Almost Prime Ideal And Almost Prime Radical

Alaa ABOUHALAKA

Department of Mathematics
Çukurova University, Adana, Turkey
Online Presentation, 16th September, 2022

Introduction.

- Almost prime ideals appear by studying of unique factorization in Noetherian domains introduced by P.S. Bhatwdekar and P.K. Sharma through a paper intitled unique factorization and birth of almost prime in 2005.
They defined it as the following.

Definition

A proper ideal P of a commutative ring with identity is an almost prime ideal if $a b \in P \backslash P^{2}$ implies $a \in P$ or $b \in P$.

- Many studies follow the previous definition in commutative rings.

Introduction.

Here we set the standard definitions of prime, weakly prime, and idempotent ideals of a noncommutative ring R.

Definition

A right ideal P of R is called prime if $A B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$ for all right ideals A, B of R.

Definition

A right ideal P of R is called weakly prime if $0 \neq A B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$, for all right ideals A, B of R.

Definition

A right ideal P of R is called idempotent if $P^{2}=P$.

Introduction.

Now we introduce the concept of almost prime ideal of a ring not necessary commutative as the following.

Definition

An (A right) ideal P of a ring R is called almost prime if $A B \subseteq P$, and $A B \nsubseteq P^{2}$ implies $A \subseteq P$ or $B \subseteq P$ for all (right) ideals A, B of R.

Note that every idempotent, weakly prime, and prime right ideal is an almost prime right ideal. Hence the concept of almost prime ideal is a generalization of prime ideal. However, any almost prime right ideal does not need to be a prime right ideal.

Introduction

Definition

Let R be a ring and I, J be right ideals of R. The right ideal $I: J$ (known as colon right ideal) of R is defined as $I: J=\{x \in R \mid J x \subseteq I\}$.
Similarly we define the set $(I: J)^{*}=\{x \in R \mid x J \subseteq I\}$. Recall that in the case of I, J being ideals, so are $I: J$ and $(I: J)^{*}$.

Introduction.

Here, we do the following.

- Show the analogy between almost prime (right) ideals, prime (right) ideals, and weakly prime (right) ideals.
- Investigate images and the inverse images of almost prime (right) ideals under ring homomorphisms.
- Characterize the non-local rings in which every (right) ideal is an almost prime.
- Introduce the concept of almost prime radical of an ideal.

Our Results.

Theorem

Let R be ring with identity, and P be an ideal of R then the following statements are equivalent:
(1) P is an almost prime ideal.
(2) If $(a\rangle(b) \subseteq P,(a\rangle(b) \nsubseteq P^{2}$, then either $a \in P$ or $b \in P$, where $a, b \in R$.
(3) If $a R b \subseteq P, a R b \nsubseteq P^{2}$, then either $a \in P$ or $b \in P$, where $a, b \in R$.
(4) $P:\langle a\rangle=P \cup\left(P^{2}:\langle a\rangle\right)$ and $(P:\langle a\rangle)^{*}=P \cup\left(P^{2}:\langle a\rangle\right)^{*}$ for all $a \in R \backslash P$.
(5) Either $P:\langle a\rangle=P$ or $P:\langle a\rangle=P^{2}:\langle a\rangle$, and either
$(P:\langle a\rangle)^{*}=P$ or $(P:\langle a\rangle)^{*}=\left(P^{2}:\langle a\rangle\right)^{*}$ for all $a \in R \backslash P$.

Our Results.

Definition

A ring in which every (right) ideal is an almost prime (right) ideal is called a fully almost prime (right) ring.

In the following lines, we are going to illustrate some (original) examples of a fully almost prime ring, and a fully almost prime right ring.

Our Results.

Example

Let $R=\{0, a, b, c\}$ be the noncommutative ring with binary operations

+	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

.	0	a	b	c
0	0	0	0	0
a	0	a	a	0
b	0	b	b	0
c	0	c	c	0

Then, the right ideals of R are $I=\{0, b\}, J=\{0, c\}$, and $P=\{0, a\}$.

Our Results.

Example

\square Note that $I J=0 \subseteq P, I \nsubseteq P$, and $J \nsubseteq P$. Hence the right ideal P is not a prime right ideal. However, P is an almost prime right ideal.
$\square I=\{0, b\}$ and $J=\{0, c\}$ are also almost prime right ideals. Hence, the ring R is a fully almost prime right ring.

Our Results.

Example

Let $R=\left\{\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right): a, b \in \mathbb{Z}_{4}\right.$, and $\left.b \in\{0,2\}\right\}$. Then the proper nonzero ideals of R are:
$P_{1}=\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)\right\}$
$P_{2}=\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)\right\}$
$M=\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}2 & 2 \\ 0 & 0\end{array}\right)\right\}$
The ring R is a fully almost prime ring.

