An Application of Separation in Discrete Time ITL to Branching Time

Dimitar P. Guelev

http://www.math.bas.bg/~gelevdp

Plan of Talk

Preliminaries

LTL with Past and Gabbay's theorem propositionally quantified CTL* (QCTL*) expressing strategic ability in QCTL* Interval Temporal Logic (ITL) An Interval-based CTL* (ICTL) The neighbourhood modalities \diamondsuit_l and \diamondsuit_r in ICTL: eliminating \diamondsuit_l and \diamondsuit_r using ITL separation Eliminating propositional quantification in ICTL

LTL with Past (PLTL)

Set of atomic propositions AP. An interval $I \subseteq \mathbb{Z}$; $\sigma: I \to \mathcal{P}(AP)$, $i \in I$.

$$A ::= \mathit{false} \mid \underbrace{p}_{\in AP} \mid A \supset A \mid \underbrace{\bigcirc A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in past formulas}}} \mid \underbrace{\ominus A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\ominus A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\ominus A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\ominus A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\ominus A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\ominus A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas}}} \mid \underbrace{\Box A \mid A \cup A}_{\substack{\text{not allowed} \\ \text{in future formulas$$

Strictly future (past) formulas: $\bigcirc F$ ($\ominus P$).

Theorem 1 (Gabbay, 1989) Every LTL formula is equivalent to a boolean combination of past formulas, strictly future formulas and atomic propositions.

Expressive power of LTL and propositionally quantified LTL

Every first order definable unary predicate in a vocabulary P_1, \ldots, P_n of unary predicate symbols on $\langle \omega, < \rangle$ can be expressed by an LTL formula, if given atomic propositions p_1, \ldots, p_n such that $\sigma, k \models p_i$ is equivalent to $\sigma \models P_i(k)$ in the f.o. sense.

Propositional Quantification:

Given $X\subseteq \mathrm{dom}\sigma$, $(\sigma_p^X)^i = \sigma^i \cup \{p\}$ for $i\in X$ and $(\sigma_p^X)^i = \sigma^i \setminus \{p\}$, otherwise. $\sigma, i\models \exists pA \text{ iff } \sigma_p^X, i\models A \text{ for some } X\subseteq \mathrm{dom}\sigma.$

Every monadic second order unary predicate can be expressed by a formula in LTL with propositional quantification.

Propositionally Quantified CTL*: Kripke Models

Kripke models $M = \langle W, w_I, R, V \rangle$ with (total) transition relation $R \subseteq W \times W$ and valuation $V \subseteq AP \times W$.

The infinite continuations of \mathbf{w} :

$$R_M^{\inf}(\mathbf{w}) = \{ \mathbf{v} \in W^{\omega} : \mathbf{v}^0 \dots \mathbf{v}^{|\mathbf{w}|-1} = \mathbf{w}, (\forall k < \omega) R(\mathbf{v}^k, \mathbf{v}^{k+1}) \}.$$

 $R_M^{\mathrm{fin}}(\mathbf{w}) \subseteq W^+$ is defined similarly.

 $R_M^{\inf}(w_I)$ $\left(R_M^{\operatorname{fin}}(w_I)\right)$ - all the infinite (finite) runs in M.

Given a $p \in AP$ and an $X \subseteq W$, $M_p^X = \langle W, w_I, R, V_p^X \rangle$ where

$$\textcolor{red}{V_p^X(p,w) \, \hat{=} \, p \in X \, \text{ and } \, \textcolor{red}{V_p^X(q,w) \, \hat{=} \, V(q,w) \, \text{ for } \, q \in AP \setminus \{p\}.}$$

Unwinding Kripke Models

 $M^T = \langle W^T, w_I^T, R^T, V^T \rangle$ - the unwinding of Kripke model $M = \langle W, w_I, R, V \rangle$:

$$W^T = R_M^{\text{fin}}(w_I), \ w_I^T = w_I, R^T(\mathbf{w}, \mathbf{v}) = \mathbf{v} = \mathbf{w} \cdot \mathbf{v}^{|\mathbf{v}|-1} \text{ and } V^T(p, \mathbf{w}) = V(p, \mathbf{w}^{|\mathbf{w}|-1}).$$

Given $\mathbf{w} = w_I w^1 w^2 \ldots \in R_M^{\mathrm{fin}}(w_I) \cup R_M^{\mathrm{inf}}(w_I)$,

$$\mathbf{w}^T = w_I \ w_I w^1 \ w_I w^1 w^2 \dots$$

$$R_{M^T}^{\mathrm{fin}}(w_I^T) \cong R_M^{\mathrm{fin}}(w_I), \qquad R_{M^T}^{\mathrm{inf}}(w_I^T) \cong R_M^{\mathrm{inf}}(w_I), \qquad (M^T)^T \cong M^T.$$

Every state in the unwinding of a model is the last state of a unique finite run (and indeed is a finite run in M).

