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At Algebra and Logic Seminar in 2021 I compared similar results
for endomorphisms of matrix rings and semirings and promised
that in the next year 2022 I will talk about my results for
derivations of triangular matrix rings and semirings.

These results are published in the following articles:

1. D. Vladeva, Derivations of upper triangular matrix
semirings, Linear and Multilinear Algebra, 2022, 70(4):
625-641.

2. D. Vladeva, Derivations of triangular matrix rings,
Linear Multilinear Algebra. 2022;
DOI:10.1080/03081087.2022.2063786.



Introduction

The study of representations of an arbitrary derivation of a ring as
a sum of well-known derivations, though started long ago, got a
boost only after the Amitsur’s seminal articlea. He proved that an
arbitrary derivation of the ring Mn(R) of n × n matrices over an
associative ring R with identity is a sum of an inner derivation and
a hereditary derivation.
In 1978, a representation of derivations of generalized quasi-matrix
algebra was obtained by Burkovb.
In 1983, Nowickic showed a similar result for special subrings of
matrix rings.

aS. A. Amitsur, Extension of derivations to central simple algebras,
Commun. Algebra 10(8) (1982) 797-803.

bV. D. Burkov, Derivations of generalized quasi.matrix rings, Mat. zametki
24(1) (1978) 111-122.

cA. Nowicki, Derivations of special subrings of matrix rtings and regular
graphs. Tsukuba J. Math. 1983; 7(2): 281-297.



In 1993, Coehlo & Miliesa proved the result similar to those in
Amitsur’s article for the ring of upper triangular matrices.
In 1995, Jondrupb generalized the theorem of Coelho and Milies.
Further, in 2006, Chun and Parkc determined the derivations of
the niltriangular matrix ring as a sum of diagonal and strongly
nilpotent derivation.
Derivations of matrix ring containing a subring of triangular
matrices was described in 2011 by Kolesnikov and Mal’tsevd.

aS. Coelho, P. Milies, Derivations of Upper Triangular Matrix Rings.
Linear Algebra Appl. 1993; 187: 263-267.

bS. Jondrup, Automorphisms and Derivations of Upper Triangular Matrix
Rings, Linear Algebra Appl. 1995; 221: 205-218.

cJ. H. Chun, J. W. Park, Derivations on subrings of matrix rings. Bull.
Korean Math. Soc. 2006; 43(3): 635–644.

dS. G. Kolesnikov, N. V. Mal’tsev, Derivations of a Matrix Ring Containing a
Subring of Triangular Matrices. Izv. VUZ. 2011; 55 (11): 18-26.



Derivations of matrix rings consisting of sums of niltriangular
matrix and matrix over an ideal was studies in 2017 by Kuzucuoğlu
and Sayina

Similar results for an arbitrary semiring does not hold in general.
For additively idempotent semirings in the paper cited above I have
(in 2020) analogous investigations.
Let R be an arbitrary associative (not necessarily commutative)
ring or additively idempotent semiring ( a+ a = a for any a ∈ R).
A derivation of R is an additive map d : R → R that satisfies
Leibniz’s law.
A derivation d of the ring (semiring) UTMn(R) of upper triangular
matrices over the ring (semiring) R will be an R-derivation if it is
an R-linear map, i.e. d(λA) = λd(A) where λ ∈ R and
A ∈ UTMn(R). This definition is used in Jacobsonb for algebras
over a commutative ring. In this talk we will work only with
R-derivations.

aF. Kuzucuoğlu, U. Sayin, Derivations of some classes of matrix rings.
Journ. Algebra and Appl. 2017; 16(1): 1-12.

bN. Jacobson, Basic Algebra II, W.H. Freeman & Company; 1989.



