Algebra and Logic Seminar Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Sofia

Derivations of upper triangular matrix rings
 VS
 Derivations of upper triangular matrix semirings

Dimitrinka Vladeva
Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Sofia, Bulgaria
d_vladeva@abv.bg

December 02, 2022

At Algebra and Logic Seminar in 2021 I compared similar results for endomorphisms of matrix rings and semirings and promised that in the next year 2022 I will talk about my results for derivations of triangular matrix rings and semirings.

These results are published in the following articles:

1. D. Vladeva, Derivations of upper triangular matrix semirings, Linear and Multilinear Algebra, 2022, 70(4): 625-641.
2. D. Vladeva, Derivations of triangular matrix rings, Linear Multilinear Algebra. 2022;
DOI:10.1080/03081087.2022.2063786.

Introduction

The study of representations of an arbitrary derivation of a ring as a sum of well-known derivations, though started long ago, got a boost only after the Amitsur's seminal article ${ }^{\text {a }}$. He proved that an arbitrary derivation of the ring $M_{n}(R)$ of $n \times n$ matrices over an associative ring R with identity is a sum of an inner derivation and a hereditary derivation.
In 1978, a representation of derivations of generalized quasi-matrix algebra was obtained by Burkov ${ }^{b}$.
In 1983, Nowicki ${ }^{c}$ showed a similar result for special subrings of matrix rings.

[^0]In 1993, Coehlo \& Milies ${ }^{a}$ proved the result similar to those in Amitsur's article for the ring of upper triangular matrices. In 1995, Jondrup ${ }^{b}$ generalized the theorem of Coelho and Milies. Further, in 2006, Chun and Park ${ }^{c}$ determined the derivations of the niltriangular matrix ring as a sum of diagonal and strongly nilpotent derivation.
Derivations of matrix ring containing a subring of triangular matrices was described in 2011 by Kolesnikov and Mal'tsev ${ }^{d}$.

[^1]Derivations of matrix rings consisting of sums of niltriangular matrix and matrix over an ideal was studies in 2017 by Kuzucuoğlu and Sayin ${ }^{a}$
Similar results for an arbitrary semiring does not hold in general.
For additively idempotent semirings in the paper cited above I have (in 2020) analogous investigations.
Let R be an arbitrary associative (not necessarily commutative) ring or additively idempotent semiring ($a+a=a$ for any $a \in R$). A derivation of R is an additive map $d: R \rightarrow R$ that satisfies Leibniz's law.
A derivation d of the ring (semiring) $U T M_{n}(R)$ of upper triangular matrices over the ring (semiring) R will be an R-derivation if it is an R-linear map, i.e. $d(\lambda A)=\lambda d(A)$ where $\lambda \in R$ and $A \in U T M_{n}(R)$. This definition is used in Jacobson ${ }^{b}$ for algebras over a commutative ring. In this talk we will work only with R-derivations.

[^2]
Basic derivations of the semiring of triangular matrices

Let $A=\left(a_{i j}\right) \in U T M_{n}(R)$, where R is an additively idempotent
semiring, that is $A=\sum_{\substack{i, j=1 \\ i \leq j}}^{n} a_{i j} e_{i j}$, where $a_{i j} \in R, i, j=1, \ldots n$ and
$e_{i j}$ are matrix units.
Let $\ell_{k}=e_{11}+\cdots+e_{k k}$ for $1 \leq k \leq n$.
Let us note that in arbitrary ring (semiring) R by $x \circ y=x y+y x$ for any $x, y \in R$ we denote the Jordan product of x and y.
We obtain that for $A \in U T M_{n}(R)$ it follows
$A \circ \ell_{k}=A \ell_{k}+\ell_{k} A=\ell_{k} A$. Moreover, ℓ_{k} is a left semicentral idempotent, i.e. $\ell_{k} A \ell_{k}=A \ell_{k}$, in sense of Birkenmeier ${ }^{a}$.
So, we have proved
The map $\delta_{k}: \operatorname{UTM}_{n}(R) \rightarrow \operatorname{UTM}_{n}(R)$ such that $\delta_{k}(A)=A \circ \ell_{k}$ is a derivation.

