Algebra and Logic Seminar Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Sofia

Derivations of upper triangular matrix rings vs Derivations of upper triangular matrix semirings

> Dimitrinka Vladeva Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Sofia, Bulgaria d_vladeva@abv.bg

> > December 02, 2022

・ロト 4月 ト 4 日 ト 4 日 ト 1 の 0 0

At Algebra and Logic Seminar in 2021 I compared similar results for endomorphisms of matrix rings and semirings and promised that in the next year 2022 I will talk about my results for derivations of triangular matrix rings and semirings.

These results are published in the following articles:

1. D. Vladeva, Derivations of upper triangular matrix semirings, Linear and Multilinear Algebra, 2022, 70(4): 625-641.

2. D. Vladeva, Derivations of triangular matrix rings, Linear Multilinear Algebra. 2022; DOI:10.1080/03081087.2022.2063786.

Introduction

The study of representations of an arbitrary derivation of a ring as a sum of well-known derivations, though started long ago, got a boost only after the Amitsur's seminal article^{*a*}. He proved that an arbitrary derivation of the ring $M_n(R)$ of $n \times n$ matrices over an associative ring R with identity is a sum of an inner derivation and a hereditary derivation.

In 1978, a representation of derivations of generalized quasi-matrix algebra was obtained by $Burkov^b$.

In 1983, Nowicki^c showed a similar result for special subrings of matrix rings.

^aS. A. Amitsur, Extension of derivations to central simple algebras, *Commun. Algebra* **10**(8) (1982) 797-803.

^bV. D. Burkov, Derivations of generalized quasi.matrix rings, *Mat. zametki* **24**(1) (1978) 111-122.

^cA. Nowicki, Derivations of special subrings of matrix rtings and regular graphs. *Tsukuba J. Math.* 1983; 7(2): 281-297.

In 1993, Coehlo & Milies^a proved the result similar to those in Amitsur's article for the ring of upper triangular matrices. In 1995, Jondrup^b generalized the theorem of Coelho and Milies. Further, in 2006, Chun and Park^c determined the derivations of the niltriangular matrix ring as a sum of diagonal and strongly nilpotent derivation.

Derivations of matrix ring containing a subring of triangular matrices was described in 2011 by Kolesnikov and Mal'tsev^d.

^aS. Coelho, P. Milies, Derivations of Upper Triangular Matrix Rings. *Linear Algebra Appl.* 1993; 187: 263-267.

^bS. Jondrup, Automorphisms and Derivations of Upper Triangular Matrix Rings, *Linear Algebra Appl.* 1995; 221: 205-218.

^cJ. H. Chun, J. W. Park, Derivations on subrings of matrix rings. *Bull. Korean Math. Soc.* 2006; 43(3): 635–644.

^dS. G. Kolesnikov, N. V. Mal'tsev, Derivations of a Matrix Ring Containing a Subring of Triangular Matrices. *Izv. VUZ.* 2011; 55 (11): 18-26.

Derivations of matrix rings consisting of sums of niltriangular matrix and matrix over an ideal was studies in 2017 by Kuzucuoğlu and Sayin^a

Similar results for an arbitrary semiring does not hold in general. For additively idempotent semirings in the paper cited above I have (in 2020) analogous investigations.

Let R be an arbitrary associative (not necessarily commutative) ring or additively idempotent semiring (a + a = a for any $a \in R$). A derivation of R is an additive map $d : R \to R$ that satisfies Leibniz's law.

A derivation d of the ring (semiring) $UTM_n(R)$ of upper triangular matrices over the ring (semiring) R will be an R-derivation if it is an R-linear map, i.e. $d(\lambda A) = \lambda d(A)$ where $\lambda \in R$ and $A \in UTM_n(R)$. This definition is used in Jacobson^b for algebras over a commutative ring. In this talk we will work only with R-derivations.

^aF. Kuzucuoğlu, U. Sayin, Derivations of some classes of matrix rings. *Journ. Algebra and Appl.* 2017; 16(1): 1-12.

^bN. Jacobson, Basic Algebra II, W.H. Freeman & Company; 1989.