Basic derivations of the semiring of triangular matrices

Let A = (aij) ∈ UTMn(R), where R is an additively idempotent

semiring, that is A =
n∑

i ,j=1
i≤j

aijeij , where aij ∈ R, i , j = 1, . . . n and

eij are matrix units.
Let ℓk = e11 + · · ·+ ekk for 1 ≤ k ≤ n.
Let us note that in arbitrary ring (semiring) R by x ◦ y = xy + yx
for any x , y ∈ R we denote the Jordan product of x and y .
We obtain that for A ∈ UTMn(R) it follows
A ◦ ℓk = A ℓk + ℓk A = ℓk A. Moreover, ℓk is a left semicentral
idempotent, i.e. ℓkAℓk = Aℓk , in sense of Birkenmeiera.
So, we have proved
The map δk : UTMn(R) → UTMn(R) such that δk(A) = A ◦ ℓk is
a derivation.

aG. F. Birkenmeier et all, Extensions of rings and modules. Birkhäuser;
Springer; 2013.



Next we consider the matrix rm = en−m+1 n−m+1 + · · ·+ enn,
where 1 ≤ m ≤ n and for an arbitrary A ∈ UTMn(R) find that
A ◦ rm = A rm + rm A = A rm. Furthermore, rm is a right
semicentral idempotent, that is rmArm = rmA.

The map dm : UTMn(R) → UTMn(R) such that dm(A) = A ◦ rm is
a derivation.

If m = n the map dn = i is an identity map, which is a derivation
in any additively idempotent semiring. The derivations δk ,
1 ≤ k ≤ n, and dm, 1 ≤ m ≤ n, are called basic derivations.
We obtain that δk + δℓ = δℓ + δk = δℓ and δk δℓ = δℓ δk = δk ,
where k ≤ ℓ. Thus, if Dℓ is the set of derivations δk , then
(Dℓ,+, .) is a semiring with a zero, which is the smallest element
δ1 and identity, which is the greatest element the identity map δn.
Similarly dm + dℓ = dℓ + dm = dm and dmdℓ = dℓdm = dℓ, where
ℓ ≤ m. So, if Dr is the set of derivations dm, then (Dr ,+, .) is a
semiring with a zero, which is the smallest element d1 and an
identity, which is the greatest element the identity map dn.



Products of derivations

Let D be the semiring generated by the set Dℓ ∪ Dr . As the
elements of semirings (Dr ,+, .) and (Dℓ,+, .) are derivations of
the semiring UTMn(R) we can add them and their sums are
derivations. Thus δk + dm ∈ D.

The product δkdm, where 1 ≤ k ,m ≤ n is well defined by the rule
δkdm(A) = dm(δk(A)) for any A ∈ UTMn(R),
but in general it is not a derivation.

Let δk , dm ∈ D, where 1 ≤ k ,m ≤ n. The map δkdm = dmδk is a
derivation if and only if δk + dm is the identity map.



A principal connected submatrix of a matrix A = (aij) ∈ UTMn(R)
is a square submatrix of A in which the main diagonal consists of
the elements aii , . . . , ajj , where i , . . . , j are consecutive numbers
and 1 ≤ i ≤ j ≤ n. Let A = (aij) ∈ UTMn(R) and A(ik , nk) is the
principal connected submatrix of A with main diagonal
aik ik · · · aik+nk−1 ik+nk−1. An arbitrary finite set of principal
connected submatrices A(ik , nk), where k = 1, . . . , s, without
common elements is called a family.
Now we can present an arbitrary derivation δ ∈ D by the
derivatives δ(A).

Theorem 1. Let for any matrix A = (aij) ∈ UTMn(R) the matrix
δ(A) ∈ UTMn(R) has the same entries aij , 1 ≤ i ≤ n, 1 ≤ j ≤ n
except the elements of a family of principal connected submatrices
A(ik , nk), where k = 1, . . . , s, which are zeroes. Then the map
δ : UTMn(R) → UTMn(R) is a derivation and δ ∈ D. Conversely,
for any δ ∈ D and matrix A = (aij) ∈ UTMn(R), the matrix δ(A)
is of the same type.