[^3]Next we consider the matrix $r_{m}=e_{n-m+1 n-m+1}+\cdots+e_{n n}$, where $1 \leq m \leq n$ and for an arbitrary $A \in U T M_{n}(R)$ find that $A \circ r_{m}=A r_{m}+r_{m} A=A r_{m}$. Furthermore, r_{m} is a right semicentral idempotent, that is $r_{m} A r_{m}=r_{m} A$.

The map $d_{m}: \operatorname{UTM}_{n}(R) \rightarrow U T M_{n}(R)$ such that $d_{m}(A)=A \circ r_{m}$ is a derivation.

If $m=n$ the $\operatorname{map} d_{n}=\mathrm{i}$ is an identity map, which is a derivation in any additively idempotent semiring. The derivations δ_{k}, $1 \leq k \leq n$, and $d_{m}, 1 \leq m \leq n$, are called basic derivations.
We obtain that $\delta_{k}+\delta_{\ell}=\delta_{\ell}+\delta_{k}=\delta_{\ell}$ and $\delta_{k} \delta_{\ell}=\delta_{\ell} \delta_{k}=\delta_{k}$, where $k \leq \ell$. Thus, if \mathcal{D}_{ℓ} is the set of derivations δ_{k}, then $\left(\mathcal{D}_{\ell},+,.\right)$ is a semiring with a zero, which is the smallest element δ_{1} and identity, which is the greatest element the identity map δ_{n}. Similarly $d_{m}+d_{\ell}=d_{\ell}+d_{m}=d_{m}$ and $d_{m} d_{\ell}=d_{\ell} d_{m}=d_{\ell}$, where $\ell \leq m$. So, if \mathcal{D}_{r} is the set of derivations d_{m}, then $\left(\mathcal{D}_{r},+,.\right)$ is a semiring with a zero, which is the smallest element d_{1} and an identity, which is the greatest element the identity map d_{n}.

Products of derivations

Let \mathcal{D} be the semiring generated by the set $\mathcal{D}_{\ell} \cup \mathcal{D} r$. As the elements of semirings ($\left.\mathcal{D}_{r},+,.\right)$ and ($\mathcal{D}_{\ell},+,$.) are derivations of the semiring $U T M_{n}(R)$ we can add them and their sums are derivations. Thus $\delta_{k}+d_{m} \in \mathcal{D}$.

The product $\delta_{k} d_{m}$, where $1 \leq k, m \leq n$ is well defined by the rule $\delta_{k} d_{m}(A)=d_{m}\left(\delta_{k}(A)\right)$ for any $A \in U T M_{n}(R)$, but in general it is not a derivation.

Let $\delta_{k}, d_{m} \in \mathcal{D}$, where $1 \leq k, m \leq n$. The map $\delta_{k} d_{m}=d_{m} \delta_{k}$ is a derivation if and only if $\delta_{k}+d_{m}$ is the identity map.

A principal connected submatrix of a matrix $A=\left(a_{i j}\right) \in U T M_{n}(R)$ is a square submatrix of A in which the main diagonal consists of the elements $a_{i i}, \ldots, a_{j j}$, where i, \ldots, j are consecutive numbers and $1 \leq i \leq j \leq n$. Let $A=\left(a_{i j}\right) \in U T M_{n}(R)$ and $A\left(i_{k}, n_{k}\right)$ is the principal connected submatrix of A with main diagonal $a_{i_{k}} i_{k} \cdots a_{i_{k}+n_{k}-1 i_{k}+n_{k}-1}$. An arbitrary finite set of principal connected submatrices $A\left(i_{k}, n_{k}\right)$, where $k=1, \ldots, s$, without common elements is called a family.
Now we can present an arbitrary derivation $\delta \in \mathcal{D}$ by the derivatives $\delta(A)$.

Theorem 1. Let for any matrix $A=\left(a_{i j}\right) \in U T M_{n}(R)$ the matrix $\delta(A) \in U T M_{n}(R)$ has the same entries $a_{i j}, 1 \leq i \leq n, 1 \leq j \leq n$ except the elements of a family of principal connected submatrices $A\left(i_{k}, n_{k}\right)$, where $k=1, \ldots, s$, which are zeroes. Then the map $\delta: \operatorname{UTM}_{n}(R) \rightarrow U^{\prime} M_{n}(R)$ is a derivation and $\delta \in \mathcal{D}$. Conversely, for any $\delta \in \mathcal{D}$ and matrix $A=\left(a_{i j}\right) \in U T M_{n}(R)$, the matrix $\delta(A)$ is of the same type.

