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Cyber-Physical Systems

“The term Cyber-Physical Systems (CPS) refers a new generation of
systems with integrated computational and physical capabilities that can
interact with humans through many new modalities.

The ability to interact with, and expand the capabilities of, the physical
world through computation, communicaiton, and control is a key
enabler for future technology developments. ”

— Helen Gill and Kisan Baheti NSF. IEEE Impact of Control Technology.
Available at www.ieeecss.org
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Cyber-Physical Systems
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Hybrid Systems – A Common CPS Model
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Crucial question:

• How do the controller and the plant interact?

Traditional answer:

• Coupling assumed to be (or at least modeled as) delay-free.
⇒ Mode dynamics is covered by the conjunction of the individual ODEs.
⇒ Switching btw. modes is an immediate reaction to environmental conditions.

IMI-BAS · Naijun Zhan: Taming Delays in CPS · 3 / 36



Hybrid Systems – A Common CPS Model

Loads of
continuous
computations

interleaved
with discrete
decisions

Plant

ControlAnalog
switch

Continuous
controllers

D/A

Discrete
supervisor

A/D

Plant

observable
state

environmental
influence

disturbances ("noise")

control

selection

setpoints

active control law

setpoints
part of
observable
state

task selection

Loads of
continuous
computations

interleaved
with discrete
decisions

Plant

ControlAnalog
switch

Continuous
controllers

D/A

Discrete
supervisor

A/D

Plant

observable
state

environmental
influence

disturbances ("noise")

control

selection

setpoints

active control law

setpoints
part of
observable
state

task selection

Crucial question:

• How do the controller and the plant interact?

Traditional answer:

• Coupling assumed to be (or at least modeled as) delay-free.
⇒ Mode dynamics is covered by the conjunction of the individual ODEs.
⇒ Switching btw. modes is an immediate reaction to environmental conditions.

IMI-BAS · Naijun Zhan: Taming Delays in CPS · 3 / 36



Hybrid Systems – A Common CPS Model

Loads of
continuous
computations

interleaved
with discrete
decisions

Plant

ControlAnalog
switch

Continuous
controllers

D/A

Discrete
supervisor

A/D

Plant

observable
state

environmental
influence

disturbances ("noise")

control

selection

setpoints

active control law

setpoints
part of
observable
state

task selection

Crucial question:

• How do the controller and the plant interact?

Traditional answer:

• Coupling assumed to be (or at least modeled as) delay-free.
⇒ Mode dynamics is covered by the conjunction of the individual ODEs.
⇒ Switching btw. modes is an immediate reaction to environmental conditions.

IMI-BAS · Naijun Zhan: Taming Delays in CPS · 3 / 36



Instantaneous Coupling
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Following the tradition, above (rather typical) Simulink model assumes
• delay-free coupling between all components,
• instantaneous feed-through within all functional blocks.

Central questions:
..1 Is this realistic?
..2 If not, does it have observable effect on control performance?
..3 May that effect be detrimental or even harmful?
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Q1: Is Instantaneous Coupling Realistic?

Digital control needs A/D and D/A conversion,
which induces latency in signal forwarding.

Digital signal processing, especially in complex
sensors like CV, needs processing time, adding
signal delays.

Networked control introduces communication
latency into the feedback control loop.

Harvesting, fusing, and forwarding data through
sensor networks enlarge the latter by orders of
magnitude.
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Q2: Do Delays Have Observable Effect?
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A robot escape game in a 4×4 room, with
Σr = {RU, UR, LU, UL, RD, DR, LD, DL, ϵ},
Σk = {R, L, U, D}.

No delay:
Robot always wins by
circling around the obstacle
at (1,2).

1 step delay:
Robot wins by 1-step
pre-decision.

2 steps delay:
Robot still wins, yet extra
memory is needed.

3 steps delay:
Robot is unwinnable
(uncontrollable) anymore.
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Q2: Do Delays Have Observable Effect?
– Yes, they have.
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Q3: May the Effects be Harmful?

