (wI), Rinf

MT (wT
I ) ∼= Rinf

M (wI), (MT )T ∼= MT .

Every state in the unwinding of a model is the last state of a unique finite run

(and indeed is a finite run in M).

Varying X ⊆WT allows (MT )Xp to have different values for p at MT states

that originate from the same M state.
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Propositionally Quantified CTL∗ (QCTL∗)

A ::= false | p | A ⊃ A | ©A | A UA | −©A | A SA | ∃A | ∃pA

M =̂ 〈W,wI , R, V 〉, w ∈ Rinf
M (wI), k < ω

M,w, k |= p iff V (p,wk);

M,w, k |= false, A ⊃ B as in classical propositional logic;

M,w, k |= ©A,A UB −©A,A SB as in LTL;

M,w, k |= ∃A iff M,v, k |= A for some v ∈ Rinf
M (w0 . . .wk);

M,w, k |= ∃pA iff (MT )Xp ,w
T , k |= A for some X ⊆WT = Rfin

M (wI).

CTL∗ subsumes LTL; QCTL∗ subsumes propositionally quantified LTL.
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Expressing Strategic Ability in QCTL∗

Concurrent Game Models (CGMs) M =̂ 〈W,wI , 〈Act i : i ∈ Ag〉, o, V 〉 where

Ag is a set of players.

ActΓ =̂
∏
i∈Γ

Act i for Γ ⊆ Ag

Instead of transition relation R ⊆W ×W we have outcome function

o : W ×ActAg →W .

Instead of the R(w,w′), we have w′ = o(w,a), a ∈ ActAg .

Strategic ability is about the existence of strategies for achieving things.

A strategy for i ∈ Ag is a function of type Rfin
M (wI)→ Act i.

There exist dedicated logical notations for CGMs, but CTL∗ can be interpreted

too by

(1) putting R(w,w′) =̂∃a(o(w,a) = w′) and

(2) extending the vocabulary to allow identifying actions.
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Expressing Strategic Ability in QCTL∗

Upon unwinding a CGM, w,a 7→ o(w,a) can be made injective wrt a:

MT =̂ 〈WT , wT
I , 〈Act i : i ∈ Ag〉, oT , V T 〉 where

WT =̂Rfin
M (wI)×ActAg ∪ {∗}, wT

I = wI

oT (〈w,b〉,a) =̂ 〈wo(w|w|−1,a),a〉

Finite run wI
a1

−→ w1︸︷︷︸
=o(wI ,a1)

a2

−→ w2︸︷︷︸
=o(w1,a2)

· · ·wk−1 ak

−→ wk︸︷︷︸
=o(wk−1,ak)

corresponds to state

〈wIw
1w2 . . . wk,ak〉 ∈WT

in MT with all the previous states and the latest action ak stored.

Vocabulary AP ′ =̂AP ∪
⋃

i∈Ag

Act i can be used to identify latest actions:

V T (p, 〈w,a〉) =̂V (p,w|w|−1) and, for a ∈ Act i, V
T (a, 〈w,a〉) =̂ a = ai.
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Expressing Strategic Ability in QCTL∗

MT =̂ 〈WT , wT
I , 〈Act i : i ∈ Ag〉, oT , V T 〉 where

WT =̂Rfin
M (wI)×ActAg ∪ {∗}, wT

I = wI , o
T (〈w,b〉,a) =̂ 〈wo(w|w|−1,a),a〉

V T (p, 〈w,a〉) =̂V T (p,w|w|−1) and V T (a, 〈w,a〉) =̂ a = ai for a ∈ Act i.

In MT , a strategy profile s =̂ 〈si : i ∈ Γ〉 for Γ ⊆ Ag defines the set

WT
s =̂ {〈w · o(w|w|−1, s(w)∪b), s(w)∪b〉 : w ∈ Rfin

M (wI),b ∈ ActAg\Γ}

of MT states ( = finite runs of M , with the last action recorded).

δΓ(s) =̂
∨

a∈ActΓ

∀©(â⇔ s) where â =̂
∧

i∈dom a

ai.

∀2δΓ(s) constrains s ∈ AP to define a set of the form WT
s .

Γ can enforce A in the continuations of w0 . . .wk, if

M,w, k |= ∃s(∀2δΓ(s) ∧ ∀(2© s⇒ A)).
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How about writing ∃s(∀2δΓ(s) ∧ ∀(2© s⇒ A)) for ITL

conditions A?

Motivation:

ITL’s expressive power is equal to that of the monadic second-order theory

of 〈ω,<〉:

Every MSO predicate a(i, j) on σi . . . σj can be expressed as σ, i, j |= A

for some appropriate ITL formula A. (Mind that j can be ω.)

There are (ω-)automata and numerous other temporal logics which have the

same expressive power: quantified LTL, the (linear time) µ-calculus, etc.

However, ITL’s temporal connectives are compositional; this facilitates

big-step reasoning and contract-based reasoning.

The propositional quantifier is expressible in ITL.
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Interval Temporal Logic

Set of atomic propositions AP ; Statepace: Σ =̂P(AP );

σ ∈ Σ+ ∪ Σω have been dubbed intervals, despite that their type is

[0, ..., |σ|]→ Σ, like in LTL, not just [0, ..., |σ|]

For our purposes we consider |= on infinite time lines σ ∈ Σω with a pair of

positions designating the reference interval:

σ, i, j |=ITL A where i ≤ j≤ω, i < ω.
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Interval Temporal Logic

Syntax: A ::= false | p | A ⊃ A | ©A | A;A | A∗ , p ∈ AP .