Basis of \mathcal{D}

We will construct a basis \mathcal{B} of the semigroup ($\mathcal{D},+$), such that any element of \mathcal{D} can be represented as a sum of elements of \mathcal{B}.
For an arbitrary derivation $\delta_{i} d_{j}$ the number $i+j$ is called a weight of a derivation. From Theorem 1 it follows that the weight of $\delta_{i} d_{j}$ belongs to the interval $[n, 2 n]$. The derivations
$\delta_{1}=\delta_{1} \mathrm{i}=\delta_{1} d_{n}, \delta_{2} d_{n-1}, \ldots, \delta_{i} d_{n-i+1}, \ldots, d_{1}=\mathrm{i} d_{1}=\delta_{n} d_{1}$ are of weight $n+1$. Each other derivation of weight $n+1$ can be represented as a sum of these derivations.
Each derivation of weight $n+p$, where $1<p \leq n-1$ has the form $\delta_{k} d_{n-k+p}$ (as a consequence of Theorem 1)) and can be represented as a sum of two derivations of weight $n+1$:
$\delta_{k} d_{n-k+p}=\delta_{k} d_{n-k+1}+\delta_{k-p+1} d_{n-k+p}$.
The derivations $\delta_{1} d_{n-1}, \ldots, \delta_{i} d_{n-i}, \ldots, \delta_{n-1} d_{1}$ are of weight n.

For arbitrary n we construct a basis in \mathcal{D} consisting of the derivations:

1. $\delta_{1}, \delta_{2} d_{n-1}, \ldots, \delta_{n-1} d_{2}, d_{1}$.
2. $\delta_{1} d_{n-1}, \delta_{2} d_{n-2}, \ldots, \delta_{n-2} d_{2}, \delta_{n-1} d_{1}$.

For any $\alpha \in R$ and a derivation $\delta \in \mathcal{D}$ the map $\alpha \delta: \operatorname{UTM}_{n}(R) \rightarrow \operatorname{UTM}_{n}(R)$, such that $(\alpha \delta)(A)=\alpha \delta(A)$, where $A \in U T M_{n}(R)$, is a derivation.
Thus the semigroup \mathcal{D} is an R-semimodule. If we denote $\delta_{i i}=\delta_{i} d_{n-i+1}, i=1, \ldots, n, \delta_{j j+1}=\delta_{j} d_{n-j}, j=1, \ldots, n-1$, then the basis of the R-semimodule \mathcal{D} is

$$
\mathcal{B}=\left\{\delta_{i i}, \delta_{j j+1}, i=1, \ldots, n, j=1, \ldots, n-1\right\}
$$

The main theorem (the semiring case)

Theorem 2. An arbitrary derivation $D: \operatorname{UTM}_{n}(R) \rightarrow U T M_{n}(R)$, where R is an additively idempotent semiring, is a linear combination of elements of the basis \mathcal{B} of the R-semimodule \mathcal{D} with coefficients from R.
In the proof $D(A)=\sum_{i=1}^{n} \alpha_{i i} \delta_{i i}(A)+\sum_{j=1}^{n-1} \alpha_{j j+1} \delta_{j j+1}(A)$ where $A \in U T M_{n}(R)$ and $\alpha_{i i}, \alpha_{j j+1} \in R$.

Corollary The images of the matrices of $U T M_{n}(R)$, where R is an additively idempotent semiring, under arbitrary derivation form an ideal of $U T M_{n}(R)$.

The set of upper triangular matrices with zeroes on the main diagonal is an ideal $N_{n}(R)$ of $U T M_{n}(R)$. We denote the subsemiring of diagonal matrices by $\operatorname{Diag}_{n}(R)$.
If the semiring R contains no nilpotent elements then
$U^{\prime} M_{n}(R)=\operatorname{Diag}_{n}(R) \oplus N_{n}(R)$.