Basic derivations of the semiring of triangular matrices

Let $A = (a_{ij}) \in UTM_n(R)$, where R is an additively idempotent semiring, that is $A = \sum_{\substack{i,j=1\\i\leq j}}^n a_{ij}e_{ij}$, where $a_{ij} \in R$, i, j = 1, ..., n and

eii are matrix units.

Let $\ell_k = e_{11} + \cdots + e_{kk}$ for $1 \le k \le n$. Let us note that in arbitrary ring (semiring) R by $x \circ y = xy + yx$ for any $x, y \in R$ we denote the Jordan product of x and y. We obtain that for $A \in UTM_n(R)$ it follows $A \circ \ell_k = A\ell_k + \ell_k A = \ell_k A$. Moreover, ℓ_k is a left semicentral idempotent, i.e. $\ell_k A\ell_k = A\ell_k$, in sense of Birkenmeier^a. So, we have proved The map $\delta_k : UTM_n(R) \to UTM_n(R)$ such that $\delta_k(A) = A \circ \ell_k$ is a derivation.

^aG. F. Birkenmeier et all, Extensions of rings and modules. Birkhäuser; Springer; 2013.

Next we consider the matrix $r_m = e_{n-m+1} + \cdots + e_{nn}$, where $1 \le m \le n$ and for an arbitrary $A \in UTM_n(R)$ find that $A \circ r_m = Ar_m + r_m A = Ar_m$. Furthermore, r_m is a right semicentral idempotent, that is $r_m Ar_m = r_m A$.

The map $d_m : UTM_n(R) \rightarrow UTM_n(R)$ such that $d_m(A) = A \circ r_m$ is a derivation.

If m = n the map $d_n = i$ is an identity map, which is a derivation in any additively idempotent semiring. The derivations δ_k , $1 \le k \le n$, and d_m , $1 \le m \le n$, are called basic derivations. We obtain that $\delta_k + \delta_\ell = \delta_\ell + \delta_k = \delta_\ell$ and $\delta_k \delta_\ell = \delta_\ell \delta_k = \delta_k$, where $k \leq \ell$. Thus, if \mathcal{D}_{ℓ} is the set of derivations δ_k , then $(\mathcal{D}_{\ell}, +, .)$ is a semiring with a zero, which is the smallest element δ_1 and identity, which is the greatest element the identity map δ_n . Similarly $d_m + d_\ell = d_\ell + d_m = d_m$ and $d_m d_\ell = d_\ell d_m = d_\ell$, where $\ell \leq m$. So, if \mathcal{D}_r is the set of derivations d_m , then $(\mathcal{D}_r, +, .)$ is a semiring with a zero, which is the smallest element d_1 and an identity, which is the greatest element the identity map d_n .

Products of derivations

Let \mathcal{D} be the semiring generated by the set $\mathcal{D}_{\ell} \cup \mathcal{D}r$. As the elements of semirings $(\mathcal{D}_r, +, .)$ and $(\mathcal{D}_{\ell}, +, .)$ are derivations of the semiring $UTM_n(R)$ we can add them and their sums are derivations. Thus $\delta_k + d_m \in \mathcal{D}$.

The product $\delta_k d_m$, where $1 \le k, m \le n$ is well defined by the rule $\delta_k d_m(A) = d_m(\delta_k(A))$ for any $A \in UTM_n(R)$, but in general it is not a derivation.

Let $\delta_k, d_m \in \mathcal{D}$, where $1 \leq k, m \leq n$. The map $\delta_k d_m = d_m \delta_k$ is a derivation if and only if $\delta_k + d_m$ is the identity map.

ション ふゆ アメリア メリア しょうくしゃ

A principal connected submatrix of a matrix $A = (a_{ij}) \in UTM_n(R)$ is a square submatrix of A in which the main diagonal consists of the elements a_{ii}, \ldots, a_{jj} , where i, \ldots, j are consecutive numbers and $1 \le i \le j \le n$. Let $A = (a_{ij}) \in UTM_n(R)$ and $A(i_k, n_k)$ is the principal connected submatrix of A with main diagonal $a_{i_k i_k} \cdots a_{i_k+n_k-1} i_{i_k+n_k-1}$. An arbitrary finite set of principal connected submatrices $A(i_k, n_k)$, where $k = 1, \ldots, s$, without common elements is called a family.