Our Results.

Theorem

Let R be a ring with identity, and P be an ideal of R. Then the following statements are equivalent.
(1) P is an almost prime right ideal.
(2) P is an almost prime ideal.

Theorem

Let R be ring with identity, and P be a right ideal of R such that $\left(P^{2}: P\right) \subseteq P$. Then the following statements are equivalent.
(1) P is a prime right ideal.
(2) P is an almost prime right ideal.

Our Results.

Theorem

Let R be a ring and P be an ideal of R. Then, the following statements are equivalent.
(1) P is an almost prime right ideal of R.
(2) P / P^{2} is weakly prime right ideal of R / P^{2}.

Theorem

Let R be a ring, and I be an ideal of R. Let P be a right ideal of R such that $I \subseteq P$. If P is an almost prime right ideal of R, then P / I is an almost prime right ideal of R / I.

Our Results.

Theorem

Let $f: R \rightarrow S$ be a ring epimorphism, and P be an almost prime right ideal of R such that $\operatorname{ker} f \subseteq P$. Then $f(P)$ is an almost prime right ideal of S.

Corollary

Let $f: R \rightarrow S$ be a ring epimorphism, and B be a right ideal of S such that $f^{-1}(B)$ is an almost prime right ideal of R. Then, B is an almost prime right ideal of S.

Our Results.

Theorem

Let $f: R \rightarrow S$ be a ring epimorphism, and P be a right ideal of R such that $\operatorname{ker} f \subseteq P^{2}$. If $f(P)$ is an almost prime right ideal of S, then P is an almost prime right ideal of R.

Corollary

Let $f: R \rightarrow S$ be a ring epimorphism, and B be an almost prime right ideal of S such that $\operatorname{ker} f \subseteq\left(f^{-1}(B)\right)^{2}$. Then, $f^{-1}(B)$ is an almost prime right ideal of R.

Our Results.

The following theorems describe fully almost prime (right) rings which are not local.

Theorem

Let R be a fully almost prime ring which is right S -unital. If M_{1} and M_{2} are two distinct maximal ideals of R (thus R is not a local ring), then followings hold.
(1) $M_{1} M_{2}=M_{2} M_{1}$.
(2) $M_{1} \cap M_{2}=M_{1} M_{2}$, and it is idempotent.

Theorem

Let the ring R with identity be a fully almost prime right ring which is not local. Then, for any two maximal right ideals M_{1} and M_{2}, either $M_{1} M_{2}$ or $M_{2} M_{1}$ is idempotent.

Our Results.

Example

An application of our previous theorem is the subring R of $M_{2}\left(\mathbb{Z}_{2}\right)$, where

$$
R=\left\{0, e_{11}+e_{12}, e_{21}+e_{22}, e_{11}+e_{12}+e_{21}+e_{22}\right\}
$$

The right ideals $I=\left\{0, e_{21}+e_{22}\right\}$, $J=\left\{0, e_{11}+e_{12}+e_{21}+e_{22}\right\}$, and $K=\left\{0, e_{11}+e_{12}\right\}$ are almost prime right ideals. Thus R is fully almost prime right ring. Note that all of I, J, and K are maximal right ideals.
Clearly $I J=0, J I=J ; I K=I, K I=K$; and $J K=J, K J=0$. Moreover, $0, I$ and K are idempotent, but J is not idempotent.

Our Results.

Definition

A nonempty set $S \subseteq R$ is called an almost m-system if, $I \cap S \neq \emptyset, J \cap S \neq \emptyset$, and $I J \nsubseteq(R-S)^{2}$. Then $I J \cap S \neq \emptyset$. For any ideals I, J of R.

Theorem

An ideal P of a ring R is almost prime ideal if and only if $R-P$ is almost m-system.

Theorem

Let $S \subseteq R$ be an almost m-system, and let P be an ideal maximal with respect to the property that P is disjoint from S, and $P^{2}=(R-S)^{2}$ Then P is almost prime ideal of R.

Our Results.

Definition

Let I be an ideal of a ring R, and let P be an almost prime ideal of R such that $I \subseteq P$, and $I^{2}=P^{2}$. Then we define \sqrt{I} as the following.

- $\sqrt{I}=\{r \in R$: every almost m-system S containing r, with $I^{2}=(R-S)^{2}$ meets $\left.I\right\}$.
- If there is no any almost prime ideal P such that $I \subseteq P$, with $I^{2}=P^{2}$ then we say $\sqrt{I}=R$.

We call it the almost prime radical of the ideal I.

Our Results.

It is not clear from the definition above whether the $\sqrt{7}$ is an ideal of R or not, the following thorem shows the answer.

