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Group rings

Let R be a ring and G a finite group.

Let

RG =

∑
g∈G

rgg , with rg ∈ R


With the product of the group extended linearly and the
obvious sum, RG is a ring.

If R is a commutative ring, RG has estructure of R-algebra.

Notation: unless stated otherwise,

R will be an arbitrary coommutative ring or field,

F a field of characteristic p, and

k the field with p elements.
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The isomorphism problem

Let R be a ring and G ,H finite groups.

Isomorphism problem

Does RG ∼= RH implies G ∼= H?

It has obviously negative answer in general: if G and H are abelian
groups and have the same order, then CG ∼= CH.

The isomorphism problem is the same as the question “If H is a
group basis of RG , then G ∼= H?”
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The Isomorphism Problem for fields

Question 1

Does RG ∼= RH for every field R implies G ∼= H?

Theorem (Passman, 1965)

There exists a set of
p

2
27

(n3−23n2)

nonisomorphic p-groups of order pn that have isomorphic group
algebras over all fields of characteristic not equal to p.

Question 1, however, has negative answer in general:

Theorem (Dade, 1971)

There exist two non-isomorphic metabelian finite groups G and H,
with order divisible by two diferent primes, such that RG ∼= RH for
every field R.
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The Modular Isomorphism Problem

Fix an integer prime p. Let G and H finite p-groups.

Question 2

Does FG ∼= FH for each field F of characteristic p implies G ∼= H?

If k is the field with p element then

kG ∼= kH ⇒ FG ∼= F ⊗k kG ∼= F ⊗k kH ∼= FH

for each field F with characteristic p.

Hence Question 2 is equivalent to:

Question 2’, or Modular Isomorphism Problem (MIP)

If k the field with p elements, does kG ∼= kH implies G ∼= H?

This question was explicitly mentioned by R. Brauer in a survey in
1963.
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The Isomorphism Problem with integral coefficients

Let G and H finite groups.

Question 3

Does RG ∼= RH for every ring R implies G ∼= H?

Since

ZG ∼= ZH ⇒ RG ∼= R ⊗Z ZG ∼= R ⊗Z ZH ∼= RH,

this question is equivalent to

Question 3’, or Isomorphism Problem with integral coefficients

Does ZG ∼= ZH implies G ∼= H?

“There are, however, two glimmers of hope. The first one concerns
integral group rings, and the second concern p-groups over GF (p)”
(The algebraic structure of group rings, Passman, 1977)
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The first glimmer of hope

Theorem (Higman, 1940)

If G and H are abelian groups, then ZG ∼= ZH implies G ∼= H.

Theorem (Whitcomb, 1968)

If G and H are metabelian groups, then ZG ∼= ZH implies G ∼= H.

Theorem (Roggenkamp-Scott, 1987)

If G and H are p-groups, then ZG ∼= ZH implies G ∼= H.

Theorem (Weiss, 1988)

If G and H are nilpotent groups, then ZG ∼= ZH implies G ∼= H.
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Fading the first glimmer of hope

Theorem (Hertweck, 2001)

There exist two nonisomorphic groups with order 221 · 9728 such
that

ZG ∼= ZH.
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The second glimmer of hope

Fix an integer prime p. Let G and H finite p-groups.

Question 2

Does FG ∼= FH for each field F of characteristic p implies G ∼= H?

Is equivalent to:

Question 2’, or Modular Isomorphism Problem (MIP)

If k the field with p elements, does kG ∼= kH implies G ∼= H?

Question 2”

If F is a fixed field of characteristic p, does FG ∼= FH implies
G ∼= H?

A positive answer to Question 2” implies a positive answer to MIP.
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The second glimmer of hope: Positive results to the MIP

(arbitrary field of characteristic p/only the prime field/relevant)

abelian p-groups (Deskins, 1956);

p-groups of small order:
Not computer aided results:

p-groups of order at most p4 (Passman, 1965);
2-groups with order 25 (Makasikis, 1976; Navarro-Sambale,
2017);
p-groups with order p5 (Salim-Sandling, 1996);
2-groups with order 26 (Hertweck-Soriano, 2006);

Computer aided results:

• Groups of order 26 (Wursthorn, 1990);
• Groups of order 27 (Wursthorn, 1997);
• Groups of order 28 and 36 (Eick, 2008, revised by

Margolis-Moede, 2020);
• Groups of order 56 (with exceptions) and 37 (Margolis-Moede,