Now we can present an arbitrary derivation $\delta \in \mathcal{D}$ by the derivatives $\delta(A)$.

Theorem 1. Let for any matrix $A = (a_{ij}) \in UTM_n(R)$ the matrix $\delta(A) \in UTM_n(R)$ has the same entries a_{ij} , $1 \le i \le n$, $1 \le j \le n$ except the elements of a family of principal connected submatrices $A(i_k, n_k)$, where k = 1, ..., s, which are zeroes. Then the map $\delta : UTM_n(R) \rightarrow UTM_n(R)$ is a derivation and $\delta \in \mathcal{D}$. Conversely, for any $\delta \in \mathcal{D}$ and matrix $A = (a_{ij}) \in UTM_n(R)$, the matrix $\delta(A)$ is of the same type.

Basis of \mathcal{D}

We will construct a basis \mathcal{B} of the semigroup $(\mathcal{D}, +)$, such that any element of \mathcal{D} can be represented as a sum of elements of \mathcal{B} . For an arbitrary derivation $\delta_i d_i$ the number i + j is called a weight of a derivation. From Theorem 1 it follows that the weight of $\delta_i d_i$ belongs to the interval [n, 2n]. The derivations $\delta_1 = \delta_1 \mathbf{i} = \delta_1 d_n, \delta_2 d_{n-1}, \dots, \delta_i d_{n-i+1}, \dots, d_1 = \mathbf{i} d_1 = \delta_n d_1$ are of weight n + 1. Each other derivation of weight n + 1 can be represented as a sum of these derivations. Each derivation of weight n + p, where 1 has the form $\delta_k d_{n-k+p}$ (as a consequence of Theorem 1)) and can be represented as a sum of two derivations of weight n + 1: $\delta_k d_{n-k+p} = \delta_k d_{n-k+1} + \delta_{k-p+1} d_{n-k+p}.$ The derivations $\delta_1 d_{n-1}, \ldots, \delta_i d_{n-i}, \ldots, \delta_{n-1} d_1$ are of weight *n*.

For arbitrary *n* we construct a basis in \mathcal{D} consisting of the derivations:

1.
$$\delta_1, \delta_2 d_{n-1}, \ldots, \delta_{n-1} d_2, d_1.$$

2. $\delta_1 d_{n-1}, \delta_2 d_{n-2}, \ldots, \delta_{n-2} d_2, \delta_{n-1} d_1.$

For any $\alpha \in R$ and a derivation $\delta \in \mathcal{D}$ the map $\alpha \delta : UTM_n(R) \to UTM_n(R)$, such that $(\alpha \delta)(A) = \alpha \delta(A)$, where $A \in UTM_n(R)$, is a derivation. Thus the semigroup \mathcal{D} is an *R*-semimodule. If we denote $\delta_{ii} = \delta_i d_{n-i+1}, i = 1, ..., n, \ \delta_{i,i+1} = \delta_i d_{n-i}, j = 1, ..., n-1$,

then the basis of the R-semimodule $\mathcal D$ is

$$\mathcal{B} = \{\delta_{ii}, \delta_{jj+1}, i = 1, \dots, n, j = 1, \dots, n-1\}.$$

ション ふゆ アメリア メリア しょうくしゃ

The main theorem (the semiring case)

Theorem 2. An arbitrary derivation $D : UTM_n(R) \rightarrow UTM_n(R)$, where R is an additively idempotent semiring, is a linear combination of elements of the basis \mathcal{B} of the R-semimodule \mathcal{D} with coefficients from R.

In the proof $D(A) = \sum_{i=1}^{n} \alpha_{ii} \delta_{ii}(A) + \sum_{j=1}^{n-1} \alpha_{jj+1} \delta_{jj+1}(A)$ where $A \in UTM_n(R)$ and $\alpha_{ii}, \alpha_{jj+1} \in R$.

Corollary The images of the matrices of $UTM_n(R)$, where R is an additively idempotent semiring, under arbitrary derivation form an ideal of $UTM_n(R)$.