The derivations $D_{D}=\sum_{i=1}^{n} \lambda_{i} \delta_{i i}, \lambda_{i} \in R$ are called diagonal derivations since $D_{D}(A)$ has almost one nonzero element on the main diagonal.
The derivations $D_{N}=\sum_{j=1}^{n-1} \mu_{j} \delta_{j j+1}, \mu_{j} \in R$ are called nilpotent derivations since $\left(D_{N}(A)\right)^{k}=0$ for some positive integer k.

Theorem 3. Let the additively idempotent semiring R contain no nonzero nilpotent elements, $A \in U T M_{n}(R)$ and $D: \operatorname{UTM}_{n}(R) \rightarrow \operatorname{UTM}_{n}(R)$ be an arbitrary derivation. Then there exists a diagonal derivation D_{D}, nilpotent derivation D_{N}, diagonal matrix A_{D} and nilpotent matrix A_{N}, such that

$$
D(A)=D_{D}\left(A_{D}\right)+D_{N}\left(A_{N}\right)
$$

Derivations generated by left semicentral idempotents of a ring

Now we recall some definitions.
Let R be an arbitrary associative (not necessarily commutative) ring. For a fixed $x \in R$ the map $d_{x}(a)=[x, a]=x a-a x$ for any $a \in R$ is a derivation called inner derivation of R determined by x.

Let R_{1} be a ring of matrices over R. The map $\widetilde{d}: R_{1} \rightarrow R_{1}$ such that $\widetilde{d}(A)=\left(d\left(a_{i j}\right)\right)$ for any matrix $A=\left(a_{i j}\right) \in R_{1}$, where d is a derivation of R, is a derivation called a hereditary derivation generated by d.

As in the semiring case an idempotent $\ell \in R(r \in R)$ is called left (right) semicentral if $\ell x \ell=x \ell(r x r=r x)$ for all $x \in R$.

The set of left (right) semicentral idempotents of the ring R is a multiplicative semigroup with identity.

The multiplicative semigroup of left (resp. right) semicentral idempotents elements of the ring R is denoted by $(\mathcal{L}(R),$.$) , (resp.$ $(\mathcal{R}(R),)$.$) .$
Let $\ell_{1}, \ell_{2} \in \mathcal{L}(R)$ and $\ell_{1} \star \ell_{2}=\ell_{1}+\ell_{2}-\ell_{1} \ell_{2}$. Similarly we denote $r_{1} \star r_{2}=r_{1}+r_{2}-r_{1} r_{2}$, where $r_{1}, r_{2} \in \mathcal{R}(R)$.
The semigroup $\mathcal{L}(R),(\mathcal{R}(R))$ is closed under the operation \star.
If $\ell \in \mathcal{L}(R)$, then $r=1-\ell \in \mathcal{R}(R)$. So, for each left semicentral element ℓ there is a right semicentral element r such that $\ell+r=1$. Moreover, if $\ell+r=1$ for an arbitrary $x \in R$ we have $r \times \ell=(1-\ell) \times \ell=x \ell-\ell x \ell=0$.
Let ℓ be a left semicentral and r a right semicentral idempotent of R such that $\ell+r=1$. The map $d_{\ell}: R \rightarrow R$ such that $d_{\ell}(x)=\ell x r$ for any $x \in R$ is a derivation of R.

Why we denote this derivation by d_{ℓ} ?
Because $d_{\ell}(x)=\ell x r=\ell x(1-\ell)=\ell x-x \ell=[\ell, x]$.

The composition of two derivations in general is not a derivation, but there are exceptions.
In 1957, Posner ${ }^{a}$ has shown that for prime ring R of characteristic different from 2 the composition of two non-zero derivations is not a derivation. This result has been generalized in several ways - see Chebotar and Lee ${ }^{b}$, Chuang ${ }^{c}$, Krempa and Matczuk ${ }^{d}$. But a composition of inner derivations can be a nonzero derivation, for many examples see Lanski ${ }^{e}$.

[^4]The next result is a little step in this direction.

Theorem 4. Let $\ell_{1}, \ell_{2} \in \mathcal{L}(R)$. The composition $d_{\ell_{1}} d_{\ell_{2}}$ is a derivation if and only if the Jordan product is equal to the sum: $\ell_{1} \ell_{2}+\ell_{2} \ell_{1}=\ell_{1}+\ell_{2}$.