• Delayed logistic equation [G. Hutchinson, 1948]:
d

dt
N(t) = N(t)[1−N(t− r)]
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Q3: May the Effects be Harmful?
– Yes, delays may well annihilate control performance.

• Delayed logistic equation [G. Hutchinson, 1948]:
d

dt
N(t) = N(t)[1−N(t− r)]
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DDE — The History

Historical motivation (predating digital control):

“Despite [...] very satisfactory state of affairs as far as [ordinary]
differential equations are concerned, we are nevertheless forced to turn
to the study of more complex equations. Detailed studies of the real
world impel us, albeit reluctantly, to take account of the fact that the
rate of change of physical systems depends not only on their present
state, but also on their past history.”

[Richard Bellman and Kenneth L. Cooke, 1963]

Mathematical form:
d

dt
x(t) = f(x(t),x(t− δ1), . . . ,x(t− δn)), with δn > . . . > δ1 > 0,

Simplest instance (which we will mostly concentrate on in the remainder):
d

dt
x(t) = f(x(t− δ))
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DDE — Why They are Hard(er)
x = f0

d
dt
x = −f0

d3

dt
x = −f0

d2

dt
x = f0

d10

dt
x = f0

d
dt
x(t) = −x(t− 1)

DDE constitute a model of system dy-
namics beyond “state snapshots”:

• They feature “functional state”
instead of state in the Rn.

• Thus providing rather infallible,
infinite-dimensional memory of
the past.

N.B.: More complex transformations may be
applied to the initial segment f0 according to
the DDE’s right-hand side. f0 will neverthe-
less hardly ever vanish from the state space.

Try only if

to you!
infinite state no longer is scary enough
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Conclusioin
• Delays in feedback control loops are ubiquitous, give difficulties.
• They may well invalidate the safety/stability/. . . certificates obtained

by verifying delay-free abstractions of the feedback control system.

Automatic verification/synthesis methods addressing feedback
delays in hybrid systems should therefore abound!

Surprisingly, they don’t:
..1 S. Prajna, A. Jadbabaie: Meth. f. safety verification of time-delay syst. (CDC’05)

..2 L. Zou, M. Fränzle, ZNJ, P.N. Mosaad: Autom. verific. of stabil. and safety (CAV ’15)

..3 Z. Huang, C. Fan, S. Mitra: Bounded invariant verification for time-delayed nonlinear networked dynamical
systems (NAHS ’16)

..4 M. Chen, M. Fränzle, Y. Li, P.N. Mosaad, ZNJ: Validat. simul.-based verific. (FM ’16)

..5 E. Goubault, S. Putot, and L. Sahlmann: Inner and outer approximating flowpipes for delay differential
equations (CAV ’18)

..6 S. Feng, M. Chen, ZNJ et al.: Taming delays in dynamical systems: Unbounded verification of DDEs
(CAV ’19)

..7 Y. Bai, T. Gan, L. Jiao, B. Xia, B. Xue and ZNJ : Switching Controller Synthesis for Time-delayed Hybrid
Systems under Perturbation (HSCC’21)

..8 M. Chen, M. Fränzle, Y. Li, P. Mosad and ZNJ: Indecision and delays are the parents of failure Taming
them algorithmically by synthesizing delay-resilient control (Acta Informatica’21)

..9 B. Xue, Q. Wang, S. Feng and ZNJ: Over- and Under-Approximating Reach Sets for Perturbed Delay
Differential Equations (IEEE TAC’21)

..10 · · ·
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The Agenda

..1 Verification of delay differential equations

..Verifier.

Property Φ

.System S .

Environm. E

.
YES [proof]

.

NO + counterx.

• Bounded verification
• Unbounded verification

..2 Controller synthesis for time-delayed systems

..Synthesizer.
Property Φ

. System S
(S∥E |= Φ)

.