The set of upper triangular matrices with zeroes on the main diagonal is an ideal $N_n(R)$ of $UTM_n(R)$. We denote the subsemiring of diagonal matrices by $Diag_n(R)$. If the semiring R contains no nilpotent elements then $UTM_n(R) = Diag_n(R) \oplus N_n(R)$. The derivations $D_D = \sum_{i=1}^{n} \lambda_i \delta_{ii}$, $\lambda_i \in R$ are called diagonal derivations since $D_D(A)$ has almost one nonzero element on the

derivations since $D_D(A)$ has almost one nonzero element on the main diagonal.

The derivations $D_N = \sum_{j=1}^{n-1} \mu_j \delta_{jj+1}$, $\mu_j \in R$ are called nilpotent

derivations since $(D_N(A))^k = 0$ for some positive integer k.

Theorem 3. Let the additively idempotent semiring R contain no nonzero nilpotent elements, $A \in UTM_n(R)$ and $D: UTM_n(R) \rightarrow UTM_n(R)$ be an arbitrary derivation. Then there exists a diagonal derivation D_D , nilpotent derivation D_N , diagonal matrix A_D and nilpotent matrix A_N , such that

 $D(A) = D_D(A_D) + D_N(A_N).$

Derivations generated by left semicentral idempotents of a ring

Now we recall some definitions.

Let *R* be an arbitrary associative (not necessarily commutative) ring. For a fixed $x \in R$ the map $d_x(a) = [x, a] = xa - ax$ for any $a \in R$ is a derivation called inner derivation of *R* determined by *x*.

Let R_1 be a ring of matrices over R. The map $\tilde{d}: R_1 \to R_1$ such that $\tilde{d}(A) = (d(a_{ij}))$ for any matrix $A = (a_{ij}) \in R_1$, where d is a derivation of R, is a derivation called a hereditary derivation generated by d.

As in the semiring case an idempotent $\ell \in R$ ($r \in R$) is called left (right) semicentral if $\ell x \ell = x \ell$ (rxr = rx) for all $x \in R$.

The set of left (right) semicentral idempotents of the ring R is a multiplicative semigroup with identity.

The multiplicative semigroup of left (resp. right) semicentral idempotents elements of the ring R is denoted by $(\mathcal{L}(R), .)$, (resp. $(\mathcal{R}(R), .))$.

Let $\ell_1, \ell_2 \in \mathcal{L}(R)$ and $\ell_1 \star \ell_2 = \ell_1 + \ell_2 - \ell_1 \ell_2$. Similarly we denote $r_1 \star r_2 = r_1 + r_2 - r_1 r_2$, where $r_1, r_2 \in \mathcal{R}(R)$.

The semigroup $\mathcal{L}(R)$, $(\mathcal{R}(R))$ is closed under the operation \star .

If $\ell \in \mathcal{L}(R)$, then $r = 1 - \ell \in \mathcal{R}(R)$. So, for each left semicentral element ℓ there is a right semicentral element r such that $\ell + r = 1$. Moreover, if $\ell + r = 1$ for an arbitrary $x \in R$ we have $rx\ell = (1 - \ell)x\ell = x\ell - \ell x\ell = 0$.

Let ℓ be a left semicentral and r a right semicentral idempotent of R such that $\ell + r = 1$. The map $d_{\ell} : R \to R$ such that $d_{\ell}(x) = \ell xr$ for any $x \in R$ is a derivation of R.

Why we denote this derivation by d_{ℓ} ? Because $d_{\ell}(x) = \ell x r = \ell x (1 - \ell) = \ell x - x \ell = [\ell, x]$. The composition of two derivations in general is not a derivation, but there are exceptions.

In 1957, Posner^a has shown that for prime ring R of characteristic different from 2 the composition of two non-zero derivations is not a derivation. This result has been generalized in several ways – see Chebotar and Lee^b, Chuang^c, Krempa and Matczuk^d. But a composition of inner derivations can be a nonzero derivation, for many examples see Lanski^e.

^aE. C. Posner, Derivations in prime rings, *Proc. Amer. Math. Soc.* 1957 8; 1093-1100.

^bM. A. Chebotar, P-H Lee P-H, A Note on Compositions of Derivations of Prime Rings, Commun. Algebra. 2003 31:6; 2965-2969.