Basic derivations of the ring of upper triangular matrices

Let R be an associative ring with identity 1 and $U T M_{n}(R)$ the ring of upper triangular $n \times n$ matrices over R.
As in the semiring case we consider
$\ell_{k}=e_{11}+\cdots+e_{k k}$, where $1 \leq k \leq n$, and prove that these matrices are left semicentral idempotents.
Consequently, from the result above we obtain that the map $d_{\ell_{k}}: U T M_{n}(R) \rightarrow U T M_{n}(R)$, where R is a ring and $d_{\ell_{k}}(A)=\left[\ell_{k}, A\right], 1 \leq k \leq n-1$, for any matrix $A \in U T M_{n}(R)$, is a derivation of the ring $U T M_{n}(R)$, generated by ℓ_{k}.

As a consequence for any matrix $A=\left(a_{i j}\right) \in U T M_{n}(R)$ we obtain

$$
d_{\ell_{k}}(A)=\left(\begin{array}{cccccc}
0 & \cdots & 0 & a_{1 k+1} & \cdots & a_{1 n} \\
\vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
0 & \cdots & 0 & a_{k k+1} & \cdots & a_{k n} \\
0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0
\end{array}\right)
$$

where $k=1, \ldots, n-1$.
Since $\ell_{k}=e_{11}+\cdots+e_{k k}$, where $1 \leq k \leq n$, we prefer to consider new derivations

$$
\delta_{i}(A)=\left[e_{i i}, A\right]
$$

for any $A \in \operatorname{UTM}_{n}(R), i=1, \ldots, n$. Now $d_{\ell_{k}}(A)=\sum_{i=1}^{k} \delta_{i}(A)$.
Another reason to consider these derivations is the fact that the matrix $\delta_{i}(A)$ in the general case contains more zeroes than the matrix $d_{\ell_{k}}(A)$.

Thus we calculate

$$
\delta_{1}(A)=d_{\ell_{1}}(A)=\left(\begin{array}{cccc}
0 & a_{12} & \cdots & a_{1 n} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right)
$$

and

$$
\delta_{i}(A)=\left(\begin{array}{ccccccc}
0 & \cdots & 0 & -a_{1 i} & 0 & \cdots & 0 \\
\vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & \cdots & 0 & -a_{i-1 i} & 0 & \cdots & 0 \\
0 & \cdots & 0 & 0 & a_{i i+1} & \cdots & a_{i n} \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0
\end{array}\right),
$$

where $i=2, \ldots, n$ and $A=\left(a_{i j}\right) \in U T M_{n}(R)$.

Some properties of these basic derivations of $U T M_{n}(R)$ are:
(i) The derivation δ_{1} is an idempotent.
(ii) For all $\mathrm{i}=2, \ldots, \mathrm{n}$ it follows $\delta_{\mathrm{i}}^{3}=\delta_{\mathrm{i}}$, i.e. the derivations δ_{i} are tripotent.
(iii) For any $\mathrm{i}, \mathrm{j}=1, \ldots, \mathrm{n}$ where $\mathrm{i}<\mathrm{j}$ and $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right) \in \operatorname{UTM}_{\mathrm{n}}(\mathrm{R})$ it follows $\delta_{\mathrm{i}}\left(\delta_{\mathrm{j}}(\mathrm{A})\right)=\delta_{\mathrm{j}}\left(\delta_{\mathrm{i}}(\mathrm{A})\right)=-\mathrm{a}_{\mathrm{ij}}$.
(iv) $\delta_{1}+\delta_{2}+\cdots+\delta_{\mathrm{n}}=0$.

Let us denote by \mathcal{D} the additive group of derivations generated by $\delta_{2}, \ldots, \delta_{n}$. Since $\delta_{2}, \ldots, \delta_{n}$ are R-derivations, it follows (as in the semiring case) that \mathcal{D} is an R-module.

The derivations $\delta_{2}, \ldots, \delta_{n}$ forms a basis of the R-module \mathcal{D}.
All derivations $d_{\ell_{k}}, k=1, \ldots, n$ are elements of \mathcal{D}.

