A counterexample to the modular isomorphism problem

Diego García-Lucas (joint with Leo Margolis and Ángel del Río)

University of Murcia

Algebra and Logic Seminar, Departament of Algebra and Logic, IMI/BAS May 13, 2022

・ 同 ト ・ ヨ ト ・ ヨ ト

ELE SOG

Table of contents

Introduction

- The isomorphism problem
- The modular isomorphism problem
- The modular group algebra

2 The counterexample

- Fading the second glimmer of hope
- Proof of the theorem
- Remarks and open questions

= nar

The isomorphism problem The modular isomorphism problem The modular group algebra

Group rings

Let R be a ring and G a finite group.

Let

$$RG = \left\{ \sum_{g \in G} r_g g, \quad ext{with } r_g \in R
ight\}$$

With the product of the group extended linearly and the obvious sum, RG is a ring.

The isomorphism problem The modular isomorphism problem The modular group algebra

Group rings

Let R be a ring and G a finite group.

Let

$$RG = \left\{ \sum_{g \in G} r_g g, \quad ext{with } r_g \in R
ight\}$$

With the product of the group extended linearly and the obvious sum, RG is a ring.

• If *R* is a commutative ring, *RG* has estructure of *R*-algebra.

Group rings

Let R be a ring and G a finite group.

Let

$$RG = \left\{ \sum_{g \in G} r_g g, \quad \text{with } r_g \in R
ight\}$$

With the product of the group extended linearly and the obvious sum, RG is a ring.

• If *R* is a commutative ring, *RG* has estructure of *R*-algebra. <u>Notation</u>: unless stated otherwise,

- R will be an arbitrary coommutative ring or field,
- F a field of characteristic p, and
- *k* the field with *p* elements.

The isomorphism problem

Let R be a ring and G, H finite groups.

Isomorphism problem

Does $RG \cong RH$ implies $G \cong H$?

It has obviously negative answer in general: if G and H are abelian groups and have the same order, then $\mathbb{C}G \cong \mathbb{C}H$.

The isomorphism problem

Let R be a ring and G, H finite groups.

Isomorphism problem

Does $RG \cong RH$ implies $G \cong H$?

It has obviously negative answer in general: if G and H are abelian groups and have the same order, then $\mathbb{C}G \cong \mathbb{C}H$.

The isomorphism problem is the same as the question "If H is a group basis of RG, then $G \cong H$?"

The isomorphism problem The modular isomorphism problem The modular group algebra

The Isomorphism Problem for fields

Question 1

Does $RG \cong RH$ for every field R implies $G \cong H$?

The isomorphism problem The modular isomorphism problem The modular group algebra

The Isomorphism Problem for fields

Question 1

Does $RG \cong RH$ for every field R implies $G \cong H$?

Theorem (Passman, 1965)

There exists a set of

 $p^{\frac{2}{27}(n^3-23n^2)}$

nonisomorphic p-groups of order p^n that have isomorphic group algebras over all fields of characteristic not equal to p.

The Isomorphism Problem for fields

Question 1

Does $RG \cong RH$ for every field R implies $G \cong H$?

Theorem (Passman, 1965)

There exists a set of

$$p^{\frac{2}{27}(n^3-23n^2)}$$

nonisomorphic p-groups of order p^n that have isomorphic group algebras over all fields of characteristic not equal to p.

Question 1, however, has negative answer in general:

Theorem (Dade, 1971)

There exist two non-isomorphic metabelian finite groups G and H, with order divisible by two different primes, such that $RG \cong RH$ for every field R.

 $) \land \bigcirc$

The isomorphism problem The modular isomorphism problem The modular group algebra

The Modular Isomorphism Problem

Fix an integer prime p. Let G and H finite p-groups.

Question 2

Does $FG \cong FH$ for each field F of characteristic p implies $G \cong H$?

The Modular Isomorphism Problem

Fix an integer prime p. Let G and H finite p-groups.

Question 2

Does $FG \cong FH$ for each field F of characteristic p implies $G \cong H$?

If k is the field with p element then

 $kG \cong kH \quad \Rightarrow \quad FG \cong F \otimes_k kG \cong F \otimes_k kH \cong FH$

for each field F with characteristic p.

Hence Question 2 is equivalent to:

Question 2', or Modular Isomorphism Problem (MIP)

If k the field with p elements, does $kG \cong kH$ implies $G \cong H$?

Diego García-Lucas (joint with Leo Margolis and Ángel del Ri A counterexample to the modular isomorphism problem

The isomorphism problem The modular isomorphism problem The modular group algebra

The Isomorphism Problem with integral coefficients

Let G and H finite groups.

Question 3

Does $RG \cong RH$ for every ring R implies $G \cong H$?

The isomorphism problem The modular isomorphism problem The modular group algebra

The Isomorphism Problem with integral coefficients

Let G and H finite groups.

Question 3

Does $RG \cong RH$ for every ring R implies $G \cong H$?

Since

 $\mathbb{Z}G \cong \mathbb{Z}H \quad \Rightarrow \quad RG \cong R \otimes_{\mathbb{Z}} \mathbb{Z}G \cong R \otimes_{\mathbb{Z}} \mathbb{Z}H \cong RH,$

this question is equivalent to

Question 3', or Isomorphism Problem with integral coefficients

Does $\mathbb{Z}G \cong \mathbb{Z}H$ implies $G \cong H$?