2020, based on Eick’s algorithm).
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Positive results to the MIP (II)

p-groups with trivial third dimension subgroup (Passi-Sehgal,
1972).
2-groups of maximal class (Carlson, 1977).
p-groups of maximal class, with order not greater than pp+1

and with a maximal subgroup which is abelian
(Bagiński-Caranti, 1988);
p-groups of nilpotency class 2 with elementary abelian derived
subgroup (Sandling, 1989).
p-groups with center of index p2 (Drensky, 1989);
Metacyclic p-groups (Bagiński, 1988, for p > 3, completed by
Sandling, 1996).
Elementary-abelian-by-cyclic p-groups (Bagiński, 1999).
2-generated p-group with nilpotency class 3 and
elementary abelian derived subgroup (Bagiński, 1999;
Margolis-Moede, 2020).
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Positive results to the MIP (III)

2-groups of almost maximal class (Bagiński-Konovalov, 2004);

Groups with trivial fourth dimension subgroup for p > 2
(Hertweck, 2007).

p-groups with a cyclic subgroup of index p2

(Bagiński-Konovalov, 2007);

3-groups of maximal class (except two families of groups)
(Bagiński-Kurdics, 2019)

p-groups 2-generated of nilpotency class 2 with cyclic
derived subgroup (Broche-del Ŕıo, 2019). (p > 2; p = 2);

2-groups of nilpotency class 3 s.t. [G : Z(G )] = |Φ(G )| = 8
(Margolis-Sakurai-Stanojkovski, 2021);

2-groups with cyclic centre such that G/Z(G ) is dihedral
(Margolis-Sakurai-Stanojkovski, 2021).
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The modular group algebra

Let F be a field of characteristic p, and G a finite p-group.

The augmentation map is

ε : FG → F ,
∑
g∈G

rgg 7→
∑
g∈G

rg (rg ∈ F ).

I (FG ) := ker(ε) is the Jacobson radical of FG .

I (FG ) is nilpotent.

FG is a local ring, i.e.,

FG = F + I (FG ).

The group of units of FG is FG \ I (FG ).

V (FG ) = 1 + I (FG ) is called the group of normalized units.
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Contrasts: Maschke Theorem

Let R be a field and G a finite group.

If char(R) - |G |, then RG is semisimple. Hence we can apply
the Wedderburn decomposition theorem, so

RG = ⊕Mni×ni (Di ),

where Mni×ni (Di ) is the ni × ni -matrix ring over a division
ring Di .

If char(R) | |G | then

RG = b1RG ⊕ b2RG ⊕ · · · ⊕ bnRG ,

where {b1, . . . , bn} is a complete set of orthogonal primitive
central idempotents.

If char(R) = p and |G | = pN , then {b1, . . . , bn} = {1},

RG = R + I (RG ).
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The modular group algebra

Let F be a field of characteristic p, and G a finite p-group. The
subgroup of G

Mi (G ) = G ∩ (1 + I (FG )i ) (i ≥ 1)

is called the i-th dimension subgroup of G .

Theorem (Jennings, 1941)

The dimension subgroups satisfy the recursive relation

M1(G ) = G ;

Mi (G ) = [Mi−1(G ),G ]Md i
p
e(G )p (i ≥ 2)
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Jennings bases

Theorem (Jennings, 1941)

Assume n is an integer such that Mn(G ) = 1. Let g1, . . . , g` be
the union of the bases of

M1(G )

M2(G )
,
M2(G )

M3(G )
, . . . ,

Mn−1(G )

Mn(G )

when these quotients are viewed as vector spaces over the field
with p elements. Then the set

B =

{∏̀
i=1

(g1 − 1)α1 . . . (g` − 1)α` : 0 ≤ αi < p, α1 . . . α` 6= 0

}

is a basis of I (FG ).
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Jennings bases

Proposition (Jennings, 1941)

Let B be a Jennings basis. Then there is a sequence of subsets

B = B1 ⊇ B2 ⊇ . . .

such that for each t ≥ 1,

I (FG )t = spanFBt .
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The concept of Hertweck-Soriano

Let k be the field with p elements.

Lemma (Passi-Sehgal)

Let J be a multiplicatively closed subspace of kG . If

G ∩ (1 + J + I (FG )n) =Mn(G ) for each n ≥ 1 (?)

then
G̃ ∩ (1 + J + I (FG )n) =Mn(G̃ )

for each group basis G̃ and each n ≥ 1. In particular

G̃ ∩ (1 + J) = 1.
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The concept of Hertweck-Soriano

Start with a group basis G .

Use a Jennings basis to construct an ideal J verifying (?).

Then G̃ ∩ (1 + J) = 1 for each group basis G̃ .

Thus every group basis G̃ embeds into V (FG/J).

Find all the subgroups in V (FG/J) of order |G |.