Are there any other left semicentral idempotents $\ell \in U T M_{n}(R)$ such that $d_{\ell} \in \mathcal{D}$?
The answer is positive. Denote by ℓ^{R} an arbitrary left semicentral idempotent of R. Similarly to $\ell_{k}=\sum_{i=1}^{k} e_{i i}$ we consider

$$
\ell_{k}^{R}=\sum_{i=1}^{k-1} e_{i i}+\ell^{R} e_{k k}
$$

For an arbitrary matrix $A=\left(a_{i j}\right) \in U T M_{n}(S)$ we find that $\ell_{k}^{R} A \ell_{k}^{R}=A \ell_{k}^{R}$.
Note that unlike $d_{\ell_{k}}, k=1, \ldots, n$, the new derivations $d_{\ell_{k}^{R}}$, where ℓ^{R} is any left semicentral idempotent of R, are not R-derivations. Another difference between derivations $d_{\ell_{k}}$ and the new derivations $d_{\ell_{k}^{R}}$ is in the following reasoning.
The composition $d_{\ell_{k}} d_{\ell_{m}}$ is not a derivation since $\ell_{k} \ell_{m}=\ell_{m} \ell_{k}=\ell_{k}$ and $\ell_{k}+\ell_{m}=\ell_{m}$, where $k<m$ and then the equality of Jordan product and sum of idempotents, considered in Theorem 4, fail to hold.

Let $\ell^{\prime}, \ell^{\prime \prime} \in \mathcal{L}(R)$. Consider the left semicentral idempotents

$$
\ell_{k}^{\prime}=\sum_{i=1}^{k-1} e_{i i}+\ell^{\prime} e_{k k} \text { and } \ell_{k}^{\prime \prime}=\sum_{i=1}^{k-1} e_{i i}+\ell^{\prime \prime} e_{k k}
$$

Now by Theorem 4 if $\ell^{\prime} \ell^{\prime \prime}+\ell^{\prime \prime} \ell^{\prime}=\ell^{\prime}+\ell^{\prime \prime}$, it follows that the composition $d_{\ell_{k}^{\prime}} d_{\ell_{k}^{\prime \prime}}$ is a derivation.

Are there another derivations of $\operatorname{UTM}(R)$?
To answer this question we return again to a left (respectively right) semicentral idempotents of the ring R. Since $d_{\ell}(x)=\ell x r$ for any $x \in R$ is a derivation of the ring R, it follows that the corresponding \widetilde{d}_{ℓ} is a hereditary derivation of $\operatorname{UTM}(R)$. Since $\widetilde{d}_{\ell}(A)=\ell A r$ for matrix $A \in U T M(R)$ and ℓ is in general not a central idempotent we see that \widetilde{d}_{ℓ} is not an R-derivation.

Representation of arbitrary derivations of triangular matrices

In Theorem 2 (the case when R is an additively idempotent semiring) we proved that an arbitrary derivation
$D: \operatorname{UTM}_{n}(R) \rightarrow U T M_{n}(R)$ is a linear combination of elements of the basis of the R-semimodule \mathcal{D} with coefficients from R.

Note that this result is stronger than the next result.
Theorem 5. Let $D: U T M_{n}(R) \rightarrow U T M_{n}(R)$ be an arbitrary R-derivation of the ring $U T M_{n}(R)$ and $A=\left(a_{i j}\right) \in U T M_{n}(R)$.
Then there exist matrices
$M^{D}, M_{i j}^{D}, N_{i j}^{D} \in U T M_{n}(R), i, j=1, \ldots, n$, such that

$$
D(A)=\sum_{i=1}^{n} a_{i i} \delta_{i}\left(M^{D}\right)+\sum_{j=2}^{n}\left(\sum_{\substack{i=1 \\ i<j}}^{n-1} a_{i j}\left(\delta_{i}\left(M_{i j}^{D}\right)+\delta_{j}\left(N_{i j}^{D}\right)\right)\right),
$$

where $\delta_{i}, i=1, \ldots, n$, are the basic derivations.

