Computing Eigenvectors of Symmetric Tridiagonals with the Correct Number of Sign Changes

Plamen Koev
San José State University

Bulgarian Academy of Sciences
June 10, 2022

Outline

- The symmetric tridiagonal eigenvalue problem is central!
- Every symmetric matrix first reduced to a tridiagonal
- Existing algorithms all have drawbacks
- Focus on the mathematical properties of the eigenvectors, preserve those numerically
- New results

Every symmetric matrix reduces to tridiagonal - 1

$$
\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

- Start with a symmetric matrix

Every symmetric matrix reduces to tridiagonal - 2

$$
\left[\begin{array}{rrrr}
1 & & & \\
& 1 & & \\
& & c & s \\
& & -s & c
\end{array}\right]\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right] \quad=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
0 & * & * & *
\end{array}\right]
$$

- Start with a symmetric matrix
- Apply an orthogonal matrix to create a zero

Every symmetric matrix reduces to tridiagonal - 3

$$
\left[\begin{array}{rrrr}
1 & & & \\
& 1 & & \\
& & c & s \\
& & -s & c
\end{array}\right]\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{lllll}
1 & & & \\
& 1 & & \\
& & c & -s \\
& & s & c
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & 0 \\
* & * & * & * \\
* & * & * & * \\
0 & * & * & *
\end{array}\right]
$$

- Start with a symmetric matrix
- Apply an orthogonal matrix to create a zero
- Complete similarity; Result symmetric: $\left(H A H^{T}\right)^{T}=H A H^{T}$

Every symmetric matrix reduces to tridiagonal - 4

$$
\left[\begin{array}{rrrr}
1 & & & \\
& 1 & & \\
& & c & s \\
& & -s & c
\end{array}\right]\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & c & -s \\
& & s & c
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & 0 \\
* & * & * & * \\
* & * & * & * \\
0 & * & * & *
\end{array}\right]
$$

- Start with a symmetric matrix
- Apply an orthogonal matrix to create a zero
- Complete similarity, result symmetric, $\left(H A H^{T}\right)^{T}=H A H^{T}$
- Continue until tridiagonal

$$
\left[\begin{array}{llll}
* & * & 0 & 0 \\
* & * & * & 0 \\
0 & * & * & * \\
0 & 0 & * & *
\end{array}\right]
$$

Desired properties of computed eigenvectors

1. Each computed independently in $O(n)$ time
2. Error bound, as accurate as data deserves:

$$
\sin \angle\left(v_{i}, \hat{v}_{i}\right)=O(\varepsilon) / \text { relgap }_{i}
$$

- $\varepsilon=$ machine precision
- relgap $_{i}=\min _{j \neq i} \frac{\left|\lambda_{j}-\lambda_{i}\right|}{\left|\lambda_{i}\right|}$
smallest relative gap between λ_{i} and rest of spectrum

3. Eigenvectors orthogonal

Algorithms:

- QR iteration delivers 2), 3), but not 1): cost $O\left(n^{3}\right)$
- dqds delivers 1), 2), but not 3) for clusters

Our focus:

- 1) and 2), and i th eigenvector has $i-1$ changes of sign
- Orthogonality, 3): promising

Preservation of math properties of computed quantities

- Key idea in computing!
- Subnormal numbers in IEEE 754 floating point arithmetic designed so that

$$
a \neq b \Longrightarrow a-b \neq 0
$$

- Fused multiply-add rejected, kills commutativity: if

$$
a=\mathrm{fl}(x y)
$$

then

$$
f \mathrm{fl}(x y-a) \neq 0
$$

- Key idea in many accurate eigenvalue algorithms: Sequence of simpler matrix with same structure
- Demmel: (poly) Vandermonde SVDs, Cauchy, etc.
- K.: Totally nonegative matrices (including singular)

Key ideas

- Compute eigenvectors with correct mathematical properties:
- Number of sign changes
- Hope for orthogonality
both determined very accurately!
- Under WLOG conditions, ith eigenvector has exactly $i-1$ changes of sign
- Examine math reasons this happens
- Replicate in algorithm!