The isomorphism problem The modular isomorphism problem The modular group algebra

The Isomorphism Problem with integral coefficients

Let G and H finite groups.

Question 3

Does $RG \cong RH$ for every ring R implies $G \cong H$?

Since

 $\mathbb{Z}G \cong \mathbb{Z}H \quad \Rightarrow \quad RG \cong R \otimes_{\mathbb{Z}} \mathbb{Z}G \cong R \otimes_{\mathbb{Z}} \mathbb{Z}H \cong RH,$

this question is equivalent to

Question 3', or Isomorphism Problem with integral coefficients Does $\mathbb{Z}G \cong \mathbb{Z}H$ implies $G \cong H$?

"There are, however, two glimmers of hope. The first one concerns integral group rings, and the second concern p-groups over GF(p)" (The algebraic structure of group rings, Passman, 1977)

The isomorphism problem The modular isomorphism problem The modular group algebra

The first glimmer of hope

Theorem (Higman, 1940)

If G and H are abelian groups, then $\mathbb{Z}G \cong \mathbb{Z}H$ implies $G \cong H$.

The isomorphism problem The modular isomorphism problem The modular group algebra

The first glimmer of hope

Theorem (Higman, 1940)

If G and H are abelian groups, then $\mathbb{Z}G \cong \mathbb{Z}H$ implies $G \cong H$.

Theorem (Whitcomb, 1968)

If G and H are metabelian groups, then $\mathbb{Z}G \cong \mathbb{Z}H$ implies $G \cong H$.

The isomorphism problem The modular isomorphism problem The modular group algebra

The first glimmer of hope

Theorem (Higman, 1940)

If G and H are abelian groups, then $\mathbb{Z}G \cong \mathbb{Z}H$ implies $G \cong H$.

Theorem (Whitcomb, 1968)

If G and H are metabelian groups, then $\mathbb{Z}G \cong \mathbb{Z}H$ implies $G \cong H$.

Theorem (Roggenkamp-Scott, 1987)

If G and H are p-groups, then $\mathbb{Z}G \cong \mathbb{Z}H$ implies $G \cong H$.

The isomorphism problem The modular isomorphism problem The modular group algebra

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆

The first glimmer of hope

Theorem (Higman, 1940)

If G and H are abelian groups, then $\mathbb{Z}G \cong \mathbb{Z}H$ implies $G \cong H$.

Theorem (Whitcomb, 1968)

If G and H are metabelian groups, then $\mathbb{Z}G \cong \mathbb{Z}H$ implies $G \cong H$.

Theorem (Roggenkamp-Scott, 1987)

If G and H are p-groups, then $\mathbb{Z}G \cong \mathbb{Z}H$ implies $G \cong H$.

Theorem (Weiss, 1988)

If G and H are nilpotent groups, then $\mathbb{Z}G \cong \mathbb{Z}H$ implies $G \cong H$.

Diego García-Lucas (joint with Leo Margolis and Ángel del Ri A counterexample to the modular isomorphism problem

The isomorphism problem The modular isomorphism problem The modular group algebra

Fading the first glimmer of hope

Theorem (Hertweck, 2001)

There exist two nonisomorphic groups with order $2^{21}\cdot 97^{28}$ such that

 $\mathbb{Z}G\cong\mathbb{Z}H.$

The second glimmer of hope

Fix an integer prime p. Let G and H finite p-groups.

Question 2

Does $FG \cong FH$ for each field F of characteristic p implies $G \cong H$?

Is equivalent to:

Question 2', or Modular Isomorphism Problem (MIP)

If k the field with p elements, does $kG \cong kH$ implies $G \cong H$?

Question 2"

If F is a fixed field of characteristic p, does $FG \cong FH$ implies $G \cong H$?

A positive answer to Question 2" implies a positive answer to MIP.

The second glimmer of hope: Positive results to the MIP

(arbitrary field of characteristic p/only the prime field/relevant)

- abelian *p*-groups (Deskins, 1956);
- *p*-groups of small order:
 - Not computer aided results:
 - *p*-groups of order at most *p*⁴ (Passman, 1965);
 - 2-groups with order 2⁵ (Makasikis, 1976; Navarro-Sambale, 2017);
 - *p*-groups with order p^5 (Salim-Sandling, 1996);
 - 2-groups with order 2⁶ (Hertweck-Soriano, 2006);
 - Computer aided results:
 - Groups of order 2⁶ (Wursthorn, 1990);
 - Groups of order 2⁷ (Wursthorn, 1997);
 - **Groups of order** 2⁸ and 3⁶ (Eick, 2008, revised by Margolis-Moede, 2020);
 - Groups of order 5⁶ (with exceptions) and 3⁷ (Margolis-Moede, 2020, based on Eick's algorithm).

