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Cyber-Physical Systems

“The term Cyber-Physical Systems (CPS) refers a new generation of
systems with integrated computational and physical capabilities that can
interact with humans through many new modalities.

The ability to interact with, and expand the capabilities of, the physical
world through computation, communicaiton, and control is a key
enabler for future technology developments. "

— Helen Gill and Kisan Baheti NSF. IEEE Impact of Control Technology.
Available at www.ieeecss.org
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Cyber-Physical Systems
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Hybrid Systems — A Common CPS Model
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Hybrid Systems — A Common CPS Model
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Crucial question:
e How do the controller and the plant interact?
Traditional answer:

e Coupling assumed to be (or at least modeled as) delay-free.
= Mode dynamics is covered by the conjunction of the individual ODEs.
= Switching btw. modes is an immediate reaction to environmental conditions.

IMI-BAS - Naijun Zhan: Taming Delays in CPS - 3/ 36



Instantaneous Coupling

Following the tradition, above (rather typical) Simulink model assumes
e delay-free coupling between all components,
e instantaneous feed-through within all functional blocks.
Central questions:
@ s this realistic?
® If not, does it have observable effect on control performance?

© May that effect be detrimental or even harmful?
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Q1: Is Instantaneous Coupling Realistic?

Wk Digital control needs A/D and D/A conversion,

aaaaa o TR s which induces latency in signal forwarding.

Digital signal processing, especially in complex
sensors like CV, needs processing time, adding
signal delays.

Networked control introduces communication
latency into the feedback control loop.

Harvesting, fusing, and forwarding data through
sensor networks enlarge the latter by orders of
magnitude.
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Q2: Do Delays Have Observable Effect?
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A robot escape game in a 4x4 room, with
Y., = {RU, UR, LU, UL, RD, DR, LD, DL, €},
Yt = {R,L,U,D}.
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Q2: Do Delays Have Observable Effect?
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Q3: May the Effects be Harmful?

e Delayed logistic equation [G. Hutchinson, 1948]:

N = N1 — N(E=r)]
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Q3: May the Effects be Harmful?

— Yes, delays may well annihilate control performance.

e Delayed logistic equation [G. Hutchinson, 1948]:
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DDE — The History

Historical motivation (predating digital control):

“Despite [...] very satisfactory state of affairs as far as [ordinary]
differential equations are concerned, we are nevertheless forced to turn
to the study of more complex equations. Detailed studies of the real
world impel us, albeit reluctantly, to take account of the fact that the
rate of change of physical systems depends not only on their present
state, but also on their past history.”

[Richard Bellman and Kenneth L. Cooke, 1963]
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DDE — The History

Historical motivation (predating digital control):

“Despite [...] very satisfactory state of affairs as far as [ordinary]
differential equations are concerned, we are nevertheless forced to turn
to the study of more complex equations. Detailed studies of the real
world impel us, albeit reluctantly, to take account of the fact that the
rate of change of physical systems depends not only on their present
state, but also on their past history.”

[Richard Bellman and Kenneth L. Cooke, 1963]
Mathematical form:

%x(t) = F(x(t),x(t — 61), ..., x(t — 8n)), with 6, > ... > &1 > 0,

Simplest instance (which we will mostly concentrate on in the remainder):

d
Sx(t) = [(x(t — 5))
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DDE — Why They are Hard(er)

z = fo Gz =fo

DDE constitute a model of system dy-
namics beyond “state snapshots':

e They feature “functional state”
instead of state in the R™.
e Thus providing rather infallible,

infinite-dimensional memory of
the past.
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Conclusioin

e Delays in feedback control loops are ubiquitous, give difficulties.
e They may well invalidate the safety/stability/. . . certificates obtained
by verifying delay-free abstractions of the feedback control system.

Automatic verification/synthesis methods addressing feedback
delays in hybrid systems should therefore abound!
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Conclusioin

e Delays in feedback control loops are ubiquitous, give difficulties.
e They may well invalidate the safety/stability/. . . certificates obtained
by verifying delay-free abstractions of the feedback control system.

