A counterexample to the modular isomorphism problem

Diego García-Lucas
(joint with Leo Margolis and Ángel del Río)
University of Murcia

Algebra and Logic Seminar, Departament of Algebra and Logic, IMI/BAS May 13, 2022

Table of contents

(1) Introduction

- The isomorphism problem
- The modular isomorphism problem
- The modular group algebra
(2) The counterexample
- Fading the second glimmer of hope
- Proof of the theorem
- Remarks and open questions

Group rings

Let R be a ring and G a finite group.

- Let

$$
R G=\left\{\sum_{g \in G} r_{g} g, \quad \text { with } r_{g} \in R\right\}
$$

With the product of the group extended linearly and the obvious sum, $R G$ is a ring.

Group rings

Let R be a ring and G a finite group.

- Let

$$
R G=\left\{\sum_{g \in G} r_{g} g, \quad \text { with } r_{g} \in R\right\}
$$

With the product of the group extended linearly and the obvious sum, $R G$ is a ring.

- If R is a commutative ring, $R G$ has estructure of R-algebra.

Group rings

Let R be a ring and G a finite group.

- Let

$$
R G=\left\{\sum_{g \in G} r_{g} g, \quad \text { with } r_{g} \in R\right\}
$$

With the product of the group extended linearly and the obvious sum, $R G$ is a ring.

- If R is a commutative ring, $R G$ has estructure of R-algebra.

Notation: unless stated otherwise,

- R will be an arbitrary coommutative ring or field,
- F a field of characteristic p, and
- k the field with p elements.

The isomorphism problem

Let R be a ring and G, H finite groups.

Isomorphism problem

Does $R G \cong R H$ implies $G \cong H$?
It has obviously negative answer in general: if G and H are abelian groups and have the same order, then $\mathbb{C} G \cong \mathbb{C H}$.

The isomorphism problem

Let R be a ring and G, H finite groups.
Isomorphism problem
Does $R G \cong R H$ implies $G \cong H$?
It has obviously negative answer in general: if G and H are abelian groups and have the same order, then $\mathbb{C} G \cong \mathbb{C H}$.

The isomorphism problem is the same as the question "If H is a group basis of $R G$, then $G \cong H$?"

The Isomorphism Problem for fields

Question 1

Does $R G \cong R H$ for every field R implies $G \cong H$?

The Isomorphism Problem for fields

Question 1

Does $R G \cong R H$ for every field R implies $G \cong H$?

Theorem (Passman, 1965)

There exists a set of

$$
p^{\frac{2}{27}}\left(n^{3}-23 n^{2}\right)
$$

nonisomorphic p-groups of order p^{n} that have isomorphic group algebras over all fields of characteristic not equal to p.

The Isomorphism Problem for fields

Question 1

Does $R G \cong R H$ for every field R implies $G \cong H$?

Theorem (Passman, 1965)

There exists a set of

$$
p^{\frac{2}{27}\left(n^{3}-23 n^{2}\right)}
$$

nonisomorphic p-groups of order p^{n} that have isomorphic group algebras over all fields of characteristic not equal to p.

Question 1, however, has negative answer in general:

Theorem (Dade, 1971)

There exist two non-isomorphic metabelian finite groups G and H, with order divisible by two diferent primes, such that $R G \cong R H$ for every field R.

The Modular Isomorphism Problem

Fix an integer prime p. Let G and H finite p-groups.

Question 2

Does $F G \cong F H$ for each field F of characteristic p implies $G \cong H$?

The Modular Isomorphism Problem

Fix an integer prime p. Let G and H finite p-groups.

Question 2

Does $F G \cong F H$ for each field F of characteristic p implies $G \cong H$?
If k is the field with p element then

$$
k G \cong k H \quad \Rightarrow \quad F G \cong F \otimes_{k} k G \cong F \otimes_{k} k H \cong F H
$$

for each field F with characteristic p.

Hence Question 2 is equivalent to:
Question 2', or Modular Isomorphism Problem (MIP)
If k the field with p elements, does $k G \cong k H$ implies $G \cong H$?
This question was explicitly mentioned by R. Brauer in a survey in 1963.

The Isomorphism Problem with integral coefficients

Let G and H finite groups.

Question 3

Does $R G \cong R H$ for every ring R implies $G \cong H$?

The Isomorphism Problem with integral coefficients

Let G and H finite groups.

Question 3

Does $R G \cong R H$ for every ring R implies $G \cong H$?
Since

$$
\mathbb{Z} G \cong \mathbb{Z} H \quad \Rightarrow \quad R G \cong R \otimes_{\mathbb{Z}} \mathbb{Z} G \cong R \otimes_{\mathbb{Z}} \mathbb{Z} H \cong R H
$$

this question is equivalent to
Question 3', or Isomorphism Problem with integral coefficients
Does $\mathbb{Z} G \cong \mathbb{Z} H$ implies $G \cong H$?

The Isomorphism Problem with integral coefficients

Let G and H finite groups.