WLOG positive definite, positive, and unreduced

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
\alpha_{1} & \beta_{1} & & \\
\beta_{1} & \alpha_{2} & \ddots & \\
& \ddots & \ddots & \beta_{n-1} \\
& & \beta_{n-1} & \alpha_{n}
\end{array}\right]
$$

- Shift $A \rightarrow A+\lambda /$ if needed to make positive definite
- Offdiafgonal fixed by $\operatorname{diag}(\pm 1)$:
$\left[\begin{array}{llll}1 & & & \\ & 1 & & \\ & & -1 & \\ & & & 1\end{array}\right]\left[\begin{array}{cccc}1 & 1 & & \\ 1 & 2 & -1 & \\ & -1 & 4 & 1 \\ & & 1 & 5\end{array}\right]\left[\begin{array}{llll}1 & & & \\ & 1 & & \\ & & -1 & \\ & & & 1\end{array}\right]=\left[\begin{array}{llll}1 & 1 & & \\ 1 & 2 & 1 & \\ & 1 & 4 & 1 \\ & & 1 & 5\end{array}\right]$
- Unreduced, $\beta_{i}>0$, (or it splits), so eigenvalues distinct
- Thus Totally Nonnegative, i.e., all minors ≥ 0 $\Rightarrow i$ th eigenvector has $i-1$ changes of sign

The i th eigenvector has $i-1$ changes of sign

- Example, when eigenvalues ordered $\lambda_{1}>\cdots>\lambda_{n}>0$

$$
\left[\begin{array}{rrrrrrr}
-0.0013 & -0.0313 & 0.2674 & 0.7385 & -0.5778 & 0.2144 & 0.0472 \\
-0.0084 & -0.1163 & 0.4827 & 0.3693 & 0.4652 & -0.5833 & -0.2457 \\
-0.0309 & -0.2684 & 0.5473 & -0.1231 & 0.3255 & 0.4597 & 0.5431 \\
-0.0876 & -0.4598 & 0.3342 & -0.3693 & -0.2747 & 0.1901 & -0.6490 \\
-0.2096 & -0.5871 & -0.1263 & -0.1231 & -0.3404 & -0.5196 & 0.4411 \\
-0.4452 & -0.4265 & -0.4714 & 0.3693 & 0.3777 & 0.3043 & -0.1613 \\
-0.8655 & 0.4189 & 0.2146 & -0.1231 & -0.0993 & -0.0611 & 0.0248
\end{array}\right]
$$

Example: Roundoff errors kill the sign pattern, 30×30

Abstract

$\stackrel{\bullet \bullet ~}{\bullet \bullet \bullet \bullet ~}$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ ค $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ ८ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ •

Example: Roundoff errors kill the sign pattern, 50×50

 $\cdots \bullet \bullet$

 $\bullet \bullet \bullet$

Where is sign pattern coming from? Interlacing!

Define $\quad v(x)=\left[\begin{array}{c}\chi_{0}(x) \\ \chi_{1}(x) \\ \vdots \\ \chi_{n-1}(x)\end{array}\right] ; \quad i$ th eigenvector $\sim v\left(\lambda_{i}\right)$

- $\chi_{k-1}=$ char poly of leading $k \times k$ principal submatrix
- Cauchy Interlace Thm: roots of χ_{k-1} interlace those of χ_{k}
- Consider sequence

$$
\begin{equation*}
\chi_{k-1}(x), \chi_{k}(x), \chi_{k+1}(x) \tag{1}
\end{equation*}
$$

around some root z of χ_{k} (i.e., when $\chi_{k}(x)$ switches signs)

- If χ_{k-1} has t roots $<z$, then χ_{k+1} has $t+1$ roots $<z$

Where is sign pattern coming from? Interlacing!

Define $\quad v(x)=\left[\begin{array}{c}\chi_{0}(x) \\ \chi_{1}(x) \\ \vdots \\ \chi_{n-1}(x)\end{array}\right] ; \quad i$ th eigenvector $\sim v\left(\lambda_{i}\right)$

- $\chi_{k-1}=$ char poly of leading $k \times k$ principal submatrix
- Cauchy Interlace Thm: roots of χ_{k-1} interlace those of χ_{k}
- Consider sequence

$$
\begin{equation*}
\chi_{k-1}(x), \chi_{k}(x), \chi_{k+1}(x) \tag{2}
\end{equation*}
$$

around some root z of χ_{k} (i.e., when $\chi_{k}(x)$ switches signs)

- If χ_{k-1} has t roots $<z$, then χ_{k+1} has $t+1$ roots $<z$
$\Rightarrow \Rightarrow \chi_{k-1}(z)$ and $\chi_{k+1}(z)$ are of different signs
- As x passes through z, \# sign changes in (2) is exactly 1 .
- Sign change in $v(x)$ only occurs when x passes through root of χ_{n-1}
- $i-1$ roots of χ_{n-1} to left of $\lambda_{i} \Rightarrow i-1$ changes of sign in v_{i}

Interlacing in practice?