Environm. E

• Controller synthesis by reduction to playing safety games in the setting
of discrete time

• Safety switching controller synthesis of delay hybrid systems by
invariant generation and constraint solving

..3 Summary
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Solving Delay Differential Equations (DDE)

A formal model of delayed feedback control
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Safety Problem

Given T ∈ R, X0 ⊆ X , U ⊆ Rn, weather

∀x0 ∈ X0 :
(∪

t≤T
ξx0(t)

)
∩ U = ∅ ?

• System is safe, if no trajectory enters the unsafe set.
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Verification of DDE

Bounded verification

Verification goal: given a time-bound T show that the solutions to
the DDE on time interval [0, T ] satisfy a given invariance property.
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Simulation-Based Verification

• partition the initial set into a
finitely smaller sets;

176 A. Donzé and O. Maler

Bδ(S) =
⋃

x∈S
Bδ(x) and Bδ(ξx) =

⋃

t∈[0,T ]

Bδ(t)(ξx(t))

A sampling of X is a set S = {x1, . . . ,xk} of points in X . The intuitive notion
of the “coverage” of X by S is formalized by

Definition 1 (Dispersion). The dispersion αX (S) is the
smallest radius ε such that the union of all ε radius closed
balls with their center in S covers X .

αX (S) = min
ε>0

{ε | X ⊂ Bε(S)} (2)

ε

We now define the process of refining a sampling, which simply consists in finding
a new sampling with a strictly smaller dispersion.

Definition 2 (Refinement). Let S and S′ be samplings of X . We say that S′

refines S if and only αX (S′) < αX (S).

A refining sampling can be constructed from the set to refine (e.g. by adding
sufficiently many points) or be found independently. In both cases, we can assume
that it is obtained through a refinement operator which we define next.

Definition 3 (Refinement operators). A refinement operator ρ : 2X �→ 2X

maps a sampling S to another sampling S′ = ρX (S) such that S refines S′. A
refinement operator is complete if ∀S,

lim
k→∞

αX
(
ρ
(k)
X (S)

)
= 0

where ρ
(k)
X (S) is the result of k application of ρX to S.

In other terms, a refinement operator is complete if a sampling of X which has
been infinitely refined is dense in X . Until we define one in section 3, we assume
the existence of a complete refinement operator ρ.

2.2 Expansion Function

The intuitive idea is to draw “tubes” around trajectories so that the union
of these tubes will provide an over-approximation of the reachable set. The
expansion function then simply maps time t to the radius of the tube at t, given
an initial state x0 and an initial radius ε.

Definition 4 (Expansion function). Given x0 ∈ X0, and ε > 0, the expan-
sion function of ξx0 , denoted by Ex0,ε : R

+ �→ R
+ maps t to the smallest non-

negative number δ such that all trajectories with initial state in Bε(x0) reach a
point in Bδ(ξx0(t)) at time t:

Ex0,ε(t) = sup
d(x0,x)≤ε

d
(
ξx0(t), ξx(t)

)
(3)

Figure: A finite ϵ-cover of the initial
set of states.

• do numerical simulation on a
(sufficiently dense) sample of
each partitioned initial set;

x

y

t

Figure: An Over-approximation of the
reachable set by bloating the simulation.

• Details can be found in [FM’16].
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Bδ(S) =
⋃

x∈S
Bδ(x) and Bδ(ξx) =

⋃

t∈[0,T ]

Bδ(t)(ξx(t))

A sampling of X is a set S = {x1, . . . ,xk} of points in X . The intuitive notion
of the “coverage” of X by S is formalized by

Definition 1 (Dispersion). The dispersion αX (S) is the
smallest radius ε such that the union of all ε radius closed
balls with their center in S covers X .

αX (S) = min
ε>0

{ε | X ⊂ Bε(S)} (2)

ε

We now define the process of refining a sampling, which simply consists in finding
a new sampling with a strictly smaller dispersion.

Definition 2 (Refinement). Let S and S′ be samplings of X . We say that S′

refines S if and only αX (S′) < αX (S).

A refining sampling can be constructed from the set to refine (e.g. by adding
sufficiently many points) or be found independently. In both cases, we can assume
that it is obtained through a refinement operator which we define next.

