Almost Prime Ideal And Almost Prime Radical

Alaa ABOUHALAKA

Department of Mathematics

Çukurova University, Adana, Turkey

Online Presentation, 16th September, 2022

(* E) * E)

æ

< 🗇 🕨

 Almost prime ideals appear by studying of unique factorization in Noetherian domains introduced by P.S. Bhatwdekar and P.K. Sharma through a paper intitled unique factorization and birth of almost prime in 2005. They defined it as the following.

Definition

A proper ideal *P* of a commutative ring with identity is an almost prime ideal if $ab \in P \setminus P^2$ implies $a \in P$ or $b \in P$.

• Many studies follow the previous definition in commutative rings.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Here we set the standard definitions of prime, weakly prime, and idempotent ideals of a noncommutative ring *R*.

Definition

A right ideal *P* of *R* is called prime if $AB \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$ for all right ideals *A*, *B* of *R*.

Definition

A right ideal *P* of *R* is called weakly prime if $0 \neq AB \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$, for all right ideals *A*, *B* of *R*.

Definition

A right ideal P of R is called idempotent if $P^2 = P$.

くロト (過) (目) (日)

Now we introduce the concept of almost prime ideal of a ring not necessary commutative as the following.

Definition

An (A right) ideal *P* of a ring *R* is called almost prime if $AB \subseteq P$, and $AB \not\subseteq P^2$ implies $A \subseteq P$ or $B \subseteq P$ for all (right) ideals *A*, *B* of *R*.

Note that every idempotent, weakly prime, and prime right ideal is an almost prime right ideal. Hence the concept of almost prime ideal is a generalization of prime ideal. However, any almost prime right ideal does not need to be a prime right ideal.

Definition

Let *R* be a ring and *I*, *J* be right ideals of *R*. The right ideal I : J(known as colon right ideal) of *R* is defined as $I : J = \{x \in R \mid Jx \subseteq I\}$. Similarly we define the set $(I : J)^* = \{x \in R \mid xJ \subseteq I\}$. Recall that in the case of *I*, *J* being ideals, so are I : J and $(I : J)^*$.

伺き くほき くほう

Here, we do the following.

- Show the analogy between almost prime (right) ideals, prime (right) ideals, and weakly prime (right) ideals.
- Investigate images and the inverse images of almost prime (right) ideals under ring homomorphisms.
- Characterize the non-local rings in which every (right) ideal is an almost prime.
- Introduce the concept of almost prime radical of an ideal.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let R be ring with identity, and P be an ideal of R then the following statements are equivalent:

(1) P is an almost prime ideal.

(2) If $(a\rangle(b) \subseteq P$, $(a\rangle(b) \not\subseteq P^2$, then either $a \in P$ or $b \in P$, where $a, b \in R$.

(3) If $aRb \subseteq P$, $aRb \not\subseteq P^2$, then either $a \in P$ or $b \in P$, where $a, b \in R$.

(4) $P : \langle a \rangle = P \cup (P^2 : \langle a \rangle)$ and $(P : \langle a \rangle)^* = P \cup (P^2 : \langle a \rangle)^*$ for all $a \in R \setminus P$.

(5) Either $P : \langle a \rangle = P$ or $P : \langle a \rangle = P^2 : \langle a \rangle$, and either $(P : \langle a \rangle)^* = P$ or $(P : \langle a \rangle)^* = (P^2 : \langle a \rangle)^*$ for all $a \in R \setminus P$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition

A ring in which every (right) ideal is an almost prime (right) ideal is called a fully almost prime (right) ring.

In the following lines, we are going to illustrate some (original) examples of a fully almost prime ring, and a fully almost prime right ring.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Example

Let $R = \{0, a, b, c\}$ be the noncommutative ring with binary operations

+	0	а	b	С	•	0
0	0	а	b	С	0	0
а	а	0	С	b	а	0
b	b	С	0	а	b	0
С	С	b	а	0	С	0

Then, the right ideals of R are $I = \{0, b\}, J = \{0, c\}$, and $P = \{0, a\}.$

b а

0 0 0

а а 0

b b 0 0

С С С

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Example

■ Note that $IJ = 0 \subseteq P$, $I \not\subseteq P$, and $J \not\subseteq P$. Hence the right ideal *P* is not a prime right ideal. However, *P* is an almost prime right ideal.

■ $I = \{0, b\}$ and $J = \{0, c\}$ are also almost prime right ideals. Hence, the ring *R* is a fully almost prime right ring.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Our Results.