Varying $X\subseteq W^T$ allows $(M^T)_p^X$ to have different values for p at M^T states that originate from the same M state.

Propositionally Quantified CTL* (QCTL*)

$$A ::= \mathit{false} \mid p \mid A \supset A \mid \bigcirc A \mid A \cup A \mid \ominus A \mid A \mathsf{S}A \mid \exists A \mid \exists pA$$

$$M = \langle W, w_I, R, V \rangle, \ \mathbf{w} \in R_M^{\inf}(w_I), \ k < \omega$$

$$M, \mathbf{w}, k \models p \qquad \qquad \text{iff} \qquad V(p, \mathbf{w}^k);$$

$$M, \mathbf{w}, k \models \mathit{false}, \ A \supset B \qquad \qquad \text{as in classical propositional logic;}$$

$$M, \mathbf{w}, k \models \ominus A, A \cup B \ominus A, A \mathsf{S}B \qquad \text{as in LTL;}$$

$$M, \mathbf{w}, k \models \exists A \qquad \qquad \text{iff} \qquad M, \mathbf{v}, k \models A \text{ for some } \mathbf{v} \in R_M^{\inf}(\mathbf{w}^0 \dots \mathbf{w}^k);$$

$$M, \mathbf{w}, k \models \exists pA \qquad \qquad \text{iff} \qquad (M^T)_p^X, \mathbf{w}^T, k \models A \text{ for some } X \subseteq W^T = R_M^{\dim}(w_I).$$

 CTL^* subsumes LTL ; QCTL^* subsumes propositionally quantified LTL .

Expressing Strategic Ability in QCTL^*

Concurrent Game Models (CGMs) $M = \langle W, w_I, \langle Act_i : i \in Ag \rangle, o, V \rangle$ where Ag is a set of players.

$$Act_{\Gamma} \stackrel{.}{=} \prod_{i \in \Gamma} Act_i \text{ for } \Gamma \subseteq Ag$$

Instead of transition relation $R\subseteq W\times W$ we have outcome function $o:W\times Act_{Ag}\to W.$

Instead of the R(w, w'), we have $w' = o(w, \mathbf{a})$, $\mathbf{a} \in Act_{Ag}$.

Strategic ability is about the existence of strategies for achieving things.

A strategy for $i \in Ag$ is a function of type $R_M^{\mathrm{fin}}(w_I) \to Act_i$.

There exist dedicated logical notations for CGMs, but CTL^\ast can be interpreted too by

- (1) putting $R(w,w') = \exists \mathbf{a}(o(w,\mathbf{a}) = w')$ and
- (2) extending the vocabulary to allow identifying actions.

Expressing Strategic Ability in QCTL*

Upon unwinding a CGM, $w, \mathbf{a} \mapsto o(w, \mathbf{a})$ can be made injective wrt \mathbf{a} :

$$M^T = \langle W^T, w_I^T, \langle Act_i : i \in Ag \rangle, o^T, V^T \rangle$$
 where

$$W^T = R_M^{\text{fin}}(w_I) \times Act_{Ag} \cup \{*\}, \ w_I^T = w_I$$

$$o^T(\langle \mathbf{w}, \mathbf{b} \rangle, \mathbf{a}) = \langle \mathbf{w}o(\mathbf{w}^{|\mathbf{w}|-1}, \mathbf{a}), \mathbf{a} \rangle$$

Finite run
$$w_I \xrightarrow{\mathbf{a}^1} \underbrace{w^1}_{=o(w_I,\mathbf{a}^1)} \xrightarrow{\mathbf{a}^2} \underbrace{w^2}_{=o(w_1,\mathbf{a}^2)} \cdots w^{k-1} \xrightarrow{\mathbf{a}^k} \underbrace{w^k}_{=o(w^{k-1},\mathbf{a}^k)}$$

corresponds to state

$$\langle w_I w^1 w^2 \dots w^k, \mathbf{a}^k \rangle \in W^T$$

in M^T with all the previous states and the latest action \mathbf{a}^k stored.