Question 3

Does $R G \cong R H$ for every ring R implies $G \cong H$?
Since

$$
\mathbb{Z} G \cong \mathbb{Z} H \quad \Rightarrow \quad R G \cong R \otimes_{\mathbb{Z}} \mathbb{Z} G \cong R \otimes_{\mathbb{Z}} \mathbb{Z} H \cong R H
$$

this question is equivalent to
Question 3', or Isomorphism Problem with integral coefficients
Does $\mathbb{Z} G \cong \mathbb{Z} H$ implies $G \cong H$?
"There are, however, two glimmers of hope. The first one concerns integral group rings, and the second concern p-groups over $G F(p)$ "
(The algebraic structure of group rings, Passman, 1977)

The first glimmer of hope

Theorem (Higman, 1940)

If G and H are abelian groups, then $\mathbb{Z} G \cong \mathbb{Z H}$ implies $G \cong H$.

The first glimmer of hope

Theorem (Higman, 1940)
 If G and H are abelian groups, then $\mathbb{Z} G \cong \mathbb{Z H}$ implies $G \cong H$.

Theorem (Whitcomb, 1968)

If G and H are metabelian groups, then $\mathbb{Z} G \cong \mathbb{Z} H$ implies $G \cong H$.

The first glimmer of hope

```
Theorem (Higman, 1940)
If \(G\) and \(H\) are abelian groups, then \(\mathbb{Z} G \cong \mathbb{Z} H\) implies \(G \cong H\).
```


Theorem (Whitcomb, 1968)

If G and H are metabelian groups, then $\mathbb{Z} G \cong \mathbb{Z} H$ implies $G \cong H$.

Theorem (Roggenkamp-Scott, 1987)
 If G and H are p-groups, then $\mathbb{Z} G \cong \mathbb{Z} H$ implies $G \cong H$.

The first glimmer of hope

Theorem (Higman, 1940)

If G and H are abelian groups, then $\mathbb{Z} G \cong \mathbb{Z H}$ implies $G \cong H$.

Theorem (Whitcomb, 1968)

If G and H are metabelian groups, then $\mathbb{Z} G \cong \mathbb{Z} H$ implies $G \cong H$.

Theorem (Roggenkamp-Scott, 1987)

If G and H are p-groups, then $\mathbb{Z} G \cong \mathbb{Z} H$ implies $G \cong H$.

Theorem (Weiss, 1988)

If G and H are nilpotent groups, then $\mathbb{Z} G \cong \mathbb{Z} H$ implies $G \cong H$.

Introduction The counterexample

Fading the first glimmer of hope

Theorem (Hertweck, 2001)

There exist two nonisomorphic groups with order $2^{21} \cdot 97^{28}$ such that

$$
\mathbb{Z} G \cong \mathbb{Z} H .
$$

The second glimmer of hope

Fix an integer prime p. Let G and H finite p-groups.

Question 2

Does $F G \cong F H$ for each field F of characteristic p implies $G \cong H$? Is equivalent to:

Question 2', or Modular Isomorphism Problem (MIP)

If k the field with p elements, does $k G \cong k H$ implies $G \cong H$?

Question 2"

If F is a fixed field of characteristic p, does $F G \cong F H$ implies $G \cong H$?

A positive answer to Question 2" implies a positive answer to MIP.

The second glimmer of hope: Positive results to the MIP

(arbitrary field of characteristic $p /$ only the prime field/relevant)

- abelian p-groups (Deskins, 1956);
- p-groups of small order:
- Not computer aided results:
- p-groups of order at most p^{4} (Passman, 1965);
- 2-groups with order 2^{5} (Makasikis, 1976; Navarro-Sambale, 2017);
- p-groups with order p^{5} (Salim-Sandling, 1996);
- 2-groups with order 2^{6} (Hertweck-Soriano, 2006);
- Computer aided results:
- Groups of order 2^{6} (Wursthorn, 1990);
- Groups of order 2^{7} (Wursthorn, 1997);
- Groups of order 2^{8} and 3^{6} (Eick, 2008, revised by Margolis-Moede, 2020);
- Groups of order 5^{6} (with exceptions) and 3^{7} (Margolis-Moede, 2020, based on Eick's algorithm).

Positive results to the MIP (II)

- p-groups with trivial third dimension subgroup (Passi-Sehgal, 1972).
- 2-groups of maximal class (Carlson, 1977).
- p-groups of maximal class, with order not greater than p^{p+1} and with a maximal subgroup which is abelian (Bagiński-Caranti, 1988);
- p-groups of nilpotency class 2 with elementary abelian derived subgroup (Sandling, 1989).
- p-groups with center of index p^{2} (Drensky, 1989);
- Metacyclic p-groups (Bagiński, 1988, for $p>3$, completed by Sandling, 1996).
- Elementary-abelian-by-cyclic p-groups (Bagiński, 1999).
- 2-generated p-group with nilpotency class 3 and elementary abelian derived subgroup (Bagiński, 1999; Margolis-Moede, 2020).

Positive results to the MIP (III)

- 2-groups of almost maximal class (Bagiński-Konovalov, 2004);
- Groups with trivial fourth dimension subgroup for $p>2$ (Hertweck, 2007).
- p-groups with a cyclic subgroup of index p^{2} (Bagiński-Konovalov, 2007);
- 3-groups of maximal class (except two families of groups) (Bagiński-Kurdics, 2019)
- p-groups 2-generated of nilpotency class 2 with cyclic derived subgroup (Broche-del Río, 2019). $(p>2 ; p=2)$;
- 2-groups of nilpotency class 3 s.t. $[G: \mathcal{Z}(G)]=|\Phi(G)|=8$ (Margolis-Sakurai-Stanojkovski, 2021);
- 2-groups with cyclic centre such that $G / \mathcal{Z}(G)$ is dihedral (Margolis-Sakurai-Stanojkovski, 2021).