Basis of D

We will construct a basis B of the semigroup (D,+), such that any
element of D can be represented as a sum of elements of B.
For an arbitrary derivation δi dj the number i + j is called a weight
of a derivation. From Theorem 1 it follows that the weight of δi dj
belongs to the interval [n, 2n]. The derivations
δ1 = δ1 i = δ1 dn, δ2 dn−1, . . . , δi dn−i+1, . . . , d1 = i d1 = δn d1 are
of weight n + 1. Each other derivation of weight n + 1 can be
represented as a sum of these derivations.
Each derivation of weight n+ p, where 1 < p ≤ n− 1 has the form
δk dn−k+p (as a consequence of Theorem 1)) and can be
represented as a sum of two derivations of weight n + 1:
δk dn−k+p = δk dn−k+1 + δk−p+1 dn−k+p.
The derivations δ1 dn−1, . . . , δi dn−i , . . . , δn−1 d1 are of weight n.



For arbitrary n we construct a basis in D consisting of the
derivations:
1. δ1, δ2 dn−1, . . . , δn−1 d2, d1.
2. δ1 dn−1, δ2 dn−2, . . . , δn−2 d2, δn−1 d1.

For any α ∈ R and a derivation δ ∈ D the map
αδ : UTMn(R) → UTMn(R), such that (αδ)(A) = α δ(A), where
A ∈ UTMn(R), is a derivation.
Thus the semigroup D is an R-semimodule. If we denote
δii = δi dn−i+1, i = 1, . . . , n, δj j+1 = δj dn−j , j = 1, . . . , n − 1,
then the basis of the R-semimodule D is

B = {δii , δj j+1, i = 1, . . . , n, j = 1, . . . , n − 1}.



The main theorem (the semiring case)

Theorem 2. An arbitrary derivation D : UTMn(R) → UTMn(R),
where R is an additively idempotent semiring, is a linear
combination of elements of the basis B of the R-semimodule D
with coefficients from R.

In the proof D(A) =
∑n

i=1 αiiδii (A) +
∑n−1

j=1 αjj+1δjj+1(A) where
A ∈ UTMn(R) and αii , αj j+1 ∈ R.

Corollary The images of the matrices of UTMn(R), where R is an
additively idempotent semiring, under arbitrary derivation form an
ideal of UTMn(R).

The set of upper triangular matrices with zeroes on the main
diagonal is an ideal Nn(R) of UTMn(R). We denote the
subsemiring of diagonal matrices by Diagn(R).
If the semiring R contains no nilpotent elements then
UTMn(R) = Diagn(R)⊕ Nn(R).



The derivations DD =
n∑

i=1

λiδii , λi ∈ R are called diagonal

derivations since DD(A) has almost one nonzero element on the
main diagonal.

The derivations DN =
n−1∑
j=1

µjδj j+1, µj ∈ R are called nilpotent

derivations since (DN(A))
k = 0 for some positive integer k.

Theorem 3. Let the additively idempotent semiring R contain no
nonzero nilpotent elements, A ∈ UTMn(R) and
D : UTMn(R) → UTMn(R) be an arbitrary derivation. Then there
exists a diagonal derivation DD , nilpotent derivation DN , diagonal
matrix AD and nilpotent matrix AN , such that

D(A) = DD(AD) + DN(AN).



Derivations generated by left semicentral idempotents of a ring

Now we recall some definitions.
Let R be an arbitrary associative (not necessarily commutative)
ring. For a fixed x ∈ R the map dx(a) = [x , a] = xa− ax for any
a ∈ R is a derivation called inner derivation of R determined by x .

Let R1 be a ring of matrices over R. The map d̃ : R1 → R1 such
that d̃(A) = (d(aij)) for any matrix A = (aij) ∈ R1, where d is a
derivation of R, is a derivation called a hereditary derivation
generated by d .

As in the semiring case an idempotent ℓ ∈ R (r ∈ R) is called left
(right) semicentral if ℓxℓ = xℓ (rxr = rx) for all x ∈ R.

The set of left (right) semicentral idempotents of the ring R is a
multiplicative semigroup with identity.



The multiplicative semigroup of left (resp. right) semicentral
idempotents elements of the ring R is denoted by (L(R), .), (resp.
(R(R), .)).
Let ℓ1, ℓ2 ∈ L(R) and ℓ1 ⋆ ℓ2 = ℓ1 + ℓ2 − ℓ1ℓ2. Similarly we denote
r1 ⋆ r2 = r1 + r2 − r1r2, where r1, r2 ∈ R(R).