Note that the entries $a_{i j}$ of the matrix A are the coefficients of the linear combinations in the right side of the equality.
Since the proof of this theorem is constructive we can show the entries of the matrices $M^{D}, M_{i j}^{D}$ and $N_{i j}^{D}$.
If we denote $D\left(e_{p q}\right)=\sum_{\substack{i, j=1 \\ i \leq j}}^{n} \alpha_{i j}^{(p, q)} e_{i j}$, where $1 \leq p \leq n, 1 \leq q \leq n$, we construct the matrix

$$
M^{D}=\left(\begin{array}{ccccc}
0 & \alpha_{12}^{(1,1)} & \alpha_{13}^{(1,1)} & \ldots & \alpha_{1 n}^{(1,1)} \\
0 & 0 & \alpha_{23}^{(2,2)} & \ldots & \alpha_{2 n}^{(2,2)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \alpha_{n-1 n}^{(n-1, n-1)} \\
0 & 0 & 0 & \ldots & 0
\end{array}\right)
$$

Then we prove that $D\left(e_{i i}\right)=\delta_{i}\left(M^{D}\right)$ for $i=1, \ldots, n$.
In the final step of the proof we construct new matrices $M_{i j}^{D}$ and $N_{i j}^{D}$, where $i<j$ and represent the derivative $D\left(e_{i j}\right)$ by the derivatives of these matrices.
Thus

$$
\begin{gathered}
M_{i j}^{D}=\alpha_{i j}^{(i, j)} e_{i j}+\sum_{l=j+1}^{n} \alpha_{j l}^{(j, j)} e_{i l} \text { and } \\
N_{i j}^{D}=-\sum_{k=1}^{i-1} \alpha_{k i}^{(i, i)} e_{k j}
\end{gathered}
$$

Then

$$
D\left(e_{i j}\right)=\delta_{i}\left(M_{i j}^{D}\right)+\delta_{j}\left(N_{i j}^{D}\right)
$$

Some consequences of the theorem. Immediately follows
If D is an arbitrary R-derivation of the ring $U T M_{n}(R)$, then $D(E)=0$, where E is the identity matrix.

As we know from Theorem 2 of Amitsur's article, cited above, an arbitrary derivation is a sum of a hereditary derivation and an inner derivation.
What happens when the considered derivation is an R-derivation.
Let $\delta: R \rightarrow R$ be a derivation and $D=\widetilde{\delta}$ a hereditary derivation of $U T M_{n}(R)$. Since D is an R-derivation we have

$$
D(\lambda A)=\lambda D(A)=\lambda \widetilde{\delta}(A)=\lambda\left(\delta\left(a_{i j}\right)\right)
$$

where $\lambda \in R$ and $A \in U T M_{n}(R)$. On the other hand

$$
D(\lambda A)=\left(\delta\left(\lambda a_{i j}\right)\right)=\left(\delta(\lambda) a_{i j}+\lambda \delta\left(a_{i j}\right)\right)=\delta(\lambda) A+\lambda\left(\delta\left(a_{i j}\right)\right) .
$$

Then $\delta(\lambda) A=0$. Since A is an arbitrary matrix we have $\delta(\lambda)=0$ and since λ is an arbitrary element of R we obtain that δ is a zero derivation.
Hence there are no nonzero hereditary derivations which are R-derivations. In other words any R-derivation $D: U T M_{n}(R) \rightarrow U T M_{m}(R)$ is an inner derivation.

Thus there is a fixed matrix $X=\left(x_{i j}\right) \in U T M_{n}(R)$ such that $\left.D(A)=D_{X}(A)\right)=[X, A]$. So

$$
D_{X}(A)=\left(\begin{array}{cccc}
{\left[x_{11}, a_{11}\right]} & * & \cdots & * \\
0 & {\left[x_{22}, a_{22}\right]} & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & {\left[x_{n n}, a_{n n}\right]}
\end{array}\right)
$$

By Theorem 5. it follows that $\left[x_{i i}, a_{i i}\right]=0, i=1, \ldots, n$. Thus the elements on the main diagonal of the matrix X belongs to the centre $C(R)$.

To describe the entries of the matrix $D_{X}(A)$ over the main diagonal we consider

$$
\Delta_{X}^{i}\left(a_{j k}\right)=x_{i j} a_{j k}-a_{i j} x_{j k}
$$

where $1 \leq i \leq j \leq k \leq n$, but $i<n$ and call this difference an index commutator of elements of the matrices X and A.