^cC. L. Chuang, On compositions of derivations of prime rings, *Proc. Amer. Math. Soc.* 1990; 108(3): 647-652.

^dJ. Krempa, J. Matczuk, On the composition of derivations. *Rend. Circ. Mat. Palermo*, 1984 33:441-455.

^eC. Lanski, Differential identities of prime rings, Kharchenko's theorem and applications, *Contemporary Math.* 124 (1992) 111-128.

The next result is a little step in this direction.

Theorem 4. Let $\ell_1, \ell_2 \in \mathcal{L}(R)$. The composition $d_{\ell_1}d_{\ell_2}$ is a derivation if and only if the Jordan product is equal to the sum: $\ell_1\ell_2 + \ell_2\ell_1 = \ell_1 + \ell_2$.

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

Basic derivations of the ring of upper triangular matrices

Let *R* be an associative ring with identity 1 and $UTM_n(R)$ the ring of upper triangular $n \times n$ matrices over *R*. As in the semiring case we consider $\ell_k = e_{11} + \cdots + e_{kk}$, where $1 \le k \le n$, and prove that these matrices are left semicentral idempotents. Consequently, from the result above we obtain that

the map $d_{\ell_k} : UTM_n(R) \to UTM_n(R)$, where R is a ring and $d_{\ell_k}(A) = [\ell_k, A], 1 \le k \le n-1$, for any matrix $A \in UTM_n(R)$, is a derivation of the ring $UTM_n(R)$, generated by ℓ_k .

As a consequence for any matrix $A = (a_{ij}) \in UTM_n(R)$ we obtain

where k = 1, ..., n - 1. Since $\ell_k = e_{11} + \cdots + e_{kk}$, where $1 \le k \le n$, we prefer to consider new derivations

$$\delta_i(A) = [e_{ii}, A]$$

for any $A \in UTM_n(R)$, i = 1, ..., n. Now $d_{\ell_k}(A) = \sum_{i=1}^k \delta_i(A)$. Another reason to consider these derivations is the fact that the matrix $\delta_i(A)$ in the general case contains more zeroes than the matrix $d_{\ell_k}(A)$. Thus we calculate

$$\delta_1(A) = d_{\ell_1}(A) = \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

 and

$$\delta_{i}(A) = \begin{pmatrix} 0 & \cdots & 0 & -a_{1i} & 0 & \cdots & 0 \\ \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & \cdots & 0 & -a_{i-1i} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & a_{ii+1} & \cdots & a_{in} \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \end{pmatrix},$$

where $i = 2, \ldots, n$ and $A = (a_{ij}) \in UTM_n(R)$.

Some properties of these basic derivations of $UTM_n(R)$ are:

(i) The derivation δ_1 is an idempotent.

(ii) For all i = 2, ..., n it follows $\delta_i^3 = \delta_i$, i.e. the derivations δ_i are tripotent.

(iii) For any i, j = 1,..., n where i < j and A = $(a_{ij}) \in UTM_n(R)$ it follows $\delta_i(\delta_j(A)) = \delta_j(\delta_i(A)) = -a_{ij}$. (iv) $\delta_1 + \delta_2 + \cdots + \delta_n = 0$.

Let us denote by \mathcal{D} the additive group of derivations generated by $\delta_2, \ldots, \delta_n$. Since $\delta_2, \ldots, \delta_n$ are *R*-derivations, it follows (as in the semiring case) that \mathcal{D} is an *R*-module.

The derivations $\delta_2, \ldots, \delta_n$ forms a basis of the *R*-module \mathcal{D} .

All derivations d_{ℓ_k} , $k = 1, \ldots, n$ are elements of \mathcal{D} .

Are there any other left semicentral idempotents $\ell \in UTM_n(R)$ such that $d_{\ell} \in \mathcal{D}$?

The answer is positive. Denote by ℓ^R an arbitrary left semicentral idempotent of R. Similarly to $\ell_k = \sum_{i=1}^k e_{ii}$ we consider

$$\ell_k^R = \sum_{i=1}^{k-1} e_{ii} + \ell^R e_{kk}.$$

For an arbitrary matrix $A = (a_{ij}) \in UTM_n(S)$ we find that $\ell_k^R A \ell_k^R = A \ell_k^R$.