The modular group algebra

Let F be a field of characteristic p, and G a finite p-group.

- The augmentation map is

$$
\varepsilon: F G \rightarrow F, \quad \sum_{g \in G} r_{g} g \mapsto \sum_{g \in G} r_{g} \quad\left(r_{g} \in F\right)
$$

The modular group algebra

Let F be a field of characteristic p, and G a finite p-group.

- The augmentation map is

$$
\varepsilon: F G \rightarrow F, \quad \sum_{g \in G} r_{g} g \mapsto \sum_{g \in G} r_{g} \quad\left(r_{g} \in F\right)
$$

- $I(F G):=\operatorname{ker}(\varepsilon)$ is the Jacobson radical of $F G$.
- $I(F G)$ is nilpotent.

The modular group algebra

Let F be a field of characteristic p, and G a finite p-group.

- The augmentation map is

$$
\varepsilon: F G \rightarrow F, \quad \sum_{g \in G} r_{g} g \mapsto \sum_{g \in G} r_{g} \quad\left(r_{g} \in F\right) .
$$

- $I(F G):=\operatorname{ker}(\varepsilon)$ is the Jacobson radical of $F G$.
- $I(F G)$ is nilpotent.
- $F G$ is a local ring, i.e.,

$$
F G=F+I(F G)
$$

- The group of units of $F G$ is $F G \backslash I(F G)$.

The modular group algebra

Let F be a field of characteristic p, and G a finite p-group.

- The augmentation map is

$$
\varepsilon: F G \rightarrow F, \quad \sum_{g \in G} r_{g} g \mapsto \sum_{g \in G} r_{g} \quad\left(r_{g} \in F\right)
$$

- $I(F G):=\operatorname{ker}(\varepsilon)$ is the Jacobson radical of $F G$.
- $I(F G)$ is nilpotent.
- $F G$ is a local ring, i.e.,

$$
F G=F+I(F G)
$$

- The group of units of $F G$ is $F G \backslash I(F G)$.
- $V(F G)=1+I(F G)$ is called the group of normalized units.

Contrasts: Maschke Theorem

Let R be a field and G a finite group.

- If $\operatorname{char}(R) \nmid|G|$, then $R G$ is semisimple. Hence we can apply the Wedderburn decomposition theorem, so

$$
R G=\oplus M_{n_{i} \times n_{i}}\left(D_{i}\right)
$$

where $M_{n_{i} \times n_{i}}\left(D_{i}\right)$ is the $n_{i} \times n_{i}$-matrix ring over a division ring D_{i}.

Contrasts: Maschke Theorem

Let R be a field and G a finite group.

- If $\operatorname{char}(R) \nmid|G|$, then $R G$ is semisimple. Hence we can apply the Wedderburn decomposition theorem, so

$$
R G=\oplus M_{n_{i} \times n_{i}}\left(D_{i}\right),
$$

where $M_{n_{i} \times n_{i}}\left(D_{i}\right)$ is the $n_{i} \times n_{i}$-matrix ring over a division ring D_{i}.

- If $\operatorname{char}(R)||G|$ then

$$
R G=b_{1} R G \oplus b_{2} R G \oplus \cdots \oplus b_{n} R G
$$

where $\left\{b_{1}, \ldots, b_{n}\right\}$ is a complete set of orthogonal primitive central idempotents.

Contrasts: Maschke Theorem

Let R be a field and G a finite group.

- If $\operatorname{char}(R) \nmid|G|$, then $R G$ is semisimple. Hence we can apply the Wedderburn decomposition theorem, so

$$
R G=\oplus M_{n_{i} \times n_{i}}\left(D_{i}\right),
$$

where $M_{n_{i} \times n_{i}}\left(D_{i}\right)$ is the $n_{i} \times n_{i}$-matrix ring over a division ring D_{i}.

- If $\operatorname{char}(R)||G|$ then

$$
R G=b_{1} R G \oplus b_{2} R G \oplus \cdots \oplus b_{n} R G
$$

where $\left\{b_{1}, \ldots, b_{n}\right\}$ is a complete set of orthogonal primitive central idempotents.

- If $\operatorname{char}(R)=p$ and $|G|=p^{N}$, then $\left\{b_{1}, \ldots, b_{n}\right\}=\{1\}$,

$$
R G=R+I(R G) .
$$

The modular group algebra

Let F be a field of characteristic p, and G a finite p-group. The subgroup of G

$$
\mathcal{M}_{i}(G)=G \cap\left(1+I(F G)^{i}\right) \quad(i \geq 1)
$$

is called the i-th dimension subgroup of G.

The modular group algebra

Let F be a field of characteristic p, and G a finite p-group. The subgroup of G

$$
\mathcal{M}_{i}(G)=G \cap\left(1+I(F G)^{i}\right) \quad(i \geq 1)
$$

is called the i-th dimension subgroup of G.