All entries of the matrix $D_{X}(A)$ are represented by sums of index commutators:

$D_{X}(A)=$			
$=\left(\begin{array}{cccc}0 & \Delta_{X}^{1}\left(a_{12}\right)+\Delta_{X}^{1}\left(a_{22}\right) & \cdots & \sum_{i=1}^{n} \Delta_{X}^{1}\left(a_{i n}\right) \\ 0 & 0 & \cdots & \sum_{i=2}^{n} \Delta_{X}^{2}\left(a_{i n}\right) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Delta_{X}^{n-1}\left(a_{n-1 n}\right)+\Delta_{X}^{n-1}\left(a_{n n}\right) \\ 0 & 0 & \cdots & 0\end{array}\right)$			

Now for the given matrix $X=\left(x_{i j}\right)$ we consider the map $\Delta_{X}^{i}: R \rightarrow R$ such that $\Delta_{X}^{i}\left(a_{j k}\right)$ is the index commutator, $i=1, \ldots, n-1$ and $A=\left(a_{i j}\right) \in U \operatorname{UTM}_{n}(R)$.
Let $B=\left(b_{i j}\right) \in U T M_{n}(R)$. Then we find $\Delta_{X}^{i}\left(a_{j k}+b_{j k}\right)=\Delta_{X}^{i}\left(a_{j k}\right)+\Delta_{X}^{i}\left(b_{j k}\right)$, i.e. Δ_{X}^{i} is a linear map. We obtain $\Delta_{X}^{i}\left(a_{j k}\right) b_{k \ell}+a_{i j} \Delta_{X}^{j}\left(b_{k \ell}\right)=\Delta_{X}^{i}\left(a_{j k} b_{k \ell}\right)$.

Hence the index commutator is similar to derivation.
The fact that the index commutators are not derivations emphasizes the crucial role of derivations δ_{i} for studying arbitrary R-derivations.

THANK YOU!

[^0]: ${ }^{\text {a }}$ S. A. Amitsur, Extension of derivations to central simple algebras, Commun. Algebra 10(8) (1982) 797-803.
 ${ }^{b}$ V. D. Burkov, Derivations of generalized quasi.matrix rings, Mat. zametki 24(1) (1978) 111-122.
 ${ }^{c}$ A. Nowicki, Derivations of special subrings of matrix rtings and regular graphs. Tsukuba J. Math. 1983; 7(2): 281-297.

[^1]: ${ }^{\text {a }}$ S. Coelho, P. Milies, Derivations of Upper Triangular Matrix Rings. Linear Algebra Appl. 1993; 187: 263-267.
 ${ }^{b}$ S. Jondrup, Automorphisms and Derivations of Upper Triangular Matrix Rings, Linear Algebra Appl. 1995; 221: 205-218.
 ${ }^{\text {c J J. H. Chun, J. W. Park, Derivations on subrings of matrix rings. Bull. }}$ Korean Math. Soc. 2006; 43(3): 635-644.
 ${ }^{d}$ S. G. Kolesnikov, N. V. Mal'tsev, Derivations of a Matrix Ring Containing a Subring of Triangular Matrices. Izv. VUZ. 2011; 55 (11): 18-26.

[^2]: ${ }^{a}$ F. Kuzucuoğlu, U. Sayin, Derivations of some classes of matrix rings. Journ. Algebra and Appl. 2017; 16(1): 1-12.
 ${ }^{b}$ N. Jacobson, Basic Algebra II, W.H. Freeman \& Company; 1989.

[^3]: ${ }^{a}$ G. F. Birkenmeier et all, Extensions of rings and modules. Birkhäuser; Springer; 2013.

[^4]: ${ }^{a}$ E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 1957 8; 1093-1100.
 ${ }^{b}$ M. A. Chebotar, P-H Lee P-H, A Note on Compositions of Derivations of Prime Rings, Commun. Algebra. 2003 31:6; 2965-2969.
 ${ }^{c}$ C. L. Chuang, On compositions of derivations of prime rings, Proc. Amer. Math. Soc. 1990; 108(3): 647-652.
 ${ }^{d}$ J. Krempa, J. Matczuk, On the composition of derivations. Rend. Circ. Mat. Palermo, 1984 33:441-455.
 ${ }^{e}$ C. Lanski, Differential identities of prime rings, Kharchenko's theorem and applications, Contemporary Math. 124 (1992) 111-128.