Definition 3 (Refinement operators). A refinement operator ρ : 2X �→ 2X

maps a sampling S to another sampling S′ = ρX (S) such that S refines S′. A
refinement operator is complete if ∀S,

lim
k→∞

αX
(
ρ
(k)
X (S)

)
= 0

where ρ
(k)
X (S) is the result of k application of ρX to S.

In other terms, a refinement operator is complete if a sampling of X which has
been infinitely refined is dense in X . Until we define one in section 3, we assume
the existence of a complete refinement operator ρ.

2.2 Expansion Function

The intuitive idea is to draw “tubes” around trajectories so that the union
of these tubes will provide an over-approximation of the reachable set. The
expansion function then simply maps time t to the radius of the tube at t, given
an initial state x0 and an initial radius ε.

Definition 4 (Expansion function). Given x0 ∈ X0, and ε > 0, the expan-
sion function of ξx0 , denoted by Ex0,ε : R

+ �→ R
+ maps t to the smallest non-

negative number δ such that all trajectories with initial state in Bε(x0) reach a
point in Bδ(ξx0(t)) at time t:

Ex0,ε(t) = sup
d(x0,x)≤ε

d
(
ξx0(t), ξx(t)

)
(3)

Figure: A finite ϵ-cover of the initial
set of states.

• add (pessimistic) error analysis
and sensitivity analysis;

x

y

t

Figure: An Over-approximation of the
reachable set by bloating the simulation.

• Details can be found in [FM’16].
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ε
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a new sampling with a strictly smaller dispersion.

Definition 2 (Refinement). Let S and S′ be samplings of X . We say that S′

refines S if and only αX (S′) < αX (S).

A refining sampling can be constructed from the set to refine (e.g. by adding
sufficiently many points) or be found independently. In both cases, we can assume
that it is obtained through a refinement operator which we define next.

Definition 3 (Refinement operators). A refinement operator ρ : 2X �→ 2X

maps a sampling S to another sampling S′ = ρX (S) such that S refines S′. A
refinement operator is complete if ∀S,

lim
k→∞

αX
(
ρ
(k)
X (S)

)
= 0

where ρ
(k)
X (S) is the result of k application of ρX to S.

In other terms, a refinement operator is complete if a sampling of X which has
been infinitely refined is dense in X . Until we define one in section 3, we assume
the existence of a complete refinement operator ρ.

2.2 Expansion Function

The intuitive idea is to draw “tubes” around trajectories so that the union
of these tubes will provide an over-approximation of the reachable set. The
expansion function then simply maps time t to the radius of the tube at t, given
an initial state x0 and an initial radius ε.

Definition 4 (Expansion function). Given x0 ∈ X0, and ε > 0, the expan-
sion function of ξx0 , denoted by Ex0,ε : R

+ �→ R
+ maps t to the smallest non-

negative number δ such that all trajectories with initial state in Bε(x0) reach a
point in Bδ(ξx0(t)) at time t:

Ex0,ε(t) = sup
d(x0,x)≤ε

d
(
ξx0(t), ξx(t)

)
(3)

Figure: A finite ϵ-cover of the initial
set of states.

• “bloat” the resulting trajectories
accordingly.

x

y

t

Figure: An Over-approximation of the
reachable set by bloating the simulation.

• Details can be found in [FM’16].
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x∈S
Bδ(x) and Bδ(ξx) =

⋃

t∈[0,T ]

Bδ(t)(ξx(t))

A sampling of X is a set S = {x1, . . . ,xk} of points in X . The intuitive notion
of the “coverage” of X by S is formalized by

Definition 1 (Dispersion). The dispersion αX (S) is the
smallest radius ε such that the union of all ε radius closed
balls with their center in S covers X .

αX (S) = min
ε>0

{ε | X ⊂ Bε(S)} (2)

ε

We now define the process of refining a sampling, which simply consists in finding
a new sampling with a strictly smaller dispersion.

Definition 2 (Refinement). Let S and S′ be samplings of X . We say that S′

refines S if and only αX (S′) < αX (S).