- Nonexistent:

$9.174243420830803 \mathrm{e}-01$	$9.174243420830800 \mathrm{e}-01$
$7.847392948263211 \mathrm{e}-01$	$7.847392948263211 \mathrm{e}-01$
$7.7015972863558666 \mathrm{e}-01$	$7.701597286355862 \mathrm{e}-01$
$7.655000166675910 \mathrm{e}-01$	$7.655000166675913 \mathrm{e}-01$
$7.384268399820760 \mathrm{e}-01$	$7.384268399820757 \mathrm{e}-01$
$7.217580334780621 \mathrm{e}-01$	$7.217580334219912 \mathrm{e}-01$
$6.073892138195941 \mathrm{e}-01$	$6.073892138195942 \mathrm{e}-01$
$4.734859929761793 \mathrm{e}-01$	$4.713571537120613 \mathrm{e}-01$
$4.713571537120613 \mathrm{e}-01$	$4.609163660873047 \mathrm{e}-01$
$4.609163660873046 \mathrm{e}-01$	$4.243490397612006 \mathrm{e}-01$
$4.243490397612005 \mathrm{e}-01$	$3.411246072099282 \mathrm{e}-01$
$3.411246072099285 \mathrm{e}-01$	$3.224718071611238 \mathrm{e}-01$
$3.224718071611237 \mathrm{e}-01$	$2.690615866769628 \mathrm{e}-01$
$2.690615866769628 \mathrm{e}-01$	$2.428495983120914 \mathrm{e}-01$
$2.428495983120915 \mathrm{e}-01$	$1.917452554462248 \mathrm{e}-01$
$1.917452554462249 \mathrm{e}-01$	$1.886619767839813 \mathrm{e}-01$
$1.886619767839813 \mathrm{e}-01$	$1.758744157991657 \mathrm{e}-01$
$1.758744157991657 \mathrm{e}-01$	$1.527212003649134 \mathrm{e}-01$
$1.527212003495465 \mathrm{e}-01$	$3.576273324260682 \mathrm{e}-02$
$3.576273324260682 \mathrm{e}-02$	

Must compute eigenvalues of A and $A_{1: n-1,1: n-1}$ simultaneously to ensure interlacing

- Work with bidiagonal Cholesky factor instead (Parlett)

- Eigenvalues of A are squares of singular values of B
- Use differential quotient-difference with shift (dqds)
- Run dqds on B and $B_{1: n-1,1: n-1}$ simultaneously!

The dqds algorithm

- Input:

$$
B=\left[\begin{array}{cccc}
a_{1} & & & \\
b_{1} & a_{2} & & \\
& \ddots & \ddots & \\
& & b_{n-1} & a_{n}
\end{array}\right]
$$

and shift $\sigma<\sigma_{\text {min }}(B)$

- Output: Cholesky factor, $B^{\prime}: \quad B^{\prime}\left(B^{\prime}\right)^{T}=B^{T} B-\sigma^{2} I$
$d_{1}=q_{1}-\sigma^{2}$
for $i=1$ to $n-1$
$q_{i}^{\prime}=d_{i}+e_{i}$
$e_{i}^{\prime}=e_{i} q_{i+1} / q_{i}^{\prime}$
$d_{i}=q_{i+1}\left(d_{i-1} / q_{i}^{\prime}\right)-\sigma^{2}$
end
$q_{n}^{\prime}=d_{n}+e_{n}$
(where $q_{i}=a_{i}^{2}, e_{i}=b_{i}^{2}$, typical)

dqds computes singular values to high rel accuracy

- 2-3 steps max reveal a singular value
- Accumulate shifts to produce $\sigma_{\text {min }}^{2}=\lambda_{n}$

$$
B=\left[\begin{array}{ccccc}
a_{1} & & & & \\
b_{1} & a_{2} & & & \\
& \ddots & \ddots & & \\
& & b_{n-2} & a_{n-1} & \\
& & & b_{n-1} & a_{n}
\end{array}\right] \rightarrow B^{\prime}=\left[\begin{array}{ccccc}
a_{1}^{\prime} & & & \\
b_{1}^{\prime} & a_{2}^{\prime} & & & \\
& \ddots & \ddots & & \\
& & b_{n-2}^{\prime} & a_{n-1}^{\prime} & \\
& & & b_{n-1}^{\prime} & a_{n}^{\prime}
\end{array}\right]
$$

where a_{n}^{\prime} is tiny and is thus deflated:

$$
B^{\prime \prime}=\left[\begin{array}{cccc}
a_{1}^{\prime} & & & \\
b_{1}^{\prime} & a_{2}^{\prime} & & \\
& \ddots & \ddots & \\
& & b_{n-2}^{\prime} & a_{n-1}^{\prime} \\
b_{n-1}^{\prime}
\end{array}\right]
$$