The semigroup L(R), (R(R)) is closed under the operation ⋆.

If ℓ ∈ L(R), then r = 1− ℓ ∈ R(R). So, for each left semicentral
element ℓ there is a right semicentral element r such that
ℓ+ r = 1. Moreover, if ℓ+ r = 1 for an arbitrary x ∈ R we have
rxℓ = (1− ℓ)xℓ = xℓ− ℓxℓ = 0.

Let ℓ be a left semicentral and r a right semicentral idempotent of
R such that ℓ+ r = 1. The map dℓ : R → R such that dℓ(x) = ℓxr
for any x ∈ R is a derivation of R.

Why we denote this derivation by dℓ?
Because dℓ(x) = ℓxr = ℓx(1− ℓ) = ℓx − xℓ = [ℓ, x ].



The composition of two derivations in general is not a derivation,
but there are exceptions.
In 1957, Posnera has shown that for prime ring R of characteristic
different from 2 the composition of two non-zero derivations is not
a derivation. This result has been generalized in several ways – see
Chebotar and Leeb, Chuangc, Krempa and Matczukd.
But a composition of inner derivations can be a nonzero
derivation, for many examples see Lanskie.

aE. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 1957 8;
1093-1100.

bM. A. Chebotar, P-H Lee P-H, A Note on Compositions of Derivations of
Prime Rings, Commun. Algebra. 2003 31:6; 2965-2969.

cC. L. Chuang, On compositions of derivations of prime rings, Proc. Amer.
Math. Soc. 1990; 108(3): 647-652.

dJ. Krempa, J. Matczuk, On the composition of derivations. Rend. Circ.
Mat. Palermo, 1984 33:441-455.

eC. Lanski, Differential identities of prime rings, Kharchenko’s theorem and
applications, Contemporary Math. 124 (1992) 111-128.



The next result is a little step in this direction.

Theorem 4. Let ℓ1, ℓ2 ∈ L(R). The composition dℓ1dℓ2 is a
derivation if and only if the Jordan product is equal to the sum:
ℓ1ℓ2 + ℓ2ℓ1 = ℓ1 + ℓ2.



Basic derivations of the ring of upper triangular matrices

Let R be an associative ring with identity 1 and UTMn(R) the ring
of upper triangular n × n matrices over R.
As in the semiring case we consider
ℓk = e11 + · · ·+ ekk , where 1 ≤ k ≤ n,
and prove that these matrices are left semicentral idempotents.
Consequently, from the result above we obtain that

the map dℓk : UTMn(R) → UTMn(R), where R is a ring and
dℓk (A) = [ℓk ,A], 1 ≤ k ≤ n− 1, for any matrix A ∈ UTMn(R), is a
derivation of the ring UTMn(R), generated by ℓk .

As a consequence for any matrix A = (aij) ∈ UTMn(R) we obtain



dℓk (A) =



0 · · · 0 a1 k+1 · · · a1n
... · · ·

...
... · · ·

...
0 · · · 0 ak k+1 · · · akn
0 · · · 0 0 · · · 0
... · · ·

...
... · · ·

...
0 · · · 0 0 · · · 0


,

where k = 1, . . . , n − 1.
Since ℓk = e11 + · · ·+ ekk , where 1 ≤ k ≤ n, we prefer to consider
new derivations

δi (A) = [eii ,A]

for any A ∈ UTMn(R), i = 1, . . . , n. Now dℓk (A) =
k∑

i=1

δi (A).

Another reason to consider these derivations is the fact that the
matrix δi (A) in the general case contains more zeroes than the
matrix dℓk (A).



Thus we calculate

δ1(A) = dℓ1(A) =


0 a12 · · · a1n
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0


and

δi (A) =



0 · · · 0 −a1i 0 · · · 0
... · · ·

...
...

... · · ·
...