σ, i, j 6|= false σ, i, j |= p iff p ∈ σi σ, i, j |= A ⊃ B iff σ, i, j |= B or σ, i, j 6|= A

σ, i, j |= ©A iff i < j and σ, i+ 1, j |= A

σ, i, j |= A;B iff σ, i, k |= A and σ, k, j |= B for some k s.t. i ≤ k ≤ j.

σ, i, j |= A∗ iff either i = j,

or there exists a finite sequence k0 = i < k1 < . . . < kn = j

such that σ, ki, ki+1 |= A for i = 0, . . . , n− 1,

or j = ω and there exists an infinite sequence

k0 = 0 < k1 < . . . such that σki..ki+1 |= A for all i < ω.
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Interval-based CTL∗ (ICTL)

A ::= false | p | A ⊃ A | ©A | A;A | A∗ | ∃A | ∃pA

M,w, i, j |= A where w ∈ Rinf
M (wI), i < ω, and i ≤ j ≤ ω where M is a

Kripke model:

M,w, i, j 6|= false;

M,w, i, j |= p iff V (p,wi);

M,w, i, j |= A ⊃ B iff M,w, i, j 6|= A or M,w, i, j |= B;

M,w, i, j |= ©A, A;B, A∗ as in ITL at ’interval’ V (wi) . . . V (wj)

V (w) =̂ {p ∈ AP : V (w, p)}
M,w, i, j |= ∃A iff M,v, i,∞ |= A for some v ∈ Rinf

M (w0 . . .wi).

There are interval-based ATLs in the literature which subsume ICTL.

Interval-based ATLs and are in turn subsumed by propositionally quantified

ICTL by virtue of the expressibility of strategic ability discussed above.
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©A, A;B, A∗ are introspective as they allow reference to subintervals only:

σ, i, j |= ©A iff i < j and σ, i+ 1, j |= A

σ, i, j |= A;B iff σ, i, k |= A and σ, k, j |= B for some k s.t. i ≤ k ≤ j.
σ, i, j |= A∗ iff . . .

The Neighbourhood Modalities 3l, 3r, AKA 〈A〉 and 〈A〉

σ, i, j |= 3lA iff i > −∞ and there exists a k ≤ i such that σ, k, i |= A

σ, i, j |= 3rA iff j <∞ and there exists a k ≥ j such that σ, j, k |= A

3l and 3r are expanding. ICTL can be extended by 3l and 3r too:

M,w, i, j |= 3lA iff M,w, k, i |= A for some k ≤ i
M,w, i, j |= 3rA iff j < ω and M,w, j, k |= A for some k ≤ ω.
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The Separation Theorem in ITL

Introspective formulas C:

C ::= false | p | C ⊃ C | ©C | C;C | C∗ indeed ITL as given so far

Future formulas: F ::= C | ¬F | F ∨ F | 3rF .

Stricty future formulas: 3r(skip;F ) where F is future.

skip =̂ ©¬© true provides that no state is shared with the reference interval.

Past formulas (3l instead of 3r): P ::= C | ¬P | P ∨ P | 3lP

Strictly past formulas: 3c(skip;P )

Theorem 2 Every ITL formula is equivalent to a boolean combination of

strictly past formulas, strictly future formulas and introspective formulas.
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Eliminating The Neighbourhood Modalities in ICTL

Taking some special care for the path quantifier ∃ in ICTL enables applying

separation there too. By separating the operands of ∃ in ICTL bottom up, and

using the validity of equivalences of the forms

∃(A ∨B) ≡ ∃A ∨ ∃B and ∃(P ∧ C ∧ F ) ≡ P ∧ ∃(C ∧ F ′)

where F ′ ∈ {⊥,>}, we prove

Theorem 3 Let A be a formula in ICTL + 3l,3r. Then there exists an

ICTL (3l- and 3r-free) formula A′ such that M,w, 0,∞ |= A ≡ A′ for all

Kripke models M for AP ⊇ Var(A) and all w ∈ Rinf
M (wI).

The proof follows the example of the use of Gabbay’s theorem about LTL for

(its corresponding point-based) CTL∗ with past, but with the use of the new

separation theorem for ITL with 3l and 3r instead.
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Propositional Quantification in ICTL

M,w, i, j |= ∃pA iff (MT )Xp ,w, i, j |= A for some X ⊆WT .

Observe that M becomes unwound ’before’ a witness X ⊆WT is considered.

Propositional quantification is known to be expressible in the underlying linear

time logic ITL.

Theorem 4 Let A be a formula in ICTL with propositional quantification

in it. Then there exists a quantifier-free ICTL formula A′ in ICTL with no

propositional quantification in it such that |= A′ ≡ A.

Applying this statement bottom-up implies the decidability of validity in ICTL:

|= A iff |= ∀p1 . . . ∀pnA where {p1, . . . , pn} =̂ Var(A).

Quantifier elimination this reduces to a variable-free formula.

The decidability of point-based propositionally quantified CTL∗ was

established by automata-theoretic means by French (2002, 2006).

18



A comparison with the related results on point-based

quantified CTL∗

1. Elimination of the neighbourhood modalities: the analogy with eliminating

the past and eliminating 3l is complete.

2. Propositional quantifiers cannot be eliminated in LTL and CTL∗; the

quantified systems are strictly more expressive.

3. The main gains:

ITL’s temporal connectives facilitate compositional reasoning abstraction

and contract-based reasoning;

We have proven that reference to the past and propositional quantification

can be enjoyed but no enhancements are needed to handle it, e.g., when

model-checking.
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The End
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