Automatic verification/synthesis methods addressing feedback

delays in hybrid systems should therefore abound!
Surprisingly, they don’t:
o S. Prajna, A. Jadbabaie: Meth. f. safety verification of time-delay syst. (CDC'05)
e L. Zou, M. Fréanzle, ZNJ, P.N. Mosaad: Autom. verific. of stabil. and safety (CAV '15)

9 Z. Huang, C. Fan, S. Mitra: Bounded invariant verification for time-delayed nonlinear networked dynamical
systems (NAHS '16)

M. Chen, M. Frianzle, Y. Li, P.N. Mosaad, ZNJ: Validat. simul.-based verific. (FM '16)

E. Goubault, S. Putot, and L. Sahlmann: Inner and outer approximating flowpipes for delay differential
equations (CAV '18)

S. Feng, M. Chen, ZNJ et al.: Taming delays in dynamical systems: Unbounded verification of DDEs
(CAV '19)

Y. Bai, T. Gan, L. Jiao, B. Xia, B. Xue and ZNJ : Switching Controller Synthesis for Time-delayed Hybrid
Systems under Perturbation (HSCC'21)

M. Chen, M. Franzle, Y. Li, P. Mosad and ZNJ: Indecision and delays are the parents of failure Taming
them algorithmically by synthesizing delay-resilient control (Acta Informatica’21)

© ©Q 0 66

B. Xue, Q. Wang, S. Feng and ZNJ: Over- and Under-Approximating Reach Sets for Perturbed Delay
Differential Equations (IEEE TAC'21)

)
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The Agenda

@ Verification of delay differential equations
Property ®

—] YES [proof]
System S ——>{ Verifier
— NO + counterx.

Environm. E

e Bounded verification
e Unbounded verification

® Controller synthesis for time-delayed systems
Property ®

. System S
Synthesizer[—> (S|E £ @)

Environm. FE

e Controller synthesis by reduction to playing safety games in the setting
of discrete time

e Safety switching controller synthesis of delay hybrid systems by
invariant generation and constraint solving

©® Summary
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Solving Delay Differential Equations (DDE)

A formal model of delayed feedback control
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Safety Problem

Given T e R, Xy C X, U C R”, weather

Vxo € Ap : (Utg gxo(t)) nuU=0 ?
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Safety Problem

Given T e R, Xy C X, U C R”, weather

Vxo € Ap : (Utg Exo(t)) nuU=0 ?

-4— unsafe set

exemplary trajectory

[
initial set reachable set

X1

e System is safe, if no trajectory enters the unsafe set.
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Verification of DDE

Bounded verification

Verification goal: given a time-bound 7" show that the solutions to
the DDE on time interval [0,T] satisfy a given invariance property.
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Simulation-Based Verification

e do numerical simulation on a
(sufficiently dense) sample of
e partition the initial set into a each partitioned initial set;
finitely smaller sets;

Figure: A finite e-cover of the initial Figure: An Over-approximation of the
set of states. reachable set by bloating the simulation.
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Simulation-Based Verification

e add (pessimistic) error analysis
e partition the initial set into a and sensitivity analysis;
finitely smaller sets;

Figure: A finite e-cover of the initial ~ Figure: An Over-approximation of the
set of states. reachable set by bloating the simulation.

e Details can be found in [FM'16].
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Simulation-Based Verification

e “bloat” the resulting trajectories
e partition the initial set into a accordingly.
finitely smaller sets;

Figure: A finite e-cover of the initial ~ Figure: An Over-approximation of the
set of states. reachable set by bloating the simulation.

e Details can be found in [FM'16].
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Simulation-Based Verification

e partition the initial set into a
finitely smaller sets;

Reach_; [Be (XO)}

Figure: A finite e-cover of the initial  Figure: An Over-approximation of the
set of states. reachable set by bloating the simulation.

e Details can be found in [FM'16].
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Set-boundary Based Over/Under-Approximation

Basic idea

Make use of the homeomorphism property to perform reachability
analysis only on the initial set's boundary

Prove that there exists a class of DDEs whose delays are small than a
threshold w.r.t. their initial sets, satisfying the homemorphoism
property

Make use of sensitivity analysis to perform reachability on a subset of
the initial set's boundary

/\...-{ $U,, T) | ¢y T) || I

Blue Region : Over — Appro Under — Approximation

Tools: IraPhy (https://github.com/JiangiangDing/irathy)
Details can be found in ([IEEE TAC'21] [Xue et al., CAV'16], [FORMATS'17])
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Unbounded Verification of DDE

%X(t) = f(x(t),x(t —91),...,x(t — o))