A refining sampling can be constructed from the set to refine (e.g. by adding
sufficiently many points) or be found independently. In both cases, we can assume
that it is obtained through a refinement operator which we define next.

Definition 3 (Refinement operators). A refinement operator ρ : 2X �→ 2X

maps a sampling S to another sampling S′ = ρX (S) such that S refines S′. A
refinement operator is complete if ∀S,

lim
k→∞

αX
(
ρ
(k)
X (S)

)
= 0

where ρ
(k)
X (S) is the result of k application of ρX to S.

In other terms, a refinement operator is complete if a sampling of X which has
been infinitely refined is dense in X . Until we define one in section 3, we assume
the existence of a complete refinement operator ρ.

2.2 Expansion Function

The intuitive idea is to draw “tubes” around trajectories so that the union
of these tubes will provide an over-approximation of the reachable set. The
expansion function then simply maps time t to the radius of the tube at t, given
an initial state x0 and an initial radius ε.

Definition 4 (Expansion function). Given x0 ∈ X0, and ε > 0, the expan-
sion function of ξx0 , denoted by Ex0,ε : R

+ �→ R
+ maps t to the smallest non-

negative number δ such that all trajectories with initial state in Bε(x0) reach a
point in Bδ(ξx0(t)) at time t:

Ex0,ε(t) = sup
d(x0,x)≤ε

d
(
ξx0(t), ξx(t)

)
(3)

Figure: A finite ϵ-cover of the initial
set of states.

Systematic Simulation Using Sensitivity Analysis 177

Clearly, a first property of the expansion functions is that it approaches 0 as ε
tends toward 0:

∀t > 0, lim
ε→0

Ex,ε(t) = 0 (4)

This results directly from the continuity of ξx(t) w.r.t. x.

The expansion function value Ex0,ε(t)
gives the radius of the ball which over-
approximate tightly the reachable set from
the ball Bε(x0) at time t. Obviously, if we
take several such balls so that the initial
set X0 is covered, we obtain a correspond-
ing cover of Reach=t(X0). This is stated in
the following

x0

ξx0(t)

ε

Reach=t

[
Bε(x0)

]

Ex0,ε(t)

Proposition 1. Let S = {x1, . . . ,xk}be a sampling of X0 such that
⋃k

i=1 Bεi(xi)
is a ball cover of X0 for some {ε1, . . . , εk}. Let t > 0 and for each 1 ≤ i ≤ k, let
δi = Exi,εi(t). Then

⋃k
i=1 Bδi(ξxi(t)) is a ball cover of Reach=t(X0).

Proof. By definition, the ball cover of X0 contains X0, and each Bδi(ξxi(t))
contains Reach=t(Bεi(xi)), and the rest follows from the commutativity of the
dynamics with set union and containment. 	


In particular, if S is a sampling of X0 with dispersion ε then we are in the case
where εi = ε for all 1 < i < k and since the result is true for all t ∈ [0, T ], we
have the following

Corollary 1. Let S = {x1,x2, . . . ,xk} be a sampling of X0 with dispersion
αX0(S) = ε. Let δ > 0 be an upper bound for Exi,ε(t) for all 1 < i < k and
t ∈ [0, T ], then the following inclusions hold

Reach[0,T ](X0) ⊆
⋃

x∈S
BEx,ε(ξx) ⊆

⋃

x∈S
Bδ(ξx) ⊆ Bδ

(
Reach[0,T ](X0)

)
(5)

Proof. The first inclusion is a direct application of the proposition. The second
results from the fact that δ is an upper-bound and the third inclusion is due to
the fact that ∀(xi, t) ∈ S × [0, T ], ξxi(t) ∈ Reach[0,T ](X0). 	


In other terms, if we bloat the sampling trajectories starting from S with a radius
δ, which is an upper bound for expansion functions of these trajectories, then
we get an over-approximation of the reachable set which is between the exact
reachable set and the reachable set bloated with δ. Because of (4), it is clear
that δ, and then the over-approximation error, decreases when ε gets smaller.