0 · · · 0 −ai−1 i 0 · · · 0
0 · · · 0 0 ai i+1 · · · ain
0 · · · 0 0 0 · · · 0
... · · ·

...
...

... · · ·
...

0 · · · 0 0 0 · · · 0


,

where i = 2, . . . , n and A = (aij) ∈ UTMn(R).



Some properties of these basic derivations of UTMn(R) are:
(i) The derivation δ1 is an idempotent.
(ii) For all i = 2, . . . , n it follows δ3i = δi, i.e. the derivations δi are
tripotent.
(iii) For any i, j = 1, . . . , n where i < j and A = (aij) ∈ UTMn(R) it
follows δi(δj(A)) = δj(δi(A)) = −aij.
(iv) δ1 + δ2 + · · ·+ δn = 0.

Let us denote by D the additive group of derivations generated by
δ2, . . . , δn. Since δ2, . . . , δn are R-derivations, it follows (as in the
semiring case) that D is an R-module.

The derivations δ2, . . . , δn forms a basis of the R-module D.

All derivations dℓk , k = 1, . . . , n are elements of D.



Are there any other left semicentral idempotents ℓ ∈ UTMn(R)
such that dℓ ∈ D ?
The answer is positive. Denote by ℓR an arbitrary left semicentral
idempotent of R. Similarly to ℓk =

∑k
i=1 eii we consider

ℓRk =
k−1∑
i=1

eii + ℓRekk .

For an arbitrary matrix A = (aij) ∈ UTMn(S) we find that
ℓRk Aℓ

R
k = AℓRk .

Note that unlike dℓk , k = 1, . . . , n, the new derivations dℓRk
, where

ℓR is any left semicentral idempotent of R, are not R-derivations.
Another difference between derivations dℓk and the new derivations
dℓRk

is in the following reasoning.

The composition dℓkdℓm is not a derivation since ℓkℓm = ℓmℓk = ℓk
and ℓk + ℓm = ℓm, where k < m and then the equality of Jordan
product and sum of idempotents, considered in Theorem 4, fail to
hold.



Let ℓ′, ℓ′′ ∈ L(R). Consider the left semicentral idempotents

ℓ′k =
k−1∑
i=1

eii + ℓ′ekk and ℓ′′k =
k−1∑
i=1

eii + ℓ′′ekk .

Now by Theorem 4 if ℓ′ℓ′′ + ℓ′′ℓ′ = ℓ′ + ℓ′′, it follows that the
composition dℓ′kdℓ

′′
k
is a derivation.

Are there another derivations of UTM(R)?

To answer this question we return again to a left (respectively
right) semicentral idempotents of the ring R. Since dℓ(x) = ℓxr for
any x ∈ R is a derivation of the ring R, it follows that the
corresponding d̃ℓ is a hereditary derivation of UTM(R). Since
d̃ℓ(A) = ℓAr for matrix A ∈ UTM(R) and ℓ is in general not a
central idempotent we see that d̃ℓ is not an R-derivation.



Representation of arbitrary derivations of triangular matrices

In Theorem 2 (the case when R is an additively idempotent
semiring) we proved that an arbitrary derivation
D : UTMn(R) → UTMn(R) is a linear combination of elements of
the basis of the R-semimodule D with coefficients from R.

Note that this result is stronger than the next result.

Theorem 5. Let D : UTMn(R) → UTMn(R) be an arbitrary
R-derivation of the ring UTMn(R) and A = (aij) ∈ UTMn(R).
Then there exist matrices
MD ,MD

ij ,N
D
ij ∈ UTMn(R), i , j = 1, . . . , n, such that

D(A) =
n∑

i=1

aiiδi

(
MD

)
+

n∑
j=2

n−1∑
i=1
i<j

aij(δi

(
MD

ij

)
+ δj

(
ND
ij

)
)

 ,

where δi , i = 1, . . . , n, are the basic derivations.



Note that the entries aij of the matrix A are the coefficients of the
linear combinations in the right side of the equality.
Since the proof of this theorem is constructive we can show the
entries of the matrices MD , MD

ij and ND
ij .