Theorem (Jennings, 1941)

The dimension subgroups satisfy the recursive relation

$$
\begin{aligned}
\mathcal{M}_{1}(G) & =G \\
\mathcal{M}_{i}(G) & =\left[\mathcal{M}_{i-1}(G), G\right] \mathcal{M}_{\left\lceil\frac{i}{p}\right\rceil}(G)^{p} \quad(i \geq 2)
\end{aligned}
$$

Jennings bases

Theorem (Jennings, 1941)

Assume n is an integer such that $\mathcal{M}_{n}(G)=1$. Let g_{1}, \ldots, g_{ℓ} be the union of the bases of

$$
\frac{\mathcal{M}_{1}(G)}{\mathcal{M}_{2}(G)}, \quad \frac{\mathcal{M}_{2}(G)}{\mathcal{M}_{3}(G)}, \quad \ldots, \quad \frac{\mathcal{M}_{n-1}(G)}{\mathcal{M}_{n}(G)}
$$

when these quotients are viewed as vector spaces over the field with p elements. Then the set

$$
B=\left\{\prod_{i=1}^{\ell}\left(g_{1}-1\right)^{\alpha_{1}} \ldots\left(g_{\ell}-1\right)^{\alpha_{\ell}}: 0 \leq \alpha_{i}<p, \alpha_{1} \ldots \alpha_{\ell} \neq 0\right\}
$$

is a basis of $I(F G)$.

Jennings bases

Proposition (Jennings, 1941)

Let B be a Jennings basis. Then there is a sequence of subsets

$$
B=B_{1} \supseteq B_{2} \supseteq \ldots
$$

such that for each $t \geq 1$,

$$
I(F G)^{t}=\operatorname{span}_{F} B_{t}
$$

The concept of Hertweck-Soriano

Let k be the field with p elements.

Lemma (Passi-Sehgal)

Let J be a multiplicatively closed subspace of $k G$. If

$$
G \cap\left(1+J+I(F G)^{n}\right)=\mathcal{M}_{n}(G) \quad \text { for each } n \geq 1 \quad(\star)
$$

then

$$
\tilde{G} \cap\left(1+J+I(F G)^{n}\right)=\mathcal{M}_{n}(\tilde{G})
$$

for each group basis \tilde{G} and each $n \geq 1$. In particular

$$
\tilde{G} \cap(1+J)=1 .
$$

The concept of Hertweck-Soriano

- Start with a group basis G.
- Use a Jennings basis to construct an ideal J verifying (\star).
- Then $\tilde{G} \cap(1+J)=1$ for each group basis \tilde{G}.
- Thus every group basis \tilde{G} embeds into $V(F G / J)$.
- Find all the subgroups in $V(F G / J)$ of order $|G|$.

The concept of Hertweck-Soriano

- Start with a group basis G.
- Use a Jennings basis to construct an ideal J verifying (\star).
- Then $\tilde{G} \cap(1+J)=1$ for each group basis \tilde{G}.
- Thus every group basis \tilde{G} embeds into $V(F G / J)$.
- Find all the subgroups in $V(F G / J)$ of order $|G|$.
- If all of them are isomorphic to G, we are done.
- If any of them is not isomorphic to G, consider all its preimages in $F G$.

The groups

For $n_{1}>n_{2}>2$, consider the groups

$$
\begin{aligned}
G & =\left\langle x, y, z \mid z=[y, x], x^{2^{n_{1}}}=y^{2^{n_{2}}}=z^{4}=1, z^{x}=z^{y}=z^{-1}\right\rangle \\
H & =\left\langle a, b, c \mid c=[b, a], a^{2^{n_{1}}}=b^{2^{n_{2}}}=c^{4}=1, c^{a}=c^{-1}, c^{b}=c\right\rangle
\end{aligned}
$$

(notation: $x^{y}=y^{-1} x y$ and $[y, x]=y^{-1} x^{-1} y x$)

G and H are non-isomorphic

$$
C_{G}\left(G^{\prime}\right)=\left\langle z, x^{2}, x y\right\rangle \Rightarrow \frac{C_{G}\left(G^{\prime}\right)}{G^{\prime}}=\left\langle x^{2} G^{\prime}, x y G^{\prime}\right\rangle \text { has exponent } 2^{n_{1}} .
$$

$$
\text { since } \quad|x|=\left|x G^{\prime}\right|=2^{n_{1}}, \quad|y|=\left|y G^{\prime}\right|=2^{n_{2}}<2^{n_{1}} .
$$

G and H are non-isomorphic

$$
C_{G}\left(G^{\prime}\right)=\left\langle z, x^{2}, x y\right\rangle \Rightarrow \frac{C_{G}\left(G^{\prime}\right)}{G^{\prime}}=\left\langle x^{2} G^{\prime}, x y G^{\prime}\right\rangle \text { has exponent } 2^{n_{1}} .
$$

$$
\text { since } \quad|x|=\left|x G^{\prime}\right|=2^{n_{1}}, \quad|y|=\left|y G^{\prime}\right|=2^{n_{2}}<2^{n_{1}}
$$

$$
C_{H}\left(H^{\prime}\right)=\left\langle c, a^{2}, b\right\rangle \Rightarrow \frac{C_{G}\left(H^{\prime}\right)}{H^{\prime}}=\left\langle a^{2} H^{\prime}, b H^{\prime}\right\rangle \text { has exponent } 2^{n_{1}-1} .
$$

$$
\text { since } \quad|a|=\left|a H^{\prime}\right|=2^{n_{1}}, \quad|b|=\left|b H^{\prime}\right|=2^{n_{2}}<2^{n_{1}} .
$$