The second corollary of proposition 1 underlies our verification strategy.

Corollary 2. Let S = {x1, . . . ,xk} be a sampling of X such that
⋃k

i=1 Bεi(xi)
is a ball cover of X0. For t ∈ [0, T ] and 1 ≤ i ≤ k, let δi(t) = Exi,εi(t). If for all
t ∈ [0, T ],

Bδi(t)(ξxi(t)) ∩ F = ∅,

Figure: An Over-approximation of the
reachable set by bloating the simulation.

• Details can be found in [FM’16].
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Set-boundary Based Over/Under-Approximation

Basic idea
• Make use of the homeomorphism property to perform reachability

analysis only on the initial set’s boundary
• Prove that there exists a class of DDEs whose delays are small than a

threshold w.r.t. their initial sets, satisfying the homemorphoism
property

• Make use of sensitivity analysis to perform reachability on a subset of
the initial set’s boundary

• Tools: IraPhy (https://github.com/JianqiangDing/irafhy)
• Details can be found in ([IEEE TAC’21],[Xue et al., CAV’16], [FORMATS’17])

IMI-BAS · Naijun Zhan: Taming Delays in CPS · 16 / 36



Unbounded Verification of DDE

d
dtx(t) = f(x(t),x(t− δ1), . . . ,x(t− δn))

Verification goal: show that the solutions to the DDE satisfy a
given invariance property (the trajectory could be infinite).
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Stability of Linear Dynamics by Spectral Analysis

For linear DDEs:

d

dt
x (t) = Ax (t) +Bx (t− r)

The characteristic equation:

det (λI −A− ) = 0

Globally exponentially stable if ∀λ : R(λ) < 0, i.e.,

∃K > 0. ∃α < 0: ∥ξϕ(t)∥ ≤ K ∥ϕ∥ eαt, ∀t ≥ 0, ∀ϕ ∈ Cr
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Reducing Unbounded V. to Bounded V.

..1 Linearize a non-linear DDE to a linear one.

..2 Identify the rightmost real part of the eigenvalues (and hence α), then
construct K and δ.

..3 Compute T ∗, as well as T ′ (by bounded verifiers) s.t. ∥Ω∥ < δ within
T ′.

..4 Reduce to bounded verification, i.e., ∀T > T ′ + T ∗, ∞-safe ⇐⇒
T -safe.

• Details can be found in [CAV ’19].
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Exemplifying by Delayed Logistic Equation

Consider the safety problem over [−r,∞) with X = [−0.2, 0.2],
U = {u | |u| > 0.6}, under a constant delay r = 1.

..1 Let u = N − 1, then d
dtN(t) = N(t)[1−N(t− r)] =⇒

d
dtu(t) = −u(t− 1), t ≥ 0.

..2 In the second step, α = −0.3, and K = 3.28727,

..3 In the third step, δ = 0.00351678, T ∗ = 0s and T = 15.5s,

..4 So, the safety is guaranteed by verifying Ω over [−1, 15.5] is disjoint
with U . 4

★★★
★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

-5 -4 -3 -2 -1 0α
-150

-100

-50

0

50

100

150

R (λ)

I
( λ

)

(a)

0 40 60 80 100T′ + T*

-0.4

-0.2

0.0

0.2

0.4

t

u
(t
)

(b)

4.2 (a) h(z) 计

maxλ∈σ R (λ) < α < 0 α = −0.5 (b) Taylor

[91]所 (4.20) T >

(T ′ + T ∗) = 15.5s ∞- T-

Figure 4.2 Ubounded safety verification of the population dynamics. (a) The identified right-

most eigenvalues of h(z) and an upper bound α = −0.5 such that maxλ∈σ R (λ) < α < 0;

(b) Overapproximation of the reachable set of the system (4.20) produced by the method

in [91] using Taylor models for bounded verification. Together with this overapproxi-

mation we prove the equivalence of ∞-safety and T-safety of the system, for any T >

(T ′ + T ∗) = 15.5s.