Theorem

\sqrt{I} in the above definition is equal to the intersection of all almost prime ideals P of R containing I, with $I^{2}=P^{2}$. Otherwise, $\sqrt{I}=R$.

Our Results.

Example

Let $R=M_{2 \times 2}\left(\mathbb{Z}_{16}\right)$. The nonzero proper ideals of R are
$P_{1}=\left\{\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right): a_{i} \in \mathbb{Z}_{16}, a_{i}=2 k, k \in \mathbb{Z}\right\}$
$P_{2}=\left\{\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right): a_{i} \in \mathbb{Z}_{16}, a_{i}=4 k, k \in \mathbb{Z}\right\}$
$P_{3}=\left\{\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right): a_{i} \in \mathbb{Z}_{16}, a_{i}=8 k, k \in \mathbb{Z}\right\}$

Our Results.

Example

It is straightforward to show that $P_{1}^{2}=P_{2}$, and $P_{2}^{2}=P_{3}^{2}=0$. In addition, P_{1}, P_{2} are almost prime ideals, thus $\sqrt{P_{1}}=P_{1}$, and $\sqrt{P_{2}}=P_{2}$; however, P_{3} is not, since $P_{1} P_{2} \subseteq P_{3}$ and $P_{1} P_{2} \nsubseteq P_{3}^{2}$, and neither $P_{1} \subseteq P_{3}$ nor $P_{2} \subseteq P_{3}$. Additionally, P_{2} is the only almost prime ideal such that $P_{3} \subseteq P_{2}$, and $P_{2}^{2}=P_{3}^{2}$. Thus $\sqrt{P_{3}}=P_{2}$.

Definition

An ideal P of a ring R is called an almost radical ideal if $\sqrt{P}=P$.

Note that every almost prime ideal is an almost radical ideal.

Our Results

Corollary

Let R be a ring. If $\sqrt{\operatorname{rad}(R)} \neq R$, then $\sqrt{\operatorname{rad}(R)}=\operatorname{rad}(R)$, where $\operatorname{rad}(R)$ is the prime radical of R.

Proof.

Let $\sqrt{\operatorname{rad}(R)}=\cap P_{i \in L}$ where P_{i} is an almost prime ideal of R such that $\operatorname{rad}(R) \subseteq P_{i}$, and $[\operatorname{rad}(R)]^{2}=P_{i}^{2}$ for all $i \in L$. Then $P_{i}^{2} \subseteq \operatorname{rad}(R)$, thus $P_{i} \subseteq \operatorname{rad}(R)$ for all $i \in L$, because $\operatorname{rad}(R)$ is semiprime ideal. Hence $\sqrt{\operatorname{rad}(R)}=\cap_{i \in L} \subseteq \operatorname{rad}(R)$, and since $\operatorname{rad}(R) \subseteq \sqrt{\operatorname{rad}(R)}$ we get $\sqrt{\operatorname{rad}(R)}=\operatorname{rad}(R)$.

Our Results.

Corollary

Every ideal of a local ring (R, M) with $M^{2}=0$ is an almost radical ideal.

Our Results.

Example

Let $R=\left\{\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right): a, b \in \mathbb{Z}_{4}\right.$, and $\left.b \in\{0,2\}\right\}$. Then the
proper nonzero ideals of R are:
$P_{1}=\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)\right\}$
$P_{2}=\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)\right\}$
$M=\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}2 & 2 \\ 0 & 0\end{array}\right)\right\}$
The ring R is fully almost prime ring, and $P_{1}^{2}=P_{2}^{2}=M^{2}=0$.
Thus, $\sqrt{P_{1}}=P_{1} \cap M=P_{1}$. Also $\sqrt{P_{2}}=P_{2} \cap M=P_{2}, \sqrt{M}=M$.

Our Results.

Theorem

Let $f: R \rightarrow S$ be a ring isomorphism, and let I be any ideal of R. If $\sqrt{I} \neq R$, then $f(\sqrt{I})=\sqrt{f(I)}$.

Theorem

Let I be an ideal of a ring R. If $\sqrt{I} \neq R$, then $[\sqrt{I}]^{2}=I^{2}$.

References

A. Abouhalaka, Ş. Fındık, Almost prime ideals in noncommutative rings, arXiv:2201.09758.
(in A. Abouhalaka, Ş. Fındık, Almost prime ideals of S-unital and local rings, arXiv::2204.04886.
(1) Bataineh, Generalization of prime ideals, Phd thesis, The University of lowa, 2006.

R M.S. Bhatwadekar, P. K. Sharma, Unique factorization and brith of almost prime, Comm. Algebra, 33 (2005) 1, 43-49.

目 W.D. Blair, H. Tsutsui, Fully prime rings, Comm. Algebra, 22 (1994) 13, 5389-5400.