Fading the second glimmer of hope

For $n_{1}>n_{2}>2$, consider the groups
$G=\left\langle x, y, z \mid z=[y, x], x^{2^{n_{1}}}=y^{2^{n_{2}}}=z^{4}=1, z^{x}=z^{y}=z^{-1}\right\rangle$
$H=\left\langle a, b, c \mid c=[b, a], a^{2^{n_{1}}}=b^{2^{n_{2}}}=c^{4}=1, c^{a}=c^{-1}, c^{b}=c\right\rangle$

Theorem (G-L, Margolis, del Río)

The groups G and H are non-isomorphic but if F is a field of characteristic 2 then the group algebras FG and FH are isomorphic.

The group \widetilde{G}

Remark

If k is the field with two element then

$$
k G \cong k H \quad \Rightarrow \quad F G \cong F \otimes_{k} k G \cong F \otimes_{k} k H \cong F H
$$

for each field F with characteristic 2 .

The group \widetilde{G}

Remark

If k is the field with two element then

$$
k G \cong k H \quad \Rightarrow \quad F G \cong F \otimes_{k} k G \cong F \otimes_{k} k H \cong F H
$$

for each field F with characteristic 2 .
From now on we will work in $k H$. Write

$$
\widetilde{x}=a \quad \text { and } \quad \widetilde{y}=b(a+b+a b) c .
$$

Consider

$$
\widetilde{G}=\langle\widetilde{x}, \widetilde{y}\rangle \subseteq V(k H)
$$

\widetilde{G} is an epimorphic image of G.

Recall that

$G=\left\langle x, y, z \mid z=[y, x], x^{2^{n_{1}}}=y^{2^{n_{2}}}=z^{4}=1, z^{x}=z^{-1}, z^{y}=z^{-1}\right\rangle$
Write $\widetilde{z}=[\widetilde{y}, \widetilde{x}]$.

\widetilde{G} is an epimorphic image of G.

Recall that

$$
G=\left\langle x, y, z \mid z=[y, x], x^{2^{n_{1}}}=y^{2^{n_{2}}}=z^{4}=1, z^{x}=z^{-1}, z^{y}=z^{-1}\right\rangle
$$

Write $\tilde{z}=[\tilde{y}, \tilde{x}]$.

- $\tilde{x}^{2^{n_{1}}}=a^{2^{n_{1}}}=1$.

\widetilde{G} is an epimorphic image of G.

Recall that

$$
G=\left\langle x, y, z \mid z=[y, x], x^{2^{n_{1}}}=y^{2^{n_{2}}}=z^{4}=1, z^{x}=z^{-1}, z^{y}=z^{-1}\right\rangle
$$

Write $\widetilde{z}=[\widetilde{y}, \widetilde{x}]$.

- $\tilde{x}^{2^{n_{1}}}=a^{2^{n_{1}}}=1$.
- $\widetilde{x}^{2}=a^{2} \in \mathcal{Z}(k H)$ implies

$$
1=\left[\widetilde{y}, \widetilde{x}^{2}\right]=\widetilde{z} \widetilde{z}^{\widetilde{x}} \quad \Rightarrow \quad \tilde{z}^{\tilde{x}}=\tilde{z}^{-1} .
$$

(We used the formula $[u, v \cdot w]=[u, v] \cdot[u, w]^{v}$.)

\widetilde{G} is an epimorphic image of G (II)

- Observe that a^{2}, b^{4}, c^{2} and $b^{2} c \in \mathcal{Z}(H)$ and the conjugacy class of b in H is $\{b, b c\}$. Then

$$
\widetilde{y}^{2}=b^{4} c^{2}+a^{2}\left(b^{2} c+b^{4} c^{2}\right)+a^{2} b^{2} c(b+b c) \in \mathcal{Z}(k H) .
$$

\widetilde{G} is an epimorphic image of G (II)

- Observe that a^{2}, b^{4}, c^{2} and $b^{2} c \in \mathcal{Z}(H)$ and the conjugacy class of b in H is $\{b, b c\}$. Then

$$
\widetilde{y}^{2}=b^{4} c^{2}+a^{2}\left(b^{2} c+b^{4} c^{2}\right)+a^{2} b^{2} c(b+b c) \in \mathcal{Z}(k H) .
$$

Thus

$$
1=\left[\widetilde{y}^{2}, \widetilde{x}\right]=\tilde{z}^{\tilde{y}} \widetilde{z} \quad \Rightarrow \quad \widetilde{z}^{\tilde{y}}=\widetilde{z}^{-1} .
$$

(Here we used the formula $[u \cdot w, v]=[u, v]^{w} \cdot[w, v]$.)