Verification goal: show that the solutions to the DDE satisfy a
given invariance property (the trajectory could be infinite).
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Stability of Linear Dynamics by Spectral Analysis

For linear DDEs:

d

X (t) = Ax(t) + Bx(t —r)
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Stability of Linear Dynamics by Spectral Analysis

For linear DDEs:

d

X (t) = Ax(t) + Bx(t —r)

The characteristic equation:

det ()\I —A-— Be_M) =0
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Stability of Linear Dynamics by Spectral Analysis

For linear DDEs:

: N

X (t) = Ax (t) + Bx (t — 1)

The characteristic equation: o

3 -4

det ()\I _A- Be*M) —0
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Stability of Linear Dynamics by Spectral Analysis

For linear DDEs:

d 100 -
—x(t) = Ax (t) + Bx (t — r)
dt =" Tea,
o w*x x * T T
The characteristic equation: m
det ()\I —A-— Be*M) =0 ¢ * Ty 7 toal
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Stability of Linear Dynamics by Spectral Analysis

For linear DDEs:

d 1000
—x(t) = Ax(t)+ Bx (t —r)
dt =" e,
o w*x x * T T
The characteristic equation: ,,0 f****
—|507f . X X X J
det ()\I —A- Be*’*) =0 1 A

Globally exponentially stable if VA: R(\) <0, i.e.,

IK > 0.3a < 0: [[€5(t)]| < K [|@] €™, V>0, Yo €C,
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Reducing Unbounded V. to Bounded V.

@ Linearize a non-linear DDE to a linear one.

@ ldentify the rightmost real part of the eigenvalues (and hence «), then
construct K and §.

e Details can be found in [CAV'19].
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Reducing Unbounded V. to Bounded V.

@ Linearize a non-linear DDE to a linear one.

@ ldentify the rightmost real part of the eigenvalues (and hence «), then
construct K and §.

© Compute T*, as well as T” (by bounded verifiers) s.t. ||| < ¢ within
T

e Details can be found in [CAV'19].
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Reducing Unbounded V. to Bounded V.

@ Linearize a non-linear DDE to a linear one.

@ ldentify the rightmost real part of the eigenvalues (and hence «), then
construct K and §.

© Compute T*, as well as T” (by bounded verifiers) s.t. ||| < ¢ within
T

O Reduce to bounded verification, i.e., VI' > T" 4+ T*, oo-safe <=
T-safe.

e Details can be found in [CAV'19].
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Exemplifying by Delayed Logistic Equation

Consider the safety problem over [—r, 00) with X = [-0.2,0.2],
U = {u | |u| > 0.6}, under a constant delay r = 1.
@ Lletu=N—1then $Nt) =N@¢)[l-N(t—-r)] =
Su(t)y=—u(t-1), t>0.

= min {55, be/ (Re"'" (1+1B] _/‘UT e 7 d'r))}
T L 17 6 = Ke ™ (14 | B|| [T e~ dr) ||| e<Ke " tor

e < —a/(2Ke ™)

IS
Lk
b
°
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Exemplifying by Delayed Logistic Equation

Consider the safety problem over [—r, 00) with X = [-0.2,0.2],
U = {u | |u| > 0.6}, under a constant delay r = 1.
@ Lletu=N—1then $Nt) =N@¢)[l-N(t—-r)] =
Su(t)y=—u(t-1), t>0.
@ In the second step, = —0.3, and K = 3.28727,

3()

00
* oz
s0f *x
* %
* %
*
*. -

O -mimm i +--4 =

* ]
sof

- - a ] " * 40 60 80 100
R0 T+T .
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Exemplifying by Delayed Logistic Equation

Consider the safety problem over [—r,00) with X = [—0.2,0.2],
U = {u | |u| > 0.6}, under a constant delay r = 1.
@ Lletu=N—1then $Nt) =N@¢)[l-N(t—-r)] =
Su(t)y=—u(t-1), t>0.
@ In the second step, = —0.3, and K = 3.28727,
© In the third step, 6 = 0.00351678, T* = 0s and T' = 15.5s,

u(r)

100
* 02l
s0f- Fk g
* 5
*ox

el *
= *
S of - B R +-4
= *

_sof

- - a ] " * 40 60 80 100
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Exemplifying by Delayed Logistic Equation

Consider the safety problem over [—r,00) with X = [—0.2,0.2],
U = {u | |u| > 0.6}, under a constant delay r = 1.
@ Lletu=N—1then $Nt) =N@¢)[l-N(t—-r)] =
Su(t)y=—u(t-1), t>0.
@ In the second step, = —0.3, and K = 3.28727,
© In the third step, 6 = 0.00351678, T* = 0s and T' = 15.5s,
O So, the safety is guaranteed by verifying Q over [—1, 15.5] is disjoint
with U.