Positive results to the MIP (II)

- *p*-groups with trivial third dimension subgroup (Passi-Sehgal, 1972).
- 2-groups of maximal class (Carlson, 1977).
- *p*-groups of maximal class, with order not greater than p^{p+1} and with a maximal subgroup which is abelian (Bagiński-Caranti, 1988);
- *p*-groups of nilpotency class 2 with elementary abelian derived subgroup (Sandling, 1989).
- *p*-groups with center of index p^2 (Drensky, 1989);
- Metacyclic *p*-groups (Bagiński, 1988, for *p* > 3, completed by Sandling, 1996).
- Elementary-abelian-by-cyclic *p*-groups (Bagiński, 1999).
- 2-generated *p*-group with nilpotency class 3 and elementary abelian derived subgroup (Bagiński, 1999; Margolis-Moede, 2020).

Positive results to the MIP (III)

- 2-groups of almost maximal class (Bagiński-Konovalov, 2004);
- Groups with trivial fourth dimension subgroup for p > 2 (Hertweck, 2007).
- *p*-groups with a cyclic subgroup of index *p*² (Bagiński-Konovalov, 2007);
- 3-groups of maximal class (except two families of groups) (Bagiński-Kurdics, 2019)
- *p*-groups 2-generated of nilpotency class 2 with cyclic derived subgroup (Broche-del Río, 2019). (*p* > 2; *p* = 2);
- 2-groups of nilpotency class 3 s.t. [G : Z(G)] = |Φ(G)| = 8 (Margolis-Sakurai-Stanojkovski, 2021);
- 2-groups with cyclic centre such that G/Z(G) is dihedral (Margolis-Sakurai-Stanojkovski, 2021).

The modular group algebra

Let F be a field of characteristic p, and G a finite p-group.

• The augmentation map is

$$\varepsilon: FG \to F, \qquad \sum_{g \in G} r_g g \mapsto \sum_{g \in G} r_g \qquad (r_g \in F).$$

The modular group algebra

Let F be a field of characteristic p, and G a finite p-group.

• The augmentation map is

$$\varepsilon: FG \to F, \qquad \sum_{g \in G} r_g g \mapsto \sum_{g \in G} r_g \qquad (r_g \in F).$$

- $I(FG) := \ker(\varepsilon)$ is the Jacobson radical of FG.
- *I*(*FG*) is nilpotent.

The modular group algebra

Let F be a field of characteristic p, and G a finite p-group.

• The augmentation map is

$$\varepsilon: FG \to F, \qquad \sum_{g \in G} r_g g \mapsto \sum_{g \in G} r_g \qquad (r_g \in F).$$

- $I(FG) := \ker(\varepsilon)$ is the Jacobson radical of FG.
- *I*(*FG*) is nilpotent.
- FG is a local ring, i.e.,

$$FG = F + I(FG).$$

• The group of units of FG is $FG \setminus I(FG)$.

The modular group algebra

Let F be a field of characteristic p, and G a finite p-group.

• The augmentation map is

$$\varepsilon: FG \to F, \qquad \sum_{g \in G} r_g g \mapsto \sum_{g \in G} r_g \qquad (r_g \in F).$$

- $I(FG) := \ker(\varepsilon)$ is the Jacobson radical of FG.
- *I*(*FG*) is nilpotent.
- FG is a local ring, i.e.,

$$FG = F + I(FG).$$

- The group of units of FG is $FG \setminus I(FG)$.
- V(FG) = 1 + I(FG) is called the group of normalized units.

The isomorphism problem The modular isomorphism problem The modular group algebra

Contrasts: Maschke Theorem

Let R be a field and G a finite group.

 If char(R) ∤ |G|, then RG is semisimple. Hence we can apply the Wedderburn decomposition theorem, so

$$RG = \oplus M_{n_i \times n_i}(D_i),$$

where $M_{n_i \times n_i}(D_i)$ is the $n_i \times n_i$ -matrix ring over a division ring D_i .

The isomorphism problem The modular isomorphism problem The modular group algebra

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目目 ろく⊙

Contrasts: Maschke Theorem

Let R be a field and G a finite group.

 If char(R) ∤ |G|, then RG is semisimple. Hence we can apply the Wedderburn decomposition theorem, so

$$RG = \oplus M_{n_i \times n_i}(D_i),$$

where $M_{n_i \times n_i}(D_i)$ is the $n_i \times n_i$ -matrix ring over a division ring D_i .

• If char(R) | |G| then

$$RG = b_1 RG \oplus b_2 RG \oplus \cdots \oplus b_n RG,$$

where $\{b_1, \ldots, b_n\}$ is a complete set of orthogonal primitive central idempotents.

The isomorphism problem The modular isomorphism problem The modular group algebra

Contrasts: Maschke Theorem

Let R be a field and G a finite group.

 If char(R) ∤ |G|, then RG is semisimple. Hence we can apply the Wedderburn decomposition theorem, so

$$RG = \oplus M_{n_i \times n_i}(D_i),$$

where $M_{n_i \times n_i}(D_i)$ is the $n_i \times n_i$ -matrix ring over a division ring D_i .

• If char(R) | |G| then

$$RG = b_1 RG \oplus b_2 RG \oplus \cdots \oplus b_n RG,$$

where $\{b_1, \ldots, b_n\}$ is a complete set of orthogonal primitive central idempotents.