Note that unlike d_{ℓ_k} , k = 1, ..., n, the new derivations $d_{\ell_k^R}$, where ℓ^R is any left semicentral idempotent of R, are not R-derivations. Another difference between derivations d_{ℓ_k} and the new derivations $d_{\ell_k^R}$ is in the following reasoning.

The composition $d_{\ell_k} d_{\ell_m}$ is not a derivation since $\ell_k \ell_m = \ell_m \ell_k = \ell_k$ and $\ell_k + \ell_m = \ell_m$, where k < m and then the equality of Jordan product and sum of idempotents, considered in Theorem 4, fail to hold. Let $\ell', \ell'' \in \mathcal{L}(R)$. Consider the left semicentral idempotents

$$\ell'_k = \sum_{i=1}^{k-1} e_{ii} + \ell' e_{kk}$$
 and $\ell''_k = \sum_{i=1}^{k-1} e_{ii} + \ell'' e_{kk}$.

Now by Theorem 4 if $\ell'\ell'' + \ell''\ell' = \ell' + \ell''$, it follows that the composition $d_{\ell'_{k}}d_{\ell''_{k}}$ is a derivation.

Are there another derivations of UTM(R)?

To answer this question we return again to a left (respectively right) semicentral idempotents of the ring R. Since $d_{\ell}(x) = \ell xr$ for any $x \in R$ is a derivation of the ring R, it follows that the corresponding \tilde{d}_{ℓ} is a hereditary derivation of UTM(R). Since $\tilde{d}_{\ell}(A) = \ell Ar$ for matrix $A \in UTM(R)$ and ℓ is in general not a central idempotent we see that \tilde{d}_{ℓ} is not an R-derivation.

Representation of arbitrary derivations of triangular matrices

In Theorem 2 (the case when R is an additively idempotent semiring) we proved that an arbitrary derivation $D: UTM_n(R) \rightarrow UTM_n(R)$ is a linear combination of elements of the basis of the R-semimodule \mathcal{D} with coefficients from R.

Note that this result is stronger than the next result.

Theorem 5. Let $D: UTM_n(R) \rightarrow UTM_n(R)$ be an arbitrary R-derivation of the ring $UTM_n(R)$ and $A = (a_{ij}) \in UTM_n(R)$. Then there exist matrices $M^D, M^D_{ij}, N^D_{ij} \in UTM_n(R)$, i, j = 1, ..., n, such that

$$D(A) = \sum_{i=1}^{n} a_{ii}\delta_i\left(M^D\right) + \sum_{j=2}^{n} \left(\sum_{\substack{i=1\\i < j}}^{n-1} a_{ij}(\delta_i\left(M^D_{ij}\right) + \delta_j\left(N^D_{ij}\right))\right),$$

where δ_i , i = 1, ..., n, are the basic derivations.

Note that the entries a_{ij} of the matrix A are the coefficients of the linear combinations in the right side of the equality. Since the proof of this theorem is constructive we can show the entries of the matrices M^D , M^D_{ij} and N^D_{ij} .

If we denote
$$D\left(e_{pq}
ight)=\sum_{\substack{i,j=1\i\leq j}}^{n}lpha_{ij}^{\left(p,q
ight)}e_{ij}$$
, where $1\leq p\leq n,\,1\leq q\leq n,$

we construct the matrix

$$M^{D} = \begin{pmatrix} 0 & \alpha_{12}^{(1,1)} & \alpha_{13}^{(1,1)} & \cdots & \alpha_{1n}^{(1,1)} \\ 0 & 0 & \alpha_{23}^{(2,2)} & \cdots & \alpha_{2n}^{(2,2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha_{n-1n}^{(n-1,n-1)} \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

Then we prove that $D(e_{ii}) = \delta_i(M^D)$ for i = 1, ..., n.

In the final step of the proof we construct new matrices M_{ij}^D and N_{ij}^D , where i < j and represent the derivative $D(e_{ij})$ by the derivatives of these matrices.