100|
* 02
s0f- Fk g
* %
* %

o~ *
= * ~
B Tt -1 =
[ * 3

_soF

- - a ] " * 40 60 80 100
R0 T+T .
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Controller Synthesis for Time-delayed Systems

Goal: Given an environment E and system specification @, to
synthesize a system S such that £||S = ©
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Controller Synthesis for Discrete Time-delayed Systems by
Reduction to Discrete Safety Games

Goal: Given an environment E and system specification @, to
synthesize a system S such that £||S = ©
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A Trivial Safety Game

Goal: Avoid by appropriate

actions of player e.
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A Trivial Safety Game

Goal: Avoid by appropriate

actions of player e.

v Strategy: May always play "a" except
in es:

e1,ey — a
es3 — b

b Proterties: Determinacy and
memoryless.
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Playing Safety Game Subject to Discrete Delay

Shift registers
Ego player Game state Adversary

Observation: It doesn't make an observable difference for the joint
dynamics whether delay occurs in perception, actuation, or both.
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Playing Safety Game Subject to Discrete Delay

Shift registers '
Ego player Game state Adversary

Observation: It doesn't make an observable difference for the joint
dynamics whether delay occurs in perception, actuation, or both.

Consequence: There is atobvious reduction to a safety game of perfect
information.
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Reduction to Delay-Free Games

from Ego-Player Perspective

Game graph
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Reduction to Delay-Free Games

from Ego-Player Perspective

Game graph

(©) Safety games w. delay can be solved algorithmically ([M. Zimmermann.
LICS’18, GandALF'17], [F. Klein & M. Zimmermann. ICALP'15, CSL'15]).

@ Game graph incurs blow-up by factor |Alphabet(ego)|de'ay.
©) A more efficient algorithm is presented in [ATVA'18, Acta Informatica'21]
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The Simple Safety Game

... but with Delay

No delay:
€1,e2 — a
es — b

1 step delay: Strategy?
a,a4 — a
as,asz b
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The Simple Safety Game

... but with Delay

No delay:
€1,e2 — a
es — b
1 step delay: Strategy?
a,a4 — a
as,asz b
v
2 steps delay: Strategy?
a if 2 steps back
an "a" was issued,
T b if 2 steps back
b a "b" was issued.
es — b
u ay || es — a

Need memory!
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Incremental Synthesis of Delay-Tolerant Strategies

Observation: A winning strategy for delay &’ > k can always be utilized
for a safe win under delay &.

Consequence: That a position is winning for delay k is a necessary
condition for it being winning under delay k&’ > k.
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Incremental Synthesis of Delay-Tolerant Strategies

Observation: A winning strategy for delay &’ > k can always be utilized
for a safe win under delay k.

Consequence: That a position is winning for delay k is a necessary
condition for it being winning under delay k&’ > k.

Idea: Incrementally filter out loss states &
incrementally synthesize winning strategy for the remaining:

@ Synthesize winning strategy for underlying delay-free safety
game.

@® For each winning state, lift strategy from delay k& to k& + 1.

© Remove states where this does not succeed.

O Repeat from 2 until either delay-resilience suffices or initial
state turns lossy.

e Details can be found in [ATVA 18, Acta Informatica'21].
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Safety Switching Controller Synthesis for Delay Hybrid Systems by
Invariant Generation and Constraint Solving

Goal: Given an environment E and system specification @, to
synthesize a system S such that £||S = ©
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Delay Hybrid Automata

+Two kinds of delay occur in CPS.