- Continue the same way to produce $\left(\sigma_{\min }\left(B^{\prime \prime}\right)\right)^{2}=\lambda_{n-1}-\lambda_{n}$
- ... until all eigenvalues computed, accurately

New results on dqds

- Monotonicity: locates $\sigma_{\text {min }}$ between two consecutive floating point numbers
- Perfect shift $=$ floating point number to left of $\sigma_{\text {min }}$
- dqds can be run simultaneously on B and $B_{1: n-1,1: n-1}$
- Ensures interlacing, and in turn, number of sign changes!

New algorithm: Double dqds

- Runs simultaneously on B and $B_{1: n-1,1: n-1}$ (eigenvalues $\lambda_{1}>\cdots>\lambda_{n}>0$ and $\mu_{1}>\cdots>\mu_{n-1}>0$)
- Pick the perfect shift σ^{2} for B. This is $\hat{\lambda}_{n}$! Run dqds

$$
\left.\begin{array}{rl}
B: & {\left[\begin{array}{ccccc}
a_{1} & & & & \\
b_{1} & a_{2} & & & \\
& \ddots & \ddots & & \\
& & b_{n-2} & a_{n-1} & \\
& b_{n-1} & a_{n}
\end{array}\right]} \\
B_{1: n-1,1: n-1}: & {\left[\begin{array}{ccccc}
a_{1} & & & \\
b_{1} & a_{2} & & \\
& \ddots & \ddots & \\
& & & b_{n-2} & a_{n-1}
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
a_{1}^{\prime} & & & \\
b_{1}^{\prime} & a_{2}^{\prime} & & \\
& \ddots & \ddots & a_{n-2}^{\prime} \\
& & & b_{n-1}^{\prime-1}
\end{array}\right.} \\
& a_{n}^{\prime}
\end{array}\right]
$$

- \bar{a}_{n-1}^{\prime} only different entry, provably $\bar{a}_{n-1}^{\prime}<a_{n-1}^{\prime}$
- a_{n}^{\prime} is deflated, obtaining new pair of matrices

$$
\underbrace{\left[\begin{array}{cccc}
a_{1}^{\prime} & & & \\
b_{1}^{\prime} & a_{2}^{\prime} & & \\
& \ddots & \ddots & \\
& & b_{n-2}^{\prime} & a_{n-1}^{\prime} \\
b_{n-1}^{\prime}
\end{array}\right]}_{B^{\prime}} \text { and } \underbrace{\left[\begin{array}{cccc}
a_{1}^{\prime} & & & \\
b_{1}^{\prime} & a_{2}^{\prime} & & \\
& \ddots & \ddots & \\
& & b_{n-2}^{\prime} & \bar{a}_{n-1}^{\prime}
\end{array}\right]}_{B^{\prime \prime}}
$$

New algorithm: Double dqds

- New pair of matrices

- $b_{n-1}^{\prime}>0, \bar{a}_{n-1}^{\prime}<a_{n-1}^{\prime}$ ensure $\sigma_{\text {min }}\left(B^{\prime \prime}\right)<\sigma_{\min }\left(B^{\prime \prime}\right)$
- Run dqds again on $B^{\prime}, B^{\prime \prime}$ with perfect shift for $B^{\prime \prime}$:

$$
\hat{\mu}_{n-1}-\hat{\lambda}_{n}>0
$$

- The process produces

$$
\hat{\lambda}_{n}>0, \hat{\mu}_{n-1}-\hat{\lambda}_{n}>0, \hat{\lambda}_{n-1}-\hat{\mu}_{n}>0, \ldots
$$

- Interlacing guaranteed, and in turn, number of sign changes

Number of sign changes guaranteed, orthogonality?

Conclusions

- Established new properties of dqds
- Eigenvectors with correct number of sign changes
- Orthogonality, what property determines that numerically?
- Joint work with Anthony Mendoza of Gavilan College
- Thank you!