[−1, 15.5] 与 U (4.20)

DDEs: 所 单 理论

指 计 理 (2.1)

DDEs 别 ∥B∥ e−rα∑k
i=1 ∥Ai∥ e−riα ∥B∥ ∑k

i=1 ∥Ai∥ 中 Ai 中 x(t − ri)

Jacobian

[8]中 理 1.2 中 所

4.3

所 Wolfram

M [152]中 DDE-BIFTOOL6 计

6http://ddebiftool.sourceforge.net/

59

δ = min
{
δϵ, δϵ/

(
K̂e−rα

(
1 + ∥B∥

∫ r
0

e−ατ dτ
))}

δϵ = K̂e−rα
(
1 + ∥B∥

∫
r
0

e−ατ dτ
)
∥ϕ∥ eϵK̂e−rαt+αt

ϵ ≤ −α/(2K̂e−rα)
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(b) Overapproximation of the reachable set of the system (4.20) produced by the method
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Exemplifying by Delayed Logistic Equation

Consider the safety problem over [−r,∞) with X = [−0.2, 0.2],
U = {u | |u| > 0.6}, under a constant delay r = 1.

..1 Let u = N − 1, then d
dtN(t) = N(t)[1−N(t− r)] =⇒

d
dtu(t) = −u(t− 1), t ≥ 0.

..2 In the second step, α = −0.3, and K = 3.28727,

..3 In the third step, δ = 0.00351678, T ∗ = 0s and T = 15.5s,

..4 So, the safety is guaranteed by verifying Ω over [−1, 15.5] is disjoint
with U . 4
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Controller Synthesis for Time-delayed Systems

Goal: Given an environment E and system specification Φ, to
synthesize a system S such that E∥S |= Φ
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Controller Synthesis for Discrete Time-delayed Systems by
Reduction to Discrete Safety Games

Goal: Given an environment E and system specification Φ, to
synthesize a system S such that E∥S |= Φ
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A Trivial Safety GameA Trivial Safety Game
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Goal: Avoid a5 by appropriate
actions of player e.

Strategy: May always play "a"
except in e3:

e1, e2 7→ a
e3 7→ b
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Goal: Avoid a5 by appropriate
actions of player e.

Strategy: May always play "a" except
in e3:

e1, e2 7→ a
e3 7→ b

Proterties: Determinacy and
memoryless.
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Playing Safety Game Subject to Discrete Delay
Playing Subject to Discrete Delay

Shift registers
Game state AdversaryEgo player

Observation: It doesn’t make an observable difference for the joint dynamics
whether delay occurs in perception, actuation, or both.

Consequence: There is an1 obvious reduction to a safety game of perfect
information.

1

In fact, two different ones: To mimic opacity of the shift registers, delay has to be
moved to actuation/sensing for ego/adversary, resp. The two thus play different games!
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Reduction to Delay-Free Games
from Ego-Player Perspective

The Reduction
from Ego-Player Perspective

Ego
input Σ

Shift register

Σ / Ego inp. Adv. inp.

Safe / unsafe

G
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p
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Σ

Safety games w. delay can be solved algorithmically.

Game graph incurs blow-up by factor |Alphabet(ego)|delay.

PKU MAVeLoS Workshop, Beijing, Oct. 8, 2017 · Martin Fränzle: Indecision and Delay · 15 / 39

Safety games w. delay can be solved algorithmically ([M. Zimmermann.
LICS’18, GandALF’17], [F. Klein & M. Zimmermann. ICALP’15, CSL’15]).
Game graph incurs blow-up by factor |Alphabet(ego)|delay.
A more efficient algorithm is presented in [ATVA’18, Acta Informatica’21]
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The Simple Safety Game
. . . but with DelayA Trivial Safety Game

a

b u

u

u

b

a

a

b

u

u

v

v

e
3

a
3

a
4

e
2

a

a
1

e
1

2

a
5

Goal: Avoid a5 by appropriate
actions of player e.