Thus

$$egin{aligned} \mathcal{M}_{ij}^D &= lpha_{ij}^{(i,j)} e_{ij} + \sum_{l=j+1}^n lpha_{jl}^{(j,j)} e_{il} \ ext{ and} \ &N_{ij}^D = - \sum_{k=1}^{i-1} lpha_{ki}^{(i,i)} e_{kj}. \end{aligned}$$

Then

$$D(e_{ij}) = \delta_i \left(M_{ij}^D \right) + \delta_j \left(N_{ij}^D \right)$$

Some consequences of the theorem. Immediately follows

If D is an arbitrary R-derivation of the ring $UTM_n(R)$, then D(E) = 0, where E is the identity matrix.

As we know from Theorem 2 of Amitsur's article, cited above, an arbitrary derivation is a sum of a hereditary derivation and an inner derivation.

What happens when the considered derivation is an *R*-derivation. Let $\delta : R \to R$ be a derivation and $D = \tilde{\delta}$ a hereditary derivation of $UTM_n(R)$. Since *D* is an *R*-derivation we have

$$D(\lambda A) = \lambda D(A) = \lambda \widetilde{\delta}(A) = \lambda(\delta(a_{ij})),$$

where $\lambda \in R$ and $A \in UTM_n(R)$. On the other hand

$$D(\lambda A) = (\delta(\lambda a_{ij})) = (\delta(\lambda)a_{ij} + \lambda\delta(a_{ij})) = \delta(\lambda)A + \lambda(\delta(a_{ij})).$$

Then $\delta(\lambda)A = 0$. Since A is an arbitrary matrix we have $\delta(\lambda) = 0$ and since λ is an arbitrary element of R we obtain that δ is a zero derivation.

Hence there are no nonzero hereditary derivations which are R-derivations. In other words any R-derivation $D: UTM_n(R) \rightarrow UTM_m(R)$ is an inner derivation.

Thus there is a fixed matrix $X = (x_{ij}) \in UTM_n(R)$ such that $D(A) = D_X(A)) = [X, A]$. So

$$D_X(A) = \begin{pmatrix} [x_{11}, a_{11}] & * & \cdots & * \\ 0 & [x_{22}, a_{22}] & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & [x_{nn}, a_{nn}] \end{pmatrix}$$

By Theorem 5. it follows that $[x_{ii}, a_{ii}] = 0$, i = 1, ..., n. Thus the elements on the main diagonal of the matrix X belongs to the centre C(R).

To describe the entries of the matrix $D_X(A)$ over the main diagonal we consider

$$\Delta_X^i(a_{jk}) = x_{ij}a_{jk} - a_{ij}x_{jk},$$

where $1 \le i \le j \le k \le n$, but i < n and call this difference an index commutator of elements of the matrices X and A.

All entries of the matrix $D_X(A)$ are represented by sums of index commutators:

$$D_X(A) = \\ = \begin{pmatrix} 0 & \Delta_X^1(a_{12}) + \Delta_X^1(a_{22}) & \cdots & \sum_{i=1}^n \Delta_X^1(a_{in}) \\ 0 & 0 & \cdots & \sum_{i=2}^n \Delta_X^2(a_{in}) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Delta_X^{n-1}(a_{n-1\,n}) + \Delta_X^{n-1}(a_{nn}) \\ 0 & 0 & \cdots & 0 \end{pmatrix}.$$

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Now for the given matrix
$$X = (x_{ij})$$
 we consider the map
 $\Delta_X^i : R \to R$ such that $\Delta_X^i(a_{jk})$ is the index commutator,
 $i = 1, \dots, n-1$ and $A = (a_{ij}) \in UTM_n(R)$.
Let $B = (b_{ij}) \in UTM_n(R)$. Then we find
 $\Delta_X^i(a_{jk} + b_{jk}) = \Delta_X^i(a_{jk}) + \Delta_X^i(b_{jk})$, i.e. Δ_X^i is a linear map. We
obtain $\Delta_X^i(a_{jk})b_{k\ell} + a_{ij}\Delta_X^j(b_{k\ell}) = \Delta_X^i(a_{jk}b_{k\ell})$.

Hence the index commutator is similar to derivation. The fact that the index commutators are not derivations emphasizes the crucial role of derivations δ_i for studying arbitrary *R*-derivations.

イロト 不得 トイヨト イヨト ヨー ろくで

THANK YOU!

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