[Delay in continuous dynamics \

i

;@asymptotically
< [|/\ stakle._

-1,'

1

. unstable

memwso

IMI-BAS -

[ Delay in discrete dynamics
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Delay Hybrid Automata

Definition (Delay Hybrid Automaton, DHA)

ADHAis atuple H = (Q X, U, Inv,X,, F,E, D, G, R)
» U: a set of continuous functionals;
> Inv: an invariant Inv(q) for each mode g € Q ;
» R: E x Xp— U : reset functions;

> ..
D(eq)
Mode q; Mode q,
DDE DDE
Inv(q,) Inv(qz)
D(ez)
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Synthesis Problem

O Given a DHA X = (Q,X,U,Inv,X,,F,E, D,G,R)
O a safety property

a safe switching controller synthesis problem is to synthesize a new
DHA H* = (Q,X, U*, Inv*, X}, F, E, D, G*, R) such that

H* is safe;

H* is a refinement of 7;

H* is non-blocking.

e Details can be found in [HSCC'21, SCM 51(1)].
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Invariant Generation

OGenerate a global invariant for delay hybrid system by computing a fixed
point.
B Generate a strengthened differential invariant for each mode
B Generate a strengthened guarded for each transition

]
]
Fixed point
Invo (40 Inv, (q0) Invi(d0); ,eacﬁ,e{,nvm(qo)
Invy(q1) . Invi(ay) RGN Inv;(q;) nvi;1(q1)
Invo(an) Invy (ax) nvi(ax) Vi1 (ay)
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Differential Invariant Generation

Linear DDE: x(t) = A x(t) + Bx(t — r) + Cw(t)

OReduce to T-invariant, i.e., VT > T*, «-invariant & T-invariant
OCompute a safe over-approximate reachable setin T

Reachable set

Exponentially convergent to a ball:

if there exist a constant y > 0 and a non-decreasing Initial set
function k(-) such that

g3 @I, =7 +xUi¢lla)e,  ve=0 n-ball with

holds forall ¢ € C, lw(®)llo <Ww VEt= 0.

t=0 t=T
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Differential Invariant Generation

Linear DDE: x(t) = A x(t) + Bx(t —r) + Cw(t)

OReduce to T-invariant, i.e., VT > T*, «-invariant & T-invariant
OCompute a safe over-approximate reachable setin T

._.IM/W ’
P2
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Differential Invariant Generation

Non-linear DDE: x(t) = f(rx(t),x(t — r),w(t))

linearize
Linear DDE: x(t) = A x(t) + Bx(t — r) + Cw(t) + g(x(t), x(t — 1))

OReduce to T-invariant, i.e., VT > T*, »-invariant ©T-invariant

Locally exponentially convergent to a ball:

if there exist a constanty > 0,/ > 0 and a non-decreasing function
k() such that

lp Ol <t = |85 Ol <7 +rllglla)e™,  ve=o0
holds forall¢ € C, |[[w(t)|lo <W Vt= 0.
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Guard Synthesis under Delay

O Synthesize guard condition without delay using invariant;
O Synthesize guard condition under delay by backward reachable set
computation.

Under-approximation

%

Maximal _—" ‘

distance in i

delay time ideal Guard - Guard without delay
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Summing Up
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Problem: We face
e increasingly wide-spread use of networked distributed sensing and ctrl.,
e substantial feedback delay thus affecting hybrid control schemes,
e delays impact controllability and control performance in both the
discrete and the continuous parts.
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Problem: We face

e increasingly wide-spread use of networked distributed sensing and ctrl.,

e substantial feedback delay thus affecting hybrid control schemes,

e delays impact controllability and control performance in both the
discrete and the continuous parts.

Status: Uncovered algorithms
e for veryfing continuous differential dynamics represented as a DDE
with a single, constant or multiple small delays,
o for efficient control synthesis for discrete safety games under delay,
e for controller synthesis for delay hybrid systems based on invariant
generation and constraint solving.
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Problem: We face

e increasingly wide-spread use of networked distributed sensing and ctrl.,

e substantial feedback delay thus affecting hybrid control schemes,

e delays impact controllability and control performance in both the
discrete and the continuous parts.

Status: Uncovered algorithms
e for veryfing continuous differential dynamics represented as a DDE
with a single, constant or multiple small delays,
o for efficient control synthesis for discrete safety games under delay,
e for controller synthesis for delay hybrid systems based on invariant
generation and constraint solving.

Future Work:

e DDE exhibiting state-dependent or/and stochastic delay,
e Invariant generation for time-delayed systems (on-going)
e Some first try was done by Prajna&Jadbabaie [CDC'05], and
recently by Ames et al. [ACC'19,ACC'21] and by us [SCIS'21]
e But more general invariant generation for DDE is still challenging.
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Questions
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