Strategy: May always play "a"
except in e3:

e1, e2 7→ a
e3 7→ b
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No delay:
e1, e2 7→ a
e3 7→ b

1 step delay: Strategy?
a1, a4 7→ a
a2, a3 7→ b

2 steps delay: Strategy?

e1 7→


a if 2 steps back

an "a" was issued,
b if 2 steps back

a "b" was issued.
e2 7→ b
e3 7→ a

Need memory!

IMI-BAS · Naijun Zhan: Taming Delays in CPS · 26 / 36



The Simple Safety Game
. . . but with DelayA Trivial Safety Game

a

b u

u

u

b

a

a

b

u

u

v

v

e
3

a
3

a
4

e
2

a

a
1

e
1

2

a
5

Goal: Avoid a5 by appropriate
actions of player e.

Strategy: May always play "a"
except in e3:

e1, e2 7→ a
e3 7→ b

PKU MAVeLoS Workshop, Beijing, Oct. 8, 2017 · Martin Fränzle: Indecision and Delay · 13 / 39

No delay:
e1, e2 7→ a
e3 7→ b

1 step delay: Strategy?
a1, a4 7→ a
a2, a3 7→ b

2 steps delay: Strategy?

e1 7→


a if 2 steps back

an "a" was issued,
b if 2 steps back

a "b" was issued.
e2 7→ b
e3 7→ a

Need memory!
IMI-BAS · Naijun Zhan: Taming Delays in CPS · 26 / 36



Incremental Synthesis of Delay-Tolerant Strategies

Observation: A winning strategy for delay k′ > k can always be utilized
for a safe win under delay k.

Consequence: That a position is winning for delay k is a necessary
condition for it being winning under delay k′ > k.

Idea: Incrementally filter out loss states &
incrementally synthesize winning strategy for the remaining:

..1 Synthesize winning strategy for underlying delay-free safety
game.

..2 For each winning state, lift strategy from delay k to k + 1.

..3 Remove states where this does not succeed.

..4 Repeat from 2 until either delay-resilience suffices or initial
state turns lossy.

• Details can be found in [ATVA ’18, Acta Informatica’21].
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Safety Switching Controller Synthesis for Delay Hybrid Systems by
Invariant Generation and Constraint Solving

Goal: Given an environment E and system specification Φ, to
synthesize a system S such that E∥S |= Φ
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Delay Hybrid Automata
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Delay Hybrid Automata
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Synthesis Problem

 Given a DHA 雫 噺 岫Q┸ X┸ U┸ Inv┸ X待┸ F┸ E┸ D┸ G┸ R)

 a safety property

a safe switching controller synthesis problem is to synthesize a new          
DHA 雫茅 噺 岫Q┸ X┸ U茅┸ Inv茅┸ X待茅 ┸ F┸ E┸ D┸ G茅┸ R) such that
 雫茅 is safe;
雫茅 is a refinement of 雫;
雫茅 is non-blocking.

• Details can be found in [HSCC ’21, SCM 51(1)].
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Invariant Generation
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Differential Invariant Generation
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Differential Invariant Generation
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Differential Invariant Generation
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Guard Synthesis under Delay

 Synthesize guard condition without delay using invariant;

 Synthesize guard condition under delay by backward reachable set 
computation.

Maximal 
distance in 
delay time
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Summing Up
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Summary

Problem: We face
• increasingly wide-spread use of networked distributed sensing and ctrl.,
• substantial feedback delay thus affecting hybrid control schemes,
• delays impact controllability and control performance in both the

discrete and the continuous parts.

Status: Uncovered algorithms
• for veryfing continuous differential dynamics represented as a DDE

with a single, constant or multiple small delays,
• for efficient control synthesis for discrete safety games under delay,
• for controller synthesis for delay hybrid systems based on invariant

generation and constraint solving.

Future Work:
• DDE exhibiting state-dependent or/and stochastic delay,
• Invariant generation for time-delayed systems (on-going)

• Some first try was done by Prajna&Jadbabaie [CDC’05], and
recently by Ames et al. [ACC’19,ACC’21] and by us [SCIS’21]

• But more general invariant generation for DDE is still challenging.
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