\widetilde{G} is an epimorphic image of G (II)

- Observe that a^{2}, b^{4}, c^{2} and $b^{2} c \in \mathcal{Z}(H)$ and the conjugacy class of b in H is $\{b, b c\}$. Then

$$
\widetilde{y}^{2}=b^{4} c^{2}+a^{2}\left(b^{2} c+b^{4} c^{2}\right)+a^{2} b^{2} c(b+b c) \in \mathcal{Z}(k H) .
$$

Thus

$$
1=\left[\widetilde{y}^{2}, \widetilde{x}\right]=\tilde{z}^{\tilde{y}} \widetilde{z} \quad \Rightarrow \quad \tilde{z}^{\tilde{y}}=\tilde{z}^{-1} .
$$

(Here we used the formula $[u \cdot w, v]=[u, v]^{w} \cdot[w, v]$.)

- Finally,

$$
\begin{aligned}
\widetilde{y}^{2^{n_{2}}}=\left(\widetilde{y}^{2}\right)^{2^{n_{2}-1}} & =b^{2^{n_{2}+1}} c^{2^{n_{2}}}+a^{2^{n_{2}}}\left(b^{2^{n_{2}}} c^{2^{n_{2}-1}}+b^{2^{n_{2}+1}} c^{2^{n_{2}}}\right) \\
& +a^{2^{n_{2}}} b^{2^{n_{2}}} c^{2^{n_{2}-1}}\left(b^{2^{n_{2}-1}}+b^{2^{n_{2}-1}} c^{2^{n_{2}-1}}\right) \\
& =1 .
\end{aligned}
$$

\widetilde{G} is an epimorphic image of G (III)

- Denote $J=(c-1) k H$.
- Observe that $c^{4}=1$ implies

$$
J^{4}=\left(c^{4}-1\right) k H=0 .
$$

- Since $k H / J$ is commutative we have that

$$
V(k H)^{\prime} \subseteq 1+J .
$$

Hence

$$
z^{4} \in\left(V(k H)^{\prime}\right)^{4} \subseteq(1+J)^{4}=1+J^{4}=1
$$

\widetilde{G} is an epimorphic image of G (III)

- Denote $J=(c-1) k H$.
- Observe that $c^{4}=1$ implies

$$
J^{4}=\left(c^{4}-1\right) k H=0 .
$$

- Since $k H / J$ is commutative we have that

$$
V(k H)^{\prime} \subseteq 1+J .
$$

Hence

$$
z^{4} \in\left(V(k H)^{\prime}\right)^{4} \subseteq(1+J)^{4}=1+J^{4}=1
$$

This proves that $G \rightarrow \widetilde{G}$.

Results that we will use

Proposition

Let A be a finite dimensional algebra over a field, $J(A)$ its Jacobson radical and B a subalgebra of A. Then

$$
A=B+J(A) \quad \text { implies } \quad A=B
$$

Results that we will use

Proposition

Let A be a finite dimensional algebra over a field, $J(A)$ its Jacobson radical and B a subalgebra of A. Then

$$
A=B+J(A) \quad \text { implies } \quad A=B
$$

Since $I(k H)^{2}$ is the Jacobson radical of $I(k H)$,

Corollary

Let g_{1}, \ldots, g_{d} be a generating set for H. Then for any $\alpha_{1}, \ldots, \alpha_{d} \in I(k H)^{2}$,

$$
g_{1}-1+\alpha_{1}, \ldots, g_{d}-1+\alpha_{d} \quad \text { generate } I(k H) .
$$

G contains a basis $k H$

Observe that

$$
c-1 \in H^{\prime}-1 \subseteq I(k H)^{2}
$$

- $\tilde{x}=a$.

\widetilde{G} contains a basis $k H$

Observe that

$$
c-1 \in H^{\prime}-1 \subseteq I(k H)^{2}
$$

- $\tilde{x}=a$.
- It holds

$$
\begin{aligned}
\tilde{y} & =b(a+b+a b) c \\
& \equiv b(a+b+a b) \\
& =b(1+(1+a)(1+b)) \\
& \equiv b \bmod I(k H)^{2}
\end{aligned}
$$

- By the Corollary $\tilde{x}-1$ and $\tilde{y}-1$ generate $I(k H)$.

\widetilde{G} contains a basis $k H$

Observe that

$$
c-1 \in H^{\prime}-1 \subseteq I(k H)^{2}
$$

- $\tilde{x}=a$.
- It holds

$$
\begin{aligned}
\tilde{y} & =b(a+b+a b) c \\
& \equiv b(a+b+a b) \\
& =b(1+(1+a)(1+b)) \\
& \equiv b \bmod I(k H)^{2}
\end{aligned}
$$

- By the Corollary $\tilde{x}-1$ and $\tilde{y}-1$ generate $I(k H)$.
- $\tilde{x}, \tilde{y}, 1$ generate $k H$.

\widetilde{G} contains a basis $k H$

Observe that

$$
c-1 \in H^{\prime}-1 \subseteq I(k H)^{2}
$$

- $\tilde{x}=a$.
- It holds

$$
\begin{aligned}
\tilde{y} & =b(a+b+a b) c \\
& \equiv b(a+b+a b) \\
& =b(1+(1+a)(1+b)) \\
& \equiv b \bmod I(k H)^{2}
\end{aligned}
$$

- By the Corollary $\tilde{x}-1$ and $\tilde{y}-1$ generate $I(k H)$.
- $\tilde{x}, \tilde{y}, 1$ generate $k H$.
- $\tilde{G}=\langle\tilde{x}, \tilde{y}\rangle$ generates $k H$ as a vector space.