Vocabulary $AP' = AP \cup \bigcup_{i \in Ag} Act_i$ can be used to identify latest actions:

$$V^T(p,\langle \mathbf{w},\mathbf{a}\rangle)\,\hat{=}\,V(p,\mathbf{w}^{|\mathbf{w}|-1}) \text{ and, for } \boldsymbol{a}\in Act_{\boldsymbol{i}},\ V^T(\boldsymbol{a},\langle \mathbf{w},\mathbf{a}\rangle)\,\hat{=}\,\boldsymbol{a}=\mathbf{a}_{\boldsymbol{i}}.$$

Expressing Strategic Ability in QCTL^*

$$M^{T} = \langle W^{T}, w_{I}^{T}, \langle Act_{i} : i \in Ag \rangle, o^{T}, V^{T} \rangle \text{ where}$$

$$W^{T} = R_{M}^{fin}(w_{I}) \times Act_{Ag} \cup \{*\}, \ w_{I}^{T} = w_{I}, \ o^{T}(\langle \mathbf{w}, \mathbf{b} \rangle, \mathbf{a}) = \langle \mathbf{w}o(\mathbf{w}^{|\mathbf{w}|-1}, \mathbf{a}), \mathbf{a} \rangle$$

$$V^{T}(p, \langle \mathbf{w}, \mathbf{a} \rangle) = V^{T}(p, \mathbf{w}^{|\mathbf{w}|-1}) \text{ and } V^{T}(a, \langle \mathbf{w}, \mathbf{a} \rangle) = a = \mathbf{a}_{i} \text{ for } a \in Act_{i}.$$

In M^T , a strategy profile $\mathbf{s} \,\hat{=}\, \langle s_i : i \in \Gamma \rangle$ for $\Gamma \subseteq Ag$ defines the set

$$W_{\mathbf{s}}^T = \{ \langle \mathbf{w} \cdot o(\mathbf{w}^{|\mathbf{w}|-1}, \mathbf{s}(\mathbf{w}) \cup \mathbf{b}), \mathbf{s}(\mathbf{w}) \cup \mathbf{b} \rangle : \mathbf{w} \in R_M^{\text{fin}}(w_I), \mathbf{b} \in Act_{Aq \setminus \Gamma} \}$$

of M^T states (= finite runs of M, with the last action recorded).

$$\delta_{\Gamma}(s) \stackrel{.}{=} \bigvee_{\mathbf{a} \in Act_{\Gamma}} \forall \, \bigcirc (\hat{\mathbf{a}} \Leftrightarrow s) \text{ where } \hat{\mathbf{a}} \stackrel{.}{=} \bigwedge_{i \in \text{dom } \mathbf{a}} \mathbf{a}_{i}.$$

 $\forall \Box \delta_{\Gamma}(s)$ constrains $s \in AP$ to define a set of the form $W^T_{\mathbf{s}}$.

 Γ can enforce A in the continuations of $\mathbf{w}^0 \dots \mathbf{w}^k$, if

$$M, \mathbf{w}, k \models \exists s (\forall \Box \delta_{\Gamma}(s) \land \forall (\Box \bigcirc s \Rightarrow A)).$$

How about writing $\exists s (\forall \Box \delta_{\Gamma}(s) \land \forall (\Box \bigcirc s \Rightarrow A))$ for ITL conditions A?

Motivation:

ITL's expressive power is equal to that of the monadic second-order theory of $\langle \omega, < \rangle$:

Every MSO predicate a(i,j) on $\sigma^i \dots \sigma^j$ can be expressed as $\sigma, i, j \models A$ for some appropriate ITL formula A. (Mind that j can be ω .)

There are $(\omega$ -)automata and numerous other temporal logics which have the same expressive power: quantified LTL, the (linear time) μ -calculus, etc.

However, ITL's temporal connectives are compositional; this facilitates big-step reasoning and contract-based reasoning.