• If char(R) = p and
$$|G| = p^N$$
, then $\{b_1, \ldots, b_n\} = \{1\}$,

$$RG = R + I(RG).$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目目 ろく⊙

The modular group algebra

Let F be a field of characteristic p, and G a finite $p\mbox{-}{\rm group}.$ The subgroup of G

$$\mathcal{M}_i(G) = G \cap (1 + I(FG)^i) \qquad (i \ge 1)$$

is called the i-th dimension subgroup of G.

The modular group algebra

Let F be a field of characteristic p, and G a finite $p\mbox{-}{\rm group}.$ The subgroup of G

$$\mathcal{M}_i(G) = G \cap (1 + I(FG)^i) \qquad (i \ge 1)$$

is called the i-th dimension subgroup of G.

Theorem (Jennings, 1941)

The dimension subgroups satisfy the recursive relation

$$\begin{aligned} \mathcal{M}_1(G) &= G; \\ \mathcal{M}_i(G) &= [\mathcal{M}_{i-1}(G), G] \mathcal{M}_{\lceil \frac{i}{n} \rceil}(G)^p \qquad (i \geq 2) \end{aligned}$$

Jennings bases

Theorem (Jennings, 1941)

Assume n is an integer such that $\mathcal{M}_n(G) = 1$. Let g_1, \ldots, g_ℓ be the union of the bases of

$$\frac{\mathcal{M}_1(G)}{\mathcal{M}_2(G)}, \quad \frac{\mathcal{M}_2(G)}{\mathcal{M}_3(G)}, \quad \dots, \quad \frac{\mathcal{M}_{n-1}(G)}{\mathcal{M}_n(G)}$$

when these quotients are viewed as vector spaces over the field with p elements. Then the set

$$B = \left\{\prod_{i=1}^{\ell} (g_1 - 1)^{\alpha_1} \dots (g_{\ell} - 1)^{\alpha_{\ell}} : 0 \leq \alpha_i < p, \alpha_1 \dots \alpha_{\ell} \neq 0\right\}$$

is a basis of I(FG).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The isomorphism problem The modular isomorphism problem The modular group algebra

Jennings bases

Proposition (Jennings, 1941)

Let B be a Jennings basis. Then there is a sequence of subsets

$$B=B_1\supseteq B_2\supseteq\ldots$$

such that for each $t \ge 1$,

 $I(FG)^t = \operatorname{span}_F B_t.$

Diego García-Lucas (joint with Leo Margolis and Ángel del Ri A counterexample to the modular isomorphism problem

The concept of Hertweck-Soriano

Let k be the field with p elements.

Lemma (Passi-Sehgal)

Let J be a multiplicatively closed subspace of kG. If

$$G \cap (1 + J + I(FG)^n) = \mathcal{M}_n(G)$$
 for each $n \ge 1$ (*)

then

$$\tilde{G} \cap (1 + J + I(FG)^n) = \mathcal{M}_n(\tilde{G})$$

for each group basis \tilde{G} and each $n \ge 1$. In particular

$$\tilde{G} \cap (1+J) = 1.$$

The isomorphism problem The modular isomorphism problem The modular group algebra

The concept of Hertweck-Soriano

- Start with a group basis G.
- Use a Jennings basis to construct an ideal J verifying (\star) .
- Then $\tilde{G} \cap (1 + J) = 1$ for each group basis \tilde{G} .
- Thus every group basis \tilde{G} embeds into V(FG/J).
- Find all the subgroups in V(FG/J) of order |G|.

The isomorphism problem The modular isomorphism problem The modular group algebra

The concept of Hertweck-Soriano

- Start with a group basis G.
- Use a Jennings basis to construct an ideal J verifying (\star) .
- Then $\tilde{G} \cap (1 + J) = 1$ for each group basis \tilde{G} .
- Thus every group basis \tilde{G} embeds into V(FG/J).
- Find all the subgroups in V(FG/J) of order |G|.
 - If all of them are isomorphic to G, we are done.
 - If any of them is not isomorphic to G, consider all its preimages in FG.

The groups

For $n_1 > n_2 > 2$, consider the groups

$$G = \langle x, y, z \mid z = [y, x], x^{2^{n_1}} = y^{2^{n_2}} = z^4 = 1, z^x = z^y = z^{-1} \rangle$$

$$H = \langle a, b, c \mid c = [b, a], a^{2^{n_1}} = b^{2^{n_2}} = c^4 = 1, c^a = c^{-1}, c^b = c \rangle$$

(notation: $x^{y} = y^{-1}xy$ and $[y, x] = y^{-1}x^{-1}yx$)

Diego García-Lucas (joint with Leo Margolis and Ángel del Ri A counterexample to the modular isomorphism problem

Introduction The counterexample Fading the second glimmer of hope Proof of the theorem Remarks and open questions

G and H are non-isomorphic

$$C_G(G') = \langle z, x^2, xy \rangle \quad \Rightarrow \quad \frac{C_G(G')}{G'} = \langle x^2 G', xy G' \rangle$$
 has exponent 2^{n_1} .

since $|x| = |xG'| = 2^{n_1}$, $|y| = |yG'| = 2^{n_2} < 2^{n_1}$.