Proof of the theorem

We have proved:

- \tilde{G} is an epimorphic image of G. In particular $|\tilde{G}| \leq|G|$.
- \tilde{G} contains a basis of $k H$.

Hence

$$
|G|=|H|=\operatorname{dim}_{k}(k H) \leq|\tilde{G}| \leq|G|,
$$

Proof of the theorem

We have proved:

- \tilde{G} is an epimorphic image of G. In particular $|\tilde{G}| \leq|G|$.
- \tilde{G} contains a basis of $k H$.

Hence

$$
|G|=|H|=\operatorname{dim}_{k}(k H) \leq|\tilde{G}| \leq|G|,
$$

SO

$$
\tilde{G} \cong G \quad \text { and } \quad \tilde{G} \text { is a basis of } k H .
$$

Q.E.D.

Non-invariants

Let $n_{1}=4$ and $n_{2}=3$. Then $|G|=|H|=2^{9}$,

Non-invariants

$$
\begin{aligned}
& \text { Let } n_{1}=4 \text { and } n_{2}=3 \text {. Then }|G|=|H|=2^{9}, \\
& \qquad \begin{aligned}
\exp \left(C_{G}\left(G^{\prime}\right)\right)=2^{3}, & \text { and } \exp \left(C_{H}\left(H^{\prime}\right)\right)=2^{4} ; \\
|\operatorname{Aut}(G)|=2^{15}, & \text { and }|\operatorname{Aut}(H)|=2^{14} ;
\end{aligned}
\end{aligned}
$$

Non-invariants

Let $n_{1}=4$ and $n_{2}=3$. Then $|G|=|H|=2^{9}$,

$$
\begin{gathered}
\exp \left(C_{G}\left(G^{\prime}\right)\right)=2^{3}, \quad \text { and } \quad \exp \left(C_{H}\left(H^{\prime}\right)\right)=2^{4} \\
|\operatorname{Aut}(G)|=2^{15}, \quad \text { and } \quad|\operatorname{Aut}(H)|=2^{14}
\end{gathered}
$$

Let $N(G)$ be the number of conjugacy classes of cyclic subgroups of G.

$$
N(G)=66, \quad \text { and } \quad N(H)=62
$$

Non-invariants

Let $n_{1}=4$ and $n_{2}=3$. Then $|G|=|H|=2^{9}$,

$$
\begin{gathered}
\exp \left(C_{G}\left(G^{\prime}\right)\right)=2^{3}, \quad \text { and } \quad \exp \left(C_{H}\left(H^{\prime}\right)\right)=2^{4} \\
|\operatorname{Aut}(G)|=2^{15}, \quad \text { and } \quad|\operatorname{Aut}(H)|=2^{14}
\end{gathered}
$$

Let $N(G)$ be the number of conjugacy classes of cyclic subgroups of G.

$$
N(G)=66, \quad \text { and } \quad N(H)=62
$$

Corollary

The following group-theoretical invariants are not determined by $k G$:

- The exponent of $C_{G}\left(G^{\prime}\right)$.
- The size of $\operatorname{Aut}(G)$.
- The number of conjugacy classes of cyclic subgroups of G.

Questions

$$
N(G) \neq N(H) \quad \text { implies } \quad \mathbb{Q} G \neq \mathbb{Q} H .
$$

(because $N(G)$ is the number of the indecomposable direct summands of $\mathbb{Q} G$)

Questions

$$
N(G) \neq N(H) \quad \text { implies } \quad \mathbb{Q} G \neq \mathbb{Q} H .
$$

(because $N(G)$ is the number of the indecomposable direct summands of $\mathbb{Q} G$)

Question 5

Let G and H be finite p-groups.
$R G \cong R H$ for every field R implies $G \cong H$?

Relation with the known results

MIP has positive answer	G and H
2-generated with cyclic derived subgroup and nilpotency class 2	2-generated with cyclic derived subgroup and nilpotency class 3
2-generated with nilpotency class 3 and elementary abelian derived subgroup	2-generated with nilpotency class 3 and cyclic derived subgroup of order 4
Order 2^{8}	Order 2^{n} with $n \geq 9$.

Questions (II)

Question 6

Has MIP a positive answer for p-groups of odd order (i.e., with $p>2)$? The following families are of special interest:

- p-groups with cyclic derived subgroup
- p-groups which are 2-generated.
- p-groups with nilpotency class 3 .

Questions (II)

Question 6

Has MIP a positive answer for p-groups of odd order (i.e., with $p>2)$? The following families are of special interest:

- p-groups with cyclic derived subgroup
- p-groups which are 2-generated.
- p-groups with nilpotency class 3 .

Theorem (G-L, del Río, Stanojkovski)

Let G be finite p-group, $p>2$, with cyclic derived subgroup, and F be an arbitrary field of characteristic p. Then

$$
\exp \left(C_{G}\left(G^{\prime}\right)\right)
$$

is determined by FG.