Example

Let
$$R = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in \mathbb{Z}_4$$
, and $b \in \{0, 2\} \right\}$. Then the proper nonzero ideals of R are:
 $P_1 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \right\}$
 $P_2 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \right\}$
 $M = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix} \right\}$
The ring R is a fully almost prime ring.

ヘロト 人間 とくほとくほとう

Let R be a ring with identity, and P be an ideal of R. Then the following statements are equivalent. (1) P is an almost prime right ideal. (2) P is an almost prime ideal.

Theorem

Let *R* be ring with identity, and *P* be a right ideal of *R* such that $(P^2 : P) \subseteq P$. Then the following statements are equivalent. (1) *P* is a prime right ideal.

(2) P is an almost prime right ideal.

・聞き ・ヨキ ・ヨト

Let R be a ring and P be an ideal of R. Then, the following statements are equivalent.

(1) *P* is an almost prime right ideal of *R*.

(2) P/P^2 is weakly prime right ideal of R/P^2 .

Theorem

Let R be a ring, and I be an ideal of R. Let P be a right ideal of R such that $I \subseteq P$. If P is an almost prime right ideal of R, then P/I is an almost prime right ideal of R/I.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Let $f : R \to S$ be a ring epimorphism, and P be an almost prime right ideal of R such that kerf $\subseteq P$. Then f(P) is an almost prime right ideal of S.

Corollary

Let $f : R \to S$ be a ring epimorphism, and B be a right ideal of S such that $f^{-1}(B)$ is an almost prime right ideal of R. Then, B is an almost prime right ideal of S.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $f : R \to S$ be a ring epimorphism, and P be a right ideal of R such that kerf $\subseteq P^2$. If f(P) is an almost prime right ideal of S, then P is an almost prime right ideal of R.

Corollary

Let $f : R \to S$ be a ring epimorphism, and B be an almost prime right ideal of S such that kerf $\subseteq (f^{-1}(B))^2$. Then, $f^{-1}(B)$ is an almost prime right ideal of R.

通 とう ほう う ほうし

The following theorems describe fully almost prime (right) rings which are not local.

Theorem

Let *R* be a fully almost prime ring which is right S-unital. If M_1 and M_2 are two distinct maximal ideals of *R* (thus *R* is not a local ring), then followings hold. (1) $M_1M_2 = M_2M_1$. (2) $M_1 \cap M_2 = M_1M_2$, and it is idempotent.

Theorem

Let the ring R with identity be a fully almost prime right ring which is not local. Then, for any two maximal right ideals M_1 and M_2 , either M_1M_2 or M_2M_1 is idempotent.

ヘロト 人間 ト ヘヨト ヘヨト

Example

An application of our previous theorem is the subring *R* of $M_2(\mathbb{Z}_2)$, where

$$R = \{0, e_{11} + e_{12}, e_{21} + e_{22}, e_{11} + e_{12} + e_{21} + e_{22}\}.$$

The right ideals $I = \{0, e_{21} + e_{22}\}$, $J = \{0, e_{11} + e_{12} + e_{21} + e_{22}\}$, and $K = \{0, e_{11} + e_{12}\}$ are almost prime right ideals. Thus *R* is fully almost prime right ring. Note that all of *I*, *J*, and *K* are maximal right ideals. Clearly IJ = 0, JI = J; IK = I, KI = K; and JK = J, KJ = 0. Moreover, 0, *I* and *K* are idempotent, but *J* is not idempotent.

イロト イポト イヨト イヨト 一日

Definition

A nonempty set $S \subseteq R$ is called an almost m-system if, $I \cap S \neq \emptyset$, $J \cap S \neq \emptyset$, and $IJ \not\subseteq (R - S)^2$. Then $IJ \cap S \neq \emptyset$. For any ideals *I*, *J* of *R*.

Theorem

An ideal P of a ring R is almost prime ideal if and only if R - P is almost m-system.

Theorem

Let $S \subseteq R$ be an almost m-system, and let P be an ideal maximal with respect to the property that P is disjoint from S, and $P^2 = (R - S)^2$ Then P is almost prime ideal of R.

ヘロン ヘアン ヘビン ヘビン

Definition

Let *I* be an ideal of a ring *R*, and let *P* be an almost prime ideal of *R* such that $I \subseteq P$, and $I^2 = P^2$. Then we define \sqrt{I} as the following.

- $\sqrt{I} = \{ r \in R: \text{ every almost m-system } S \text{ containing } r, \text{ with } l^2 = (R S)^2 \text{ meets } I \}.$
- If there is no any almost prime ideal *P* such that $I \subseteq P$, with $I^2 = P^2$ then we say $\sqrt{I} = R$.