Introduction The counterexample Fading the second glimmer of hope Proof of the theorem Remarks and open questions

G and H are non-isomorphic

$$C_G(G') = \langle z, x^2, xy \rangle \quad \Rightarrow \quad \frac{C_G(G')}{G'} = \langle x^2 G', xy G' \rangle$$
 has exponent 2^{n_1} .

since
$$|x| = |xG'| = 2^{n_1}$$
, $|y| = |yG'| = 2^{n_2} < 2^{n_1}$.

$$C_H(H') = \langle c, a^2, b \rangle \quad \Rightarrow \quad rac{C_G(H')}{H'} = \langle a^2 H', b H'
angle ext{ has exponent } 2^{n_1 - 1}.$$

since $|a| = |aH'| = 2^{n_1}$, $|b| = |bH'| = 2^{n_2} < 2^{n_1}$.

Diego García-Lucas (joint with Leo Margolis and Ángel del Ri A counterexample to the modular isomorphism problem

Fading the second glimmer of hope

For $n_1 > n_2 > 2$, consider the groups

$$G = \langle x, y, z \mid z = [y, x], x^{2^{n_1}} = y^{2^{n_2}} = z^4 = 1, z^x = z^y = z^{-1} \rangle$$

$$H = \langle a, b, c \mid c = [b, a], a^{2^{n_1}} = b^{2^{n_2}} = c^4 = 1, c^a = c^{-1}, c^b = c \rangle$$

Theorem (G-L, Margolis, del Río)

The groups G and H are non-isomorphic but if F is a field of characteristic 2 then the group algebras FG and FH are isomorphic.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The group \widetilde{G}

Remark

If k is the field with two element then

$$kG \cong kH \quad \Rightarrow \quad FG \cong F \otimes_k kG \cong F \otimes_k kH \cong FH$$

for each field F with characteristic 2 .

The group \widetilde{G}

Remark

If k is the field with two element then

$$kG \cong kH \quad \Rightarrow \quad FG \cong F \otimes_k kG \cong F \otimes_k kH \cong FH$$

for each field F with characteristic 2 .

From now on we will work in kH. Write

$$\widetilde{x} = a$$
 and $\widetilde{y} = b(a + b + ab)c$.

Consider

$$\widetilde{G} = \langle \widetilde{x}, \widetilde{y} \rangle \subseteq V(kH).$$

G is an epimorphic image of G.

Recall that

$$G = \langle x, y, z \mid z = [y, x], x^{2^{n_1}} = y^{2^{n_2}} = z^4 = 1, z^x = z^{-1}, z^y = z^{-1} \rangle$$

Write $\tilde{z} = [\tilde{y}, \tilde{x}].$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

\overline{G} is an epimorphic image of G.

Recall that

$$G = \langle x, y, z \mid z = [y, x], x^{2^{n_1}} = y^{2^{n_2}} = z^4 = 1, z^x = z^{-1}, z^y = z^{-1} \rangle$$

Write $\tilde{z} = [\tilde{y}, \tilde{x}]$.

•
$$\tilde{x}^{2^{n_1}} = a^{2^{n_1}} = 1$$
.

\overline{G} is an epimorphic image of G.

Recall that

$$G = \langle x, y, z \mid z = [y, x], x^{2^{n_1}} = y^{2^{n_2}} = z^4 = 1, z^x = z^{-1}, z^y = z^{-1} \rangle$$

Write $\tilde{z} = [\tilde{y}, \tilde{x}]$.

•
$$\tilde{x}^{2^{n_1}} = a^{2^{n_1}} = 1.$$

•
$$\widetilde{x}^2 = a^2 \in \mathcal{Z}(kH)$$
 implies

$$1 = [\widetilde{y}, \widetilde{x}^2] = \widetilde{z} \ \widetilde{z}^{\widetilde{x}} \quad \Rightarrow \quad \widetilde{z}^{\widetilde{x}} = \widetilde{z}^{-1}.$$

(We used the formula $[u, v \cdot w] = [u, v] \cdot [u, w]^{v}$.)

G is an epimorphic image of G (II)

• Observe that a^2 , b^4 , c^2 and $b^2c \in \mathcal{Z}(H)$ and the conjugacy class of b in H is $\{b, bc\}$. Then

$$\widetilde{y}^2 = b^4c^2 + a^2(b^2c + b^4c^2) + a^2b^2c(b+bc) \in \mathcal{Z}(kH).$$

G is an epimorphic image of G (II)

• Observe that a^2 , b^4 , c^2 and $b^2c \in \mathcal{Z}(H)$ and the conjugacy class of b in H is $\{b, bc\}$. Then

$$\widetilde{y}^2 = b^4c^2 + a^2(b^2c + b^4c^2) + a^2b^2c(b+bc) \in \mathcal{Z}(kH).$$

Thus

$$1 = [\widetilde{y}^2, \widetilde{x}] = \widetilde{z}^{\widetilde{y}} \ \widetilde{z} \quad \Rightarrow \quad \widetilde{z}^{\widetilde{y}} = \widetilde{z}^{-1}.$$

(Here we used the formula $[u \cdot w, v] = [u, v]^w \cdot [w, v]$.)