If we denote D (epq) =
n∑

i ,j=1
i≤j

α
(p,q)
ij eij , where 1 ≤ p ≤ n, 1 ≤ q ≤ n,

we construct the matrix

MD =



0 α
(1,1)
12 α

(1,1)
13 · · · α

(1,1)
1n

0 0 α
(2,2)
23 · · · α

(2,2)
2n

...
...

...
. . .

...

0 0 0 · · · α
(n−1,n−1)
n−1 n

0 0 0 · · · 0


.



Then we prove that D(eii ) = δi (M
D) for i = 1, . . . , n.

In the final step of the proof we construct new matrices MD
ij and

ND
ij , where i < j and represent the derivative D(eij) by the

derivatives of these matrices.
Thus

MD
ij = α

(i ,j)
ij eij +

n∑
l=j+1

α
(j ,j)
jl eil and

ND
ij = −

i−1∑
k=1

α
(i ,i)
ki ekj .

Then
D(eij) = δi

(
MD

ij

)
+ δj

(
ND
ij

)
Some consequences of the theorem. Immediately follows

If D is an arbitrary R-derivation of the ring UTMn(R), then
D(E ) = 0, where E is the identity matrix.



As we know from Theorem 2 of Amitsur’s article, cited above, an
arbitrary derivation is a sum of a hereditary derivation and an inner
derivation.
What happens when the considered derivation is an R-derivation.
Let δ : R → R be a derivation and D = δ̃ a hereditary derivation of
UTMn(R). Since D is an R-derivation we have

D(λA) = λD(A) = λδ̃(A) = λ(δ(aij)),

where λ ∈ R and A ∈ UTMn(R). On the other hand

D(λA) = (δ(λaij)) = (δ(λ)aij + λδ(aij)) = δ(λ)A+ λ(δ(aij)).

Then δ(λ)A = 0. Since A is an arbitrary matrix we have δ(λ) = 0
and since λ is an arbitrary element of R we obtain that δ is a zero
derivation.
Hence there are no nonzero hereditary derivations which are
R-derivations. In other words
any R-derivation D : UTMn(R) → UTMm(R) is an inner
derivation.



Thus there is a fixed matrix X = (xij) ∈ UTMn(R) such that
D(A) = DX (A)) = [X ,A]. So

DX (A) =


[x11, a11] ∗ · · · ∗

0 [x22, a22] · · · ∗
...

...
. . .

...
0 0 · · · [xnn, ann]

 .

By Theorem 5. it follows that [xii , aii ] = 0, i = 1, . . . , n. Thus the
elements on the main diagonal of the matrix X belongs to the
centre C (R).

To describe the entries of the matrix DX (A) over the main
diagonal we consider

∆i
X (ajk) = xijajk − aijxjk ,

where 1 ≤ i ≤ j ≤ k ≤ n, but i < n and call this difference an
index commutator of elements of the matrices X and A.



All entries of the matrix DX (A) are represented by sums of index
commutators:

DX (A) =

=



0 ∆1
X (a12) + ∆1

X (a22) · · ·
∑n

i=1∆
1
X (ain)

0 0 · · ·
∑n

i=2∆
2
X (ain)

...
...

. . .
...

0 0 · · · ∆n−1
X (an−1 n) + ∆n−1

X (ann)

0 0 · · · 0


.



Now for the given matrix X = (xij) we consider the map
∆i

X : R → R such that ∆i
X (ajk) is the index commutator,

i = 1, . . . , n − 1 and A = (aij) ∈ UTMn(R).
Let B = (bij) ∈ UTMn(R). Then we find
∆i

X (ajk + bjk) = ∆i
X (ajk) + ∆i

X (bjk), i.e. ∆
i
X is a linear map. We

obtain ∆i
X (ajk)bkℓ + aij∆

j
X (bkℓ) = ∆i

X (ajkbkℓ).

Hence the index commutator is similar to derivation.
The fact that the index commutators are not derivations
emphasizes the crucial role of derivations δi for studying arbitrary
R-derivations.



THANK YOU!