We call it the almost prime radical of the ideal I.

・ 通 と ・ ヨ と ・ ヨ と

It is not clear from the definition above whether the \sqrt{I} is an ideal of *R* or not, the following thorem shows the answer.

Theorem

 \sqrt{I} in the above definition is equal to the intersection of all almost prime ideals P of R containing I, with $I^2 = P^2$. Otherwise, $\sqrt{I} = R$.

通 とくき とくきとう

Example

Let $R = M_{2 \times 2}(\mathbb{Z}_{16})$. The nonzero proper ideals of R are $P_1 = \left\{ \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} : a_i \in \mathbb{Z}_{16}, a_i = 2k, k \in \mathbb{Z} \right\}$ $P_2 = \left\{ \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} : a_i \in \mathbb{Z}_{16}, a_i = 4k, k \in \mathbb{Z} \right\}$ $P_3 = \left\{ \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} : a_i \in \mathbb{Z}_{16}, a_i = 8k, k \in \mathbb{Z} \right\}$

白マ イビマ イビン 一切

Example

It is straightforward to show that $P_1^2 = P_2$, and $P_2^2 = P_3^2 = 0$. In addition, P_1 , P_2 are almost prime ideals, thus $\sqrt{P_1} = P_1$, and $\sqrt{P_2} = P_2$; however, P_3 is not, since $P_1P_2 \subseteq P_3$ and $P_1P_2 \not\subseteq P_3^2$, and neither $P_1 \subseteq P_3$ nor $P_2 \subseteq P_3$. Additionally, P_2 is the only almost prime ideal such that $P_3 \subseteq P_2$, and $P_2^2 = P_3^2$. Thus $\sqrt{P_3} = P_2$.

Definition

An ideal *P* of a ring *R* is called an almost radical ideal if $\sqrt{P} = P$.

Note that every almost prime ideal is an almost radical ideal.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Corollary

Let R be a ring. If $\sqrt{rad(R)} \neq R$, then $\sqrt{rad(R)} = rad(R)$, where rad(R) is the prime radical of R.

Proof.

Let $\sqrt{rad(R)} = \bigcap P_i$ where P_i is an almost prime ideal of Rsuch that $rad(R) \subseteq P_i$, and $[rad(R)]^2 = P_i^2$ for all $i \in L$. Then $P_i^2 \subseteq rad(R)$, thus $P_i \subseteq rad(R)$ for all $i \in L$, because rad(R) is semiprime ideal. Hence $\sqrt{rad(R)} = \bigcap P_i \subseteq rad(R)$, and since $rad(R) \subseteq \sqrt{rad(R)}$ we get $\sqrt{rad(R)} = rad(R)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Corollary

Every ideal of a local ring (R, M) with $M^2 = 0$ is an almost radical ideal.

Alaa ABOUHALAKA Almost Prime Ideal And Almost Prime Radical

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Our Results.

Example

Let
$$R = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in \mathbb{Z}_4$$
, and $b \in \{0, 2\} \right\}$. Then the proper nonzero ideals of R are:
 $P_1 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \right\}$
 $P_2 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \right\}$
 $M = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix} \right\}$
The ring R is fully almost prime ring, and $P_1^2 = P_2^2 = M^2 = 0$.
Thus, $\sqrt{P_1} = P_1 \cap M = P_1$. Also $\sqrt{P_2} = P_2 \cap M = P_2$, $\sqrt{M} = M$.

ヘロト 人間 とくほとくほとう

Let $f : R \to S$ be a ring isomorphism, and let I be any ideal of R. If $\sqrt{I} \neq R$, then $f(\sqrt{I}) = \sqrt{f(I)}$.

Theorem

Let I be an ideal of a ring R. If $\sqrt{I} \neq R$, then $[\sqrt{I}]^2 = I^2$.

Alaa ABOUHALAKA Almost Prime Ideal And Almost Prime Radical

イロト 不得 とくほ とくほ とうほ

- A. Abouhalaka, Ş. Fındık, Almost prime ideals in noncommutative rings, arXiv:2201.09758.
- A. Abouhalaka, Ş. Fındık, Almost prime ideals of S-unital and local rings, arXiv::2204.04886.
- M. Bataineh, Generalization of prime ideals, Phd thesis, The University of Iowa, 2006.
- M.S. Bhatwadekar, P. K. Sharma, Unique factorization and brith of almost prime, Comm. Algebra, 33 (2005) 1, 43-49.
- W.D. Blair, H. Tsutsui, Fully prime rings, Comm. Algebra, 22 (1994) 13, 5389-5400.

< 回 > < 回 > < 回 > .