The propositional quantifier is expressible in ITL.

Interval Temporal Logic

Set of atomic propositions AP; Statepace: $\Sigma = \mathcal{P}(AP)$;

 $\sigma \in \Sigma^+ \cup \Sigma^\omega$ have been dubbed intervals, despite that their type is $[0,...,|\sigma|] \to \Sigma$, like in LTL, not just $[0,...,|\sigma|]$

For our purposes we consider \models on infinite time lines $\sigma \in \Sigma^{\omega}$ with a pair of positions designating the reference interval:

$$\sigma, i, j \models_{\text{ITL}} A \text{ where } i \leq j \leq \omega, i < \omega.$$

Interval Temporal Logic

```
Syntax: A ::= false \mid p \mid A \supset A \mid \bigcirc A \mid A; A \mid A^*, p \in AP. \sigma, i, j \not\models false \qquad \sigma, i, j \models p \text{ iff } p \in \sigma^i \quad \sigma, i, j \models A \supset B \text{ iff } \sigma, i, j \models B \text{ or } \sigma, i, j \not\models A \sigma, i, j \models \bigcirc A \quad \text{iff } i < j \text{ and } \sigma, i + 1, j \models A \sigma, i, j \models A; B \quad \text{iff } \sigma, i, k \models A \text{ and } \sigma, k, j \models B \text{ for some } k \text{ s.t. } i \leq k \leq j. \sigma, i, j \models A^* \quad \text{iff} \quad \text{either } i = j, or there exists a finite sequence k_0 = i < k_1 < \ldots < k_n = j such that \sigma, k_i, k_{i+1} \models A \text{ for } i = 0, \ldots, n-1, or j = \omega and there exists an infinite sequence k_0 = 0 < k_1 < \ldots such that \sigma^{k_i \ldots k_{i+1}} \models A \text{ for all } i < \omega.
```

Interval-based CTL* (ICTL)

$$A ::= false \mid p \mid A \supset A \mid \bigcirc A \mid A; A \mid A^* \mid \exists A \mid \exists pA$$

 $M, \mathbf{w}, i, j \models A$ where $\mathbf{w} \in R_M^{\inf}(w_I)$, $i < \omega$, and $i \le j \le \omega$ where M is a Kripke model:

$$\begin{split} M, \mathbf{w}, i, j &\not\models false; \\ M, \mathbf{w}, i, j &\models p & \text{iff} \quad V(p, \mathbf{w}^i); \\ M, \mathbf{w}, i, j &\models A \supset B & \text{iff} \quad M, \mathbf{w}, i, j \not\models A \text{ or } M, \mathbf{w}, i, j \models B; \\ M, \mathbf{w}, i, j &\models \ominus A, \ A; B, \ A^* & \text{as in ITL at 'interval'} \ V(w^i) \dots V(w^j) \\ V(w) &= \{ p \in AP : V(w, p) \} \\ M, \mathbf{w}, i, j &\models \exists A & \text{iff} \quad M, \mathbf{v}, i, \infty \models A \text{ for some } \mathbf{v} \in R_M^{\inf}(\mathbf{w}^0 \dots \mathbf{w}^i). \end{split}$$

There are interval-based ATLs in the literature which subsume ICTL.

Interval-based ATLs and are in turn subsumed by propositionally quantified ICTL by virtue of the expressibility of strategic ability discussed above.

 \bigcirc A, A; B, A^* are introspective as they allow reference to subintervals only:

$$\begin{split} &\sigma, i, j \models \bigcirc A & \text{iff } i < j \text{ and } \sigma, i + 1, j \models A \\ &\sigma, i, j \models A; B & \text{iff } \sigma, i, k \models A \text{ and } \sigma, k, j \models B \text{ for some } k \text{ s.t. } i \leq k \leq j. \\ &\sigma, i, j \models A^* & \text{iff } \dots \end{split}$$