If all of them are isomorphic to G , we are done.
If any of them is not isomorphic to G , consider all its
preimages in FG .
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The groups

For n1 > n2 > 2, consider the groups

G =
〈
x , y , z | z = [y , x ], x2n1 = y2n2 = z4 = 1, zx = zy = z−1

〉
H =

〈
a, b, c | c = [b, a], a2n1 = b2n2 = c4 = 1, ca = c−1, cb = c

〉
(notation: xy = y−1xy and [y , x ] = y−1x−1yx)
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G and H are non-isomorphic

CG (G ′) =
〈
z , x2, xy

〉
⇒ CG (G ′)

G ′
=
〈
x2G ′, xyG ′

〉
has exponent 2n1 .

since |x | = |xG ′| = 2n1 , |y | = |yG ′| = 2n2 < 2n1 .

CH(H ′) =
〈
c , a2, b

〉
⇒ CG (H ′)

H ′
=
〈
a2H ′, bH ′

〉
has exponent 2n1−1.

since |a| = |aH ′| = 2n1 , |b| = |bH ′| = 2n2 < 2n1 .
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Fading the second glimmer of hope

For n1 > n2 > 2, consider the groups

G =
〈
x , y , z | z = [y , x ], x2n1 = y2n2 = z4 = 1, zx = zy = z−1

〉
H =

〈
a, b, c | c = [b, a], a2n1 = b2n2 = c4 = 1, ca = c−1, cb = c

〉
Theorem (G-L, Margolis, del Ŕıo)

The groups G and H are non-isomorphic but if F is a field of
characteristic 2 then the group algebras FG and FH are isomorphic.
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Fading the second glimmer of hope
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Remarks and open questions

The group G̃

Remark

If k is the field with two element then

kG ∼= kH ⇒ FG ∼= F ⊗k kG ∼= F ⊗k kH ∼= FH

for each field F with characteristic 2 .

From now on we will work in kH. Write

x̃ = a and ỹ = b(a + b + ab)c .

Consider
G̃ = 〈x̃ , ỹ〉 ⊆ V (kH).
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Fading the second glimmer of hope
Proof of the theorem
Remarks and open questions

G̃ is an epimorphic image of G .

Recall that

G =
〈
x , y , z | z = [y , x ], x2n1 = y2n2 = z4 = 1, zx = z−1, zy = z−1

〉
Write z̃ = [ỹ , x̃ ].

x̃2n1 = a2n1 = 1.

x̃2 = a2 ∈ Z(kH) implies

1 = [ỹ , x̃2] = z̃ z̃ x̃ ⇒ z̃ x̃ = z̃−1.

(We used the formula [u, v · w ] = [u, v ] · [u,w ]v .)
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x̃2n1 = a2n1 = 1.

x̃2 = a2 ∈ Z(kH) implies
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G̃ is an epimorphic image of G (II)

Observe that a2, b4, c2 and b2c ∈ Z(H) and the conjugacy
class of b in H is {b, bc}. Then

ỹ2 = b4c2 + a2(b2c + b4c2) + a2b2c(b + bc) ∈ Z(kH).

Thus
1 = [ỹ2, x̃ ] = z̃ ỹ z̃ ⇒ z̃ ỹ = z̃−1.

(Here we used the formula [u · w , v ] = [u, v ]w · [w , v ].)

Finally,

ỹ2n2 = (ỹ2)2n2−1
= b2n2+1

c2n2 + a2n2 (b2n2 c2n2−1
+ b2n2+1

c2n2 )

+ a2n2b2n2 c2n2−1
(b2n2−1

+ b2n2−1
c2n2−1

)

= 1.

Diego Garćıa-Lucas (joint with Leo Margolis and Ángel del Ŕıo) A counterexample to the modular isomorphism problem



Introduction
The counterexample

Fading the second glimmer of hope
Proof of the theorem
Remarks and open questions

G̃ is an epimorphic image of G (II)

Observe that a2, b4, c2 and b2c ∈ Z(H) and the conjugacy
class of b in H is {b, bc}. Then

ỹ2 = b4c2 + a2(b2c + b4c2) + a2b2c(b + bc) ∈ Z(kH).

Thus
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ỹ2n2 = (ỹ2)2n2−1
= b2n2+1

c2n2 + a2n2 (b2n2 c2n2−1
+ b2n2+1

c2n2 )

+ a2n2b2n2 c2n2−1
(b2n2−1

+ b2n2−1
c2n2−1

)

= 1.
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Fading the second glimmer of hope
Proof of the theorem
Remarks and open questions

G̃ is an epimorphic image of G (III)

Denote J = (c − 1)kH.

• Observe that c4 = 1 implies

J4 = (c4 − 1)kH = 0.

• Since kH/J is commutative we have that

V (kH)′ ⊆ 1 + J.

Hence

z4 ∈
(
V (kH)′

)4 ⊆ (1 + J)4 = 1 + J4 = 1.

This proves that G � G̃ .