Questions (III)

Question 7

Does MIP has positive answer for p-groups of nilpotency class 2 ?
It was already mentioned in Sandling's survey "The isomorphism problem for group rings" in 1985:
"Nonetheless, it is a sad reflection on the state of the modular isomorphism problem that the case of class 2 groups is yet to be decided in general."

Questions (III)

Question 7

Does MIP has positive answer for p-groups of nilpotency class 2 ?
It was already mentioned in Sandling's survey "The isomorphism problem for group rings" in 1985:
"Nonetheless, it is a sad reflection on the state of the modular isomorphism problem that the case of class 2 groups is yet to be decided in general."
Let k be the field with p elements.

Question 8

There exist finite p-groups G and H and a field F of characteristic p such that

$$
F G \cong F H \quad \text { but } \quad k G \nsubseteq k H ?
$$

Appendix

References I

C. Bagiński, The isomorphism question for modular group algebras of metacyclic p-groups, Proc. Amer. Math. Soc. 104 (1988), no. 1, 39-42.
\qquad , On the isomorphism problem for modular group algebras of elementary abelian-by-cyclic p-groups, Colloq. Math. 82 (1999), no. 1, 125-136.
C. Bagiński and A. Caranti, The modular group algebras of p-groups of maximal class, Canad. J. Math. 40 (1988), no. 6, 1422-1435.
O. Broche and Á. del Río, The Modular Isomorphism Problem for two generated groups of class two, https://arxiv.org/abs/2003.13281, Indian Journal of Pure and Applied Mathematics, in press (2020).
C. Bagiński and A. Konovalov, The modular isomorphism problem for finite p-groups with a cyclic subgroup of index p^{2}, Groups St. Andrews 2005. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 339, Cambridge Univ. Press, Cambridge, 2007, pp. 186-193.
R. Brauer, Representations of finite groups, Lectures on Modern Mathematics, Vol. I, Wiley, New York, 1963, pp. 133-175.
J. F. Carlson, Periodic modules over modular group algebras, J. London Math. Soc. (2) 15 (1977), no. 3, 431-436.
E. Dade, Deux groupes finis distincts ayant la même algèbre de groupe sur tout corps, Math. Z. 119 (1971), 345-348.

Appendix

References II

W. E. Deskins, Finite Abelian groups with isomorphic group algebras, Duke Math. J. 23 (1956), 35-40. MR 77535
V. Drensky, The isomorphism problem for modular group algebras of groups with large centres, Representation theory, group rings, and coding theory 93 (1989), 145-153.
B. Eick, Computing automorphism groups and testing isomorphisms for modular group algebras, J. Algebra 320 (2008), no. 11, 3895-3910.
B. Eick and A. Konovalov, The modular isomorphism problem for the groups of order 512, Groups St Andrews 2009 in Bath. Volume 2, London Math. Soc. Lecture Note Ser., vol. 388, Cambridge Univ. Press, Cambridge, 2011, pp. 375-383.
D. García-Lucas, L. Margolis, and Á. del Río, Non-isomorphic 2-groups with isomorphic modular group algebras, J. Reine Angew. Math. 154 (2022), no. 783, 269-274.
G. Higman, Units in group rings, 1940, Thesis (Ph.D.)-Univ. Oxford.
__ The units of group-rings, Proc. London Math. Soc. (2) 46 (1940), 231-248.
M. Hertweck and M. Soriano, On the modular isomorphism problem: groups of order 2^{6}, Groups, rings and algebras, Contemp. Math., vol. 420, Amer. Math. Soc., Providence, RI, 2006, pp. 177-213.
R. L. Kruse and D. T. Price, Nilpotent rings, Gordon and Breach Science Publishers, New York-London-Paris, 1969.

Appendix

References

References III

L. Margolis, The Modular Isomorphism Problem: A Survey, Jahresber. Dtsch. Math. Ver. (2022).
L. Margolis and T. Moede, The Modular Isomorphism Problem for small groups - revisiting Eick's algorithm, arXiv:2010.07030, https://arxiv.org/abs/2010.07030.
L. Margolis and M. Stanojkovski, On the modular isomorphism problem for groups of class 3 and obelisks, 2022.
D. S. Passman, The group algebras of groups of order p^{4} over a modular field, Michigan Math. J. 12 (1965), 405-415. MR 0185022
\qquad The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley \& Sons], New York-London-Sydney, 1977.
K. W. Roggenkamp and L. Scott, Isomorphisms of p-adic group rings, Ann. of Math. (2) 126 (1987), no. 3, 593-647.
R. Sandling, The modular group algebra of a central-elementary-by-abelian p-group, Arch. Math. (Basel) 52 (1989), no. 1, 22-27.
\qquad , The modular group algebra problem for metacyclic p-groups, Proc. Amer. Math. Soc. 124 (1996), no. 5, 1347-1350.
M. A. M. Salim and R. Sandling, The modular group algebra problem for groups of order p^{5}, J. Austral. Math. Soc. Ser. A 61 (1996), no. 2, 229-237.

References IV

A. Weiss, Rigidity of p-adic p-torsion, Ann. of Math. (2) 127 (1988), no. 2, 317-332.
A. Whitcomb, The Group Ring Problem, ProQuest LLC, Ann Arbor, MI, 1968, Thesis (Ph.D.)-The University of Chicago.

Thanks for your attention