G is an epimorphic image of G (II)

• Observe that a^2 , b^4 , c^2 and $b^2c \in \mathcal{Z}(H)$ and the conjugacy class of b in H is $\{b, bc\}$. Then

$$\widetilde{y}^2 = b^4c^2 + a^2(b^2c + b^4c^2) + a^2b^2c(b+bc) \in \mathcal{Z}(kH).$$

Thus

$$1 = [\widetilde{y}^2, \widetilde{x}] = \widetilde{z}^{\widetilde{y}} \ \widetilde{z} \quad \Rightarrow \quad \widetilde{z}^{\widetilde{y}} = \widetilde{z}^{-1}.$$

(Here we used the formula $[u \cdot w, v] = [u, v]^w \cdot [w, v]$.) • Finally,

$$\begin{split} \widetilde{y}^{2^{n_2}} &= (\widetilde{y}^2)^{2^{n_2-1}} = b^{2^{n_2+1}} c^{2^{n_2}} + a^{2^{n_2}} (b^{2^{n_2}} c^{2^{n_2-1}} + b^{2^{n_2+1}} c^{2^{n_2}}) \\ &+ a^{2^{n_2}} b^{2^{n_2}} c^{2^{n_2-1}} (b^{2^{n_2-1}} + b^{2^{n_2-1}} c^{2^{n_2-1}}) \\ &= 1. \end{split}$$

Diego García-Lucas (joint with Leo Margolis and Ángel del Ri A counterexample to the modular isomorphism problem

G is an epimorphic image of G (III)

• Denote
$$J = (c - 1)kH$$
.

• Observe that $c^4 = 1$ implies

$$J^4 = (c^4 - 1)kH = 0.$$

• Since kH/J is commutative we have that

$$V(kH)' \subseteq 1+J.$$

Hence

$$z^4 \in ig(V(kH)'ig)^4 \subseteq (1+J)^4 = 1 + J^4 = 1.$$

G is an epimorphic image of G (III)

• Denote
$$J = (c - 1)kH$$
.

• Observe that $c^4 = 1$ implies

$$J^4 = (c^4 - 1)kH = 0.$$

• Since kH/J is commutative we have that

$$V(kH)' \subseteq 1+J.$$

Hence

$$z^4 \in ig(V(kH)'ig)^4 \subseteq (1+J)^4 = 1 + J^4 = 1.$$

This proves that $G \twoheadrightarrow \widetilde{G}$.

Results that we will use

Proposition

Let A be a finite dimensional algebra over a field, J(A) its Jacobson radical and B a subalgebra of A. Then

A = B + J(A) implies A = B.

Results that we will use

Proposition

Let A be a finite dimensional algebra over a field, J(A) its Jacobson radical and B a subalgebra of A. Then

A = B + J(A) implies A = B.

Since $I(kH)^2$ is the Jacobson radical of I(kH),

Corollary

Let g_1, \ldots, g_d be a generating set for H. Then for any $\alpha_1, \ldots, \alpha_d \in I(kH)^2$,

$$g_1 - 1 + \alpha_1, \ldots, g_d - 1 + \alpha_d$$
 generate $I(kH)$.

\widetilde{G} contains a basis kH

Observe that

$$c-1\in H'-1\subseteq I(kH)^2$$

•
$$\tilde{x} = a$$
.

Diego García-Lucas (joint with Leo Margolis and Ángel del Ri A counterexample to the modular isomorphism problem

G contains a basis kH

Observe that

$$c-1\in H'-1\subseteq I(kH)^2$$

- $\tilde{x} = a$.
- It holds

$$\begin{split} \tilde{y} &= b(a+b+ab)c\\ &\equiv b(a+b+ab)\\ &= b(1+(1+a)(1+b))\\ &\equiv b \mod l(kH)^2 \end{split}$$

• By the Corollary $\tilde{x} - 1$ and $\tilde{y} - 1$ generate I(kH).

G contains a basis kH

Observe that

$$c-1\in H'-1\subseteq I(kH)^2$$

- $\tilde{x} = a$.
- It holds

$$\tilde{y} = b(a+b+ab)c$$

$$\equiv b(a+b+ab)$$

$$= b(1+(1+a)(1+b))$$

$$\equiv b \mod l(kH)^2$$

By the Corollary x̃ - 1 and ỹ - 1 generate I(kH).
x̃, ỹ, 1 generate kH.

ELE DOG

\widetilde{G} contains a basis kH

Observe that

$$c-1\in H'-1\subseteq I(kH)^2$$

- $\tilde{x} = a$.
- It holds

$$\tilde{y} = b(a+b+ab)c$$

$$\equiv b(a+b+ab)$$

$$= b(1+(1+a)(1+b))$$

$$\equiv b \mod I(kH)^2$$

- By the Corollary $\tilde{x} 1$ and $\tilde{y} 1$ generate I(kH) .
- $\tilde{x}, \tilde{y}, 1$ generate kH.
- $\tilde{G} = \langle \tilde{x}, \tilde{y} \rangle$ generates kH as a vector space.

