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At Algebra and Logic Seminar in 2021 | compared similar results
for endomorphisms of matrix rings and semirings and promised
that in the next year 2022 | will talk about my results for
derivations of triangular matrix rings and semirings.

These results are published in the following articles:

1. D. Vladeva, Derivations of upper triangular matrix
semirings, Linear and Multilinear Algebra, 2022, 70(4):
625-641.

2. D. Vladeva, Derivations of triangular matrix rings,
Linear Multilinear Algebra. 2022;
DOI:10.1080,/03081087.2022.2063786.




Introduction

The study of representations of an arbitrary derivation of a ring as
a sum of well-known derivations, though started long ago, got a
boost only after the Amitsur's seminal article?. He proved that an
arbitrary derivation of the ring M,(R) of n x n matrices over an
associative ring R with identity is a sum of an inner derivation and
a hereditary derivation.

In 1978, a representation of derivations of generalized quasi-matrix
algebra was obtained by Burkov®.

In 1983, Nowicki® showed a similar result for special subrings of
matrix rings.

?S. A. Amitsur, Extension of derivations to central simple algebras,
Commun. Algebra 10(8) (1982) 797-803.

V. D. Burkov, Derivations of generalized quasi.matrix rings, Mat. zametki
24(1) (1978) 111-122.

°A. Nowicki, Derivations of special subrings of matrix rtings and regular
graphs. Tsukuba J. Math. 1983; 7(2): 281-297.




In 1993, Coehlo & Milies? proved the result similar to those in
Amitsur's article for the ring of upper triangular matrices.

In 1995, Jondrup® generalized the theorem of Coelho and Milies.
Further, in 2006, Chun and Park®€ determined the derivations of
the niltriangular matrix ring as a sum of diagonal and strongly
nilpotent derivation.

Derivations of matrix ring containing a subring of triangular
matrices was described in 2011 by Kolesnikov and Mal'tseve.

S. Coelho, P. Milies, Derivations of Upper Triangular Matrix Rings.
Linear Algebra Appl. 1993; 187: 263-267.

bS. Jondrup, Automorphisms and Derivations of Upper Triangular Matrix
Rings, Linear Algebra Appl. 1995; 221: 205-218.

€J. H. Chun, J. W. Park, Derivations on subrings of matrix rings. Bull.
Korean Math. Soc. 2006; 43(3): 635—644.

95 G. Kolesnikov, N. V. Mal'tsev, Derivations of a Matrix Ring Containing a
Subring of Triangular Matrices. [zv. VUZ. 2011; 55 (11): 18-26.




Derivations of matrix rings consisting of sums of niltriangular
matrix and matrix over an ideal was studies in 2017 by Kuzucuoglu
and Sayin?

Similar results for an arbitrary semiring does not hold in general.
For additively idempotent semirings in the paper cited above | have
(in 2020) analogous investigations.

Let R be an arbitrary associative (not necessarily commutative)
ring or additively idempotent semiring ( a+ a = a for any a € R).
A derivation of R is an additive map d : R — R that satisfies
Leibniz's law.

A derivation d of the ring (semiring) UTM,(R) of upper triangular
matrices over the ring (semiring) R will be an R-derivation if it is
an R-linear map, i.e. d(AA) = Ad(A) where A € R and

A € UTM,(R). This definition is used in Jacobson® for algebras
over a commutative ring. In this talk we will work only with
R-derivations.

?F. Kuzucuoglu, U. Sayin, Derivations of some classes of matrix rings.
Journ. Algebra and Appl. 2017; 16(1): 1-12.
bN. Jacobson, Basic Algