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State space: Ω = {◦, •}Z2
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Example: r -neighbour update family, r ∈ {1, . . . , 4}.

If at time t ∈ N site x ∈ Z2 has at least r neighbours in state •,
then at time t + 1 its state also becomes •.
• never becomes ◦.
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Geometry: Z2.

State space: Ω = {◦, •}Z2
(◦/• =healthy/infected).

Update rule: U ⊂ Z2 \ {0}, U 6= ∅, |U| <∞.

Update family U 6= ∅: finite set of update rules.

In U-bootstrap percolation infections never heal and at each step
we infect all x ∈ Z2 such that

∃U ∈ U ,∀u ∈ U : x + u is • .

Critical probability: pc = inf{p ∈ [0, 1] : π(τ0 =∞) = 0}.
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Definition (Supercritical family)

An update family U is supercritical if a finite set Z ⊂ Z2 of infections
can infect an infinite one.

Theorem (Bollobás–Smith–Uzzell’15)

If U is supercritical, then pc = 0 and τ0 = p−Θ(1).

Definition (Stable directions)

A direction u ∈ S1 is unstable if there exists U ∈ U contained in

U ⊂ Hu = {x ∈ Z2 : 〈x , u〉 < 0}.

Theorem (BSU15)

An update family U is supercritical iff there is an open semi-circle of
unstable directions.
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North-East/Oriented percolation

τ0 = 5
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North-East/Oriented percolation

pc ∈ (0, 1)
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North-East/Oriented percolation

pc ∈ (0, 1)

4-neighbour bootstrap percolation

pc = 1
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Definition (Subcritical family)

An update family is subcritical if every semi-circle contains infinitely
many stable directions. It is trivial subcritical if all directions are stable.

Theorem (Balister–Bollobás–Przykucki–Smith’16)

If U is subcritical, then pc > 0. Moreover, pc = 1 iff it is trivial
subcritical.

Conjecture (Schonmann’92,H’21)

For all U and p > pc, τ0 has an exponential moment.

Theorem (H’22)

For all U supported on a half-space the conjecture holds.
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Definition (Critical family)

An update family is critical if there is no unstable open semi-circle, but
there exists a semi-circle with finitely many stable directions.

Definition (Difficulty)

The difficulty α(u) ∈ {1, 2, . . . } of an isolated stable direction u ∈ S1

is the smallest cardinal of a set of Z ⊂ Z2 such that Z ∪Hu can infect
an infinite set. We set α(u) =∞ for non-isolated stable directions and
α(u) = 0 for unstable ones.
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An update family is critical if there is no unstable open semi-circle, but
there exists a semi-circle with finitely many stable directions.

Theorem (BSU15, Bollobás–Duminil-Copin–Morris–Smith’14+)

If U is critical, then pc = 0 and τ0 = exp(p−α+o(1)).
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Definition (Difficulty)

The difficulty α(u) ∈ {1, 2, . . . } of an isolated stable direction u ∈ S1

is the smallest cardinal of a set of Z ⊂ Z2 such that Z ∪Hu can infect
an infinite set. We set α(u) =∞ for non-isolated stable directions and
α(u) = 0 for unstable ones.
The difficulty of U is α = α(U) = minC maxu∈C α(u), where the
minimum is over open semi-circles.

Ivailo Hartarsky Bootstrap percolation



Models
Supercritical

Subcritical
Critical

Universality
Proof ideas

2-neighbour bootstrap percolation
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1
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Definition (Difficulty)

The difficulty α(u) ∈ {1, 2, . . . } of an isolated stable direction u ∈ S1

is the smallest cardinal of a set of Z ⊂ Z2 such that Z ∪Hu can infect
an infinite set. We set α(u) =∞ for non-isolated stable directions and
α(u) = 0 for unstable ones.
The difficulty of U is α = α(U) = minC maxu∈C α(u), where the
minimum is over open semi-circles.

Theorem (H–Mezei’20)

The difficulty α is computable, but NP-hard to determine.
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Theorem (BSU15 lower bound)

If U is critical, then τ0 > exp(Ω(1/p)).

Find suitable directions to build droplets.

Covering algorithm.

Subadditivity.

Aizenman–Lebowitz lemma.

Extremal bound.

Union bound on critical droplet probability.
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