Diego Garćıa-Lucas (joint with Leo Margolis and Ángel del Ŕıo) A counterexample to the modular isomorphism problem



Introduction
The counterexample

Fading the second glimmer of hope
Proof of the theorem
Remarks and open questions

G̃ is an epimorphic image of G (III)

Denote J = (c − 1)kH.

• Observe that c4 = 1 implies

J4 = (c4 − 1)kH = 0.

• Since kH/J is commutative we have that

V (kH)′ ⊆ 1 + J.

Hence

z4 ∈
(
V (kH)′

)4 ⊆ (1 + J)4 = 1 + J4 = 1.

This proves that G � G̃ .
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Results that we will use

Proposition

Let A be a finite dimensional algebra over a field, J(A) its
Jacobson radical and B a subalgebra of A. Then

A = B + J(A) implies A = B.

Since I (kH)2 is the Jacobson radical of I (kH),

Corollary

Let g1, . . . , gd be a generating set for H. Then for any
α1, . . . , αd ∈ I (kH)2,

g1 − 1 + α1, . . . , gd − 1 + αd generate I (kH).
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Fading the second glimmer of hope
Proof of the theorem
Remarks and open questions

G̃ contains a basis kH

Observe that
c − 1 ∈ H ′ − 1 ⊆ I (kH)2

x̃ = a.

It holds

ỹ = b(a + b + ab)c

≡ b(a + b + ab)

= b(1 + (1 + a)(1 + b))

≡ b mod I (kH)2

By the Corollary x̃ − 1 and ỹ − 1 generate I (kH) .

x̃ , ỹ , 1 generate kH.

G̃ = 〈x̃ , ỹ〉 generates kH as a vector space.
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Proof of the theorem

We have proved:

G̃ is an epimorphic image of G . In particular |G̃ | ≤ |G |.
G̃ contains a basis of kH.

Hence
|G | = |H| = dimk(kH) ≤ |G̃ | ≤ |G |,

so
G̃ ∼= G and G̃ is a basis of kH.

Q.E.D.
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Remarks and open questions

Non-invariants

Let n1 = 4 and n2 = 3. Then |G | = |H| = 29,

exp(CG (G ′)) = 23, and exp(CH(H ′)) = 24;

|Aut(G )| = 215, and |Aut(H)| = 214;

Let N(G ) be the number of conjugacy classes of cyclic subgroups
of G .

N(G ) = 66, and N(H) = 62

Corollary

The following group-theoretical invariants are not determined by
kG :

The exponent of CG (G ′).

The size of Aut(G ).

The number of conjugacy classes of cyclic subgroups of G .
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Questions

N(G ) 6= N(H) implies QG 6∼= QH.

(because N(G ) is the number of the indecomposable direct
summands of QG )

Question 5

Let G and H be finite p-groups.

RG ∼= RH for every field R implies G ∼= H?
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Relation with the known results

MIP has positive answer G and H

2-generated with cyclic derived 2-generated with cyclic derived
subgroup and nilpotency class 2 subgroup and nilpotency class 3

2-generated with nilpotency class 3 2-generated with nilpotency class 3
and elementary abelian derived and cyclic derived subgroup
subgroup of order 4

Order 28 Order 2n with n ≥ 9.

Diego Garćıa-Lucas (joint with Leo Margolis and Ángel del Ŕıo) A counterexample to the modular isomorphism problem



Introduction
The counterexample

Fading the second glimmer of hope
Proof of the theorem
Remarks and open questions

Questions (II)

Question 6

Has MIP a positive answer for p-groups of odd order (i.e., with
p > 2)? The following families are of special interest:

p-groups with cyclic derived subgroup

p-groups which are 2-generated.

p-groups with nilpotency class 3.

Theorem (G-L, del Ŕıo, Stanojkovski)

Let G be finite p-group, p > 2, with cyclic derived subgroup, and
F be an arbitrary field of characteristic p. Then

exp(CG (G ′))

is determined by FG .
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Questions (III)

Question 7

Does MIP has positive answer for p-groups of nilpotency class 2?

It was already mentioned in Sandling’s survey “The isomorphism
problem for group rings” in 1985:
“Nonetheless, it is a sad reflection on the state of the modular
isomorphism problem that the case of class 2 groups is yet to be
decided in general.”

Let k be the field with p elements.

Question 8

There exist finite p-groups G and H and a field F of characteristic
p such that

FG ∼= FH but kG 6∼= kH?
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Diego Garćıa-Lucas (joint with Leo Margolis and Ángel del Ŕıo) A counterexample to the modular isomorphism problem



Appendix References

References IV

A. Weiss, Rigidity of p-adic p-torsion, Ann. of Math. (2) 127 (1988), no. 2, 317–332.

A. Whitcomb, The Group Ring Problem, ProQuest LLC, Ann Arbor, MI, 1968, Thesis (Ph.D.)–The

University of Chicago.
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