The Neighbourhood Modalities \diamondsuit_l , \diamondsuit_r , AKA $\langle \overline{A} \rangle$ and $\langle A \rangle$

$$\begin{split} \sigma,i,j&\models \diamondsuit_l A & \text{iff} \quad i>-\infty \text{ and there exists a } k\leq i \text{ such that } \sigma,k,i\models A\\ \sigma,i,j&\models \diamondsuit_r A & \text{iff} \quad j<\infty \text{ and there exists a } k\geq j \text{ such that } \sigma,j,k\models A\\ \diamondsuit_l \text{ and } \diamondsuit_r \text{ are expanding. ICTL can be extended by } \diamondsuit_l \text{ and } \diamondsuit_r \text{ too:} \end{split}$$

$$M, \mathbf{w}, i, j \models \Diamond_l A$$
 iff $M, \mathbf{w}, k, i \models A$ for some $k \leq i$ $M, \mathbf{w}, i, j \models \Diamond_r A$ iff $j < \omega$ and $M, \mathbf{w}, j, k \models A$ for some $k \leq \omega$.

The Separation Theorem in ITL

Introspective formulas C:

$$C ::= \mathit{false} \ | \ p \ | \ C \supset C \ | \ \bigcirc C \ | \ C; C \ | \ C^* \quad \text{indeed } \mathrm{ITL} \text{ as given so far }$$

Future formulas: $F := C \mid \neg F \mid F \lor F \mid \diamondsuit_r F$.

Stricty future formulas: $\Diamond_r(skip; F)$ where F is future.

 $skip \,\hat{=}\, \bigcirc\, \neg\, \bigcirc\, true$ provides that no state is shared with the reference interval.

Past formulas $(\diamondsuit_l \text{ instead of } \diamondsuit_r)$: $P := C \mid \neg P \mid P \lor P \mid \diamondsuit_l P$

Strictly past formulas: $\Diamond_c(skip; P)$

Theorem 2 Every ITL formula is equivalent to a boolean combination of strictly past formulas, strictly future formulas and introspective formulas.

Eliminating The Neighbourhood Modalities in ICTL

Taking some special care for the path quantifier \exists in ICTL enables applying separation there too. By separating the operands of \exists in ICTL bottom up, and using the validity of equivalences of the forms

$$\exists (A \vee B) \equiv \exists A \vee \exists B \text{ and } \exists (P \wedge C \wedge F) \equiv P \wedge \exists (C \wedge F')$$
 where $F' \in \{\bot, \top\}$, we prove

Theorem 3 Let A be a formula in $ICTL + \diamondsuit_l, \diamondsuit_r$. Then there exists an ICTL (\diamondsuit_l - and \diamondsuit_r -free) formula A' such that $M, \mathbf{w}, 0, \infty \models A \equiv A'$ for all Kripke models M for $AP \supseteq Var(A)$ and all $\mathbf{w} \in R_M^{\inf}(w_I)$.

The proof follows the example of the use of Gabbay's theorem about LTL for (its corresponding point-based) CTL^* with past, but with the use of the new separation theorem for ITL with \Diamond_l and \Diamond_r instead.

Propositional Quantification in ICTL

 $M, \mathbf{w}, i, j \models \exists p A \quad \text{iff} \quad (M^T)_p^X, \mathbf{w}, i, j \models A \text{ for some } X \subseteq W^T.$

Observe that M becomes unwound 'before' a witness $X\subseteq W^T$ is considered.

Propositional quantification is known to be expressible in the underlying linear time logic ITL.

Theorem 4 Let A be a formula in ICTL with propositional quantification in it. Then there exists a quantifier-free ICTL formula A' in ICTL with no propositional quantification in it such that $\models A' \equiv A$.

Applying this statement bottom-up implies the decidability of validity in ICTL:

$$\models A \text{ iff } \models \forall p_1 \dots \forall p_n A \text{ where } \{p_1, \dots, p_n\} = \operatorname{Var}(A).$$

Quantifier elimination this reduces to a variable-free formula.

The decidability of point-based propositionally quantified CTL^* was established by automata-theoretic means by French (2002, 2006).

A comparison with the related results on point-based quantified CTL^*

- 1. Elimination of the neighbourhood modalities: the analogy with eliminating the past and eliminating \diamondsuit_l is complete.
- 2. Propositional quantifiers cannot be eliminated in LTL and CTL^* ; the quantified systems are strictly more expressive.
- 3. The main gains:

ITL's temporal connectives facilitate compositional reasoning abstraction and contract-based reasoning;

We have proven that reference to the past and propositional quantification can be enjoyed but no enhancements are needed to handle it, e.g., when model-checking.

The End