Diego García-Lucas (joint with Leo Margolis and Ángel del Ri A counterexample to the modular isomorphism problem

Proof of the theorem

We have proved:

- \tilde{G} is an epimorphic image of G. In particular $|\tilde{G}| \leq |G|$.
- \tilde{G} contains a basis of kH.

Hence

$$|G| = |H| = \dim_k(kH) \le |\tilde{G}| \le |G|,$$

Proof of the theorem

We have proved:

- \tilde{G} is an epimorphic image of G. In particular $|\tilde{G}| \leq |G|$.
- \tilde{G} contains a basis of kH.

Hence

$$|G| = |H| = \dim_k(kH) \le |\tilde{G}| \le |G|,$$

SO

$$\tilde{G} \cong G$$
 and \tilde{G} is a basis of kH .

Q.E.D.

Introduction The counterexample Remarks and open questions

Non-invariants

Let $n_1 = 4$ and $n_2 = 3$. Then $|G| = |H| = 2^9$,

Diego García-Lucas (joint with Leo Margolis and Ángel del Ri A counterexample to the modular isomorphism problem

Introduction	Fading the second glimmer of hope
	Proof of the theorem
The counterexample	Remarks and open questions

Non-invariants

Let
$$n_1 = 4$$
 and $n_2 = 3$. Then $|G| = |H| = 2^9$,
 $\exp(C_G(G')) = 2^3$, and $\exp(C_H(H')) = 2^4$;
 $|\operatorname{Aut}(G)| = 2^{15}$, and $|\operatorname{Aut}(H)| = 2^{14}$;

回 とう モン・ モン

1 = 9QC

Introduction	Fading the second glimmer of hope
The counterexample	Proof of the theorem
	Remarks and open guestions

Non-invariants

Let
$$n_1 = 4$$
 and $n_2 = 3$. Then $|G| = |H| = 2^9$,

$$\exp(C_G(G')) = 2^3$$
, and $\exp(C_H(H')) = 2^4$;
 $|Aut(G)| = 2^{15}$, and $|Aut(H)| = 2^{14}$;

Let N(G) be the number of conjugacy classes of cyclic subgroups of G.

$$N(G) = 66$$
, and $N(H) = 62$

E > 4 E >

Introduction The counterexample	Fading the second glimmer of hope Proof of the theorem
	Remarks and open guestions

Non-invariants

Let
$$n_1 = 4$$
 and $n_2 = 3$. Then $|G| = |H| = 2^9$,

$$\exp(C_G(G')) = 2^3$$
, and $\exp(C_H(H')) = 2^4$;
 $|Aut(G)| = 2^{15}$, and $|Aut(H)| = 2^{14}$;

Let N(G) be the number of conjugacy classes of cyclic subgroups of G.

$$N(G) = 66$$
, and $N(H) = 62$

Corollary

The following group-theoretical invariants are not determined by kG:

- The exponent of $C_G(G')$.
- The size of Aut(G).
- The number of conjugacy classes of cyclic subgroups of G.

Diego García-Lucas (joint with Leo Margolis and Ángel del Ri A counterexample to the modular isomorphism problem

Questions

 $N(G) \neq N(H)$ implies $\mathbb{Q}G \ncong \mathbb{Q}H$. (because N(G) is the number of the indecomposable direct summands of $\mathbb{Q}G$)

Questions

$$N(G) \neq N(H)$$
 implies $\mathbb{Q}G \ncong \mathbb{Q}H$.

(because N(G) is the number of the indecomposable direct summands of $\mathbb{Q}G$)

Question 5

Let G and H be finite p-groups.

 $RG \cong RH$ for every field R implies $G \cong H$?

Diego García-Lucas (joint with Leo Margolis and Ángel del Ri A counterexample to the modular isomorphism problem

Relation with the known results

MIP has positive answer	G and H
2-generated with cyclic derived subgroup and nilpotency class 2	2-generated with cyclic derived subgroup and nilpotency class 3
2-generated with nilpotency class 3 and elementary abelian derived subgroup	2-generated with nilpotency class 3 and cyclic derived subgroup of order 4
Order 2 ⁸	Order 2^n with $n \ge 9$.

Questions (II)

Question 6

Has MIP a positive answer for *p*-groups of odd order (i.e., with p > 2)? The following families are of special interest:

- *p*-groups with cyclic derived subgroup
- *p*-groups which are 2-generated.
- *p*-groups with nilpotency class 3.

Questions (II)

Question 6

Has MIP a positive answer for *p*-groups of odd order (i.e., with p > 2)? The following families are of special interest:

- *p*-groups with cyclic derived subgroup
- p-groups which are 2-generated.
- *p*-groups with nilpotency class 3.

Theorem (G-L, del Río, Stanojkovski)

Let G be finite p-group, p > 2, with cyclic derived subgroup, and F be an arbitrary field of characteristic p. Then

 $\exp(C_G(G'))$

is determined by FG.

Questions (III)

Question 7

Does MIP has positive answer for *p*-groups of nilpotency class 2?

It was already mentioned in Sandling's survey "The isomorphism problem for group rings" in 1985:

"Nonetheless, it is a sad reflection on the state of the modular isomorphism problem that the case of class 2 groups is yet to be decided in general."

Questions (III)

Question 7

Does MIP has positive answer for *p*-groups of nilpotency class 2?

It was already mentioned in Sandling's survey "The isomorphism problem for group rings" in 1985:

"Nonetheless, it is a sad reflection on the state of the modular isomorphism problem that the case of class 2 groups is yet to be decided in general."

Let k be the field with p elements.

Question 8

There exist finite p-groups G and H and a field F of characteristic p such that

 $FG \cong FH$ but $kG \not\cong kH$?

References I

C. Bagiński, The isomorphism question for modular group algebras of metacyclic p-groups, Proc. Amer. Math. Soc. 104 (1988), no. 1, 39-42. . On the isomorphism problem for modular group algebras of elementary abelian-by-cyclic p-groups. Collog, Math. 82 (1999), no. 1, 125-136. C. Bagiński and A. Caranti, The modular group algebras of p-groups of maximal class, Canad. J. Math. 40 (1988), no. 6, 1422-1435. O. Broche and Á. del Río, The Modular Isomorphism Problem for two generated groups of class two, https://arxiv.org/abs/2003.13281, Indian Journal of Pure and Applied Mathematics, in press (2020). C. Bagiński and A. Konovalov. The modular isomorphism problem for finite p-groups with a cyclic subgroup of index p². Groups St. Andrews 2005. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 339, Cambridge Univ. Press. Cambridge, 2007, pp. 186-193. R. Brauer, Representations of finite groups, Lectures on Modern Mathematics, Vol. I, Wiley, New York, 1963. pp. 133-175. J. F. Carlson, Periodic modules over modular group algebras, J. London Math. Soc. (2) 15 (1977), no. 3, 431-436. E. Dade, Deux groupes finis distincts ayant la même algèbre de groupe sur tout corps, Math. Z. 119 (1971), 345-348.

References II

- W. E. Deskins, Finite Abelian groups with isomorphic group algebras, Duke Math. J. 23 (1956), 35–40. MR 77535
 V. Drensky, The isomorphism problem for modular group algebras of groups with large centres.
 - V. Drensky, *The isomorphism problem for modular group algebras of groups with large centres*, Representation theory, group rings, and coding theory **93** (1989), 145–153.
 - B. Eick, Computing automorphism groups and testing isomorphisms for modular group algebras, J. Algebra 320 (2008), no. 11, 3895–3910.
 - B. Eick and A. Konovalov, *The modular isomorphism problem for the groups of order 512*, Groups St Andrews 2009 in Bath. Volume 2, London Math. Soc. Lecture Note Ser., vol. 388, Cambridge Univ. Press, Cambridge, 2011, pp. 375–383.

- D. García-Lucas, L. Margolis, and Á. del Río, Non-isomorphic 2-groups with isomorphic modular group algebras, J. Reine Angew. Math. **154** (2022), no. 783, 269–274.
- G. Higman, Units in group rings, 1940, Thesis (Ph.D.)-Univ. Oxford.

_____, The units of group-rings, Proc. London Math. Soc. (2) 46 (1940), 231-248.

M. Hertweck and M. Soriano, *On the modular isomorphism problem: groups of order* 2⁶, Groups, rings and algebras, Contemp. Math., vol. 420, Amer. Math. Soc., Providence, RI, 2006, pp. 177–213.

R. L. Kruse and D. T. Price, *Nilpotent rings*, Gordon and Breach Science Publishers, New York-London-Paris, 1969.

References III

- L. Margolis, The Modular Isomorphism Problem: A Survey, Jahresber. Dtsch. Math. Ver. (2022).
- L. Margolis and T. Moede, The Modular Isomorphism Problem for small groups revisiting Eick's algorithm, arXiv:2010.07030, https://arxiv.org/abs/2010.07030.

F

L. Margolis and M. Stanojkovski, On the modular isomorphism problem for groups of class 3 and obelisks, 2022.

______, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977.

- K. W. Roggenkamp and L. Scott, *Isomorphisms of p-adic group rings*, Ann. of Math. (2) **126** (1987), no. 3, 593–647.
- R. Sandling, *The modular group algebra of a central-elementary-by-abelian p-group*, Arch. Math. (Basel) **52** (1989), no. 1, 22–27.

_____, The modular group algebra problem for metacyclic p-groups, Proc. Amer. Math. Soc. 124 (1996), no. 5, 1347–1350.

M. A. M. Salim and R. Sandling, *The modular group algebra problem for groups of order p*⁵, J. Austral. Math. Soc. Ser. A **61** (1996), no. 2, 229–237.

References IV

A. Weiss, Rigidity of p-adic p-torsion, Ann. of Math. (2) 127 (1988), no. 2, 317-332.

A. Whitcomb, *The Group Ring Problem*, ProQuest LLC, Ann Arbor, MI, 1968, Thesis (Ph.D.)–The University of Chicago.

Diego García-Lucas (joint with Leo Margolis and Ángel del Ri A counterexample to the modular isomorphism problem

Thanks for your attention

Diego García-Lucas (joint with Leo Margolis and Ángel del Ri A counterexample to the modular isomorphism problem

ミ▶ ▲ ミ ▶ 三日日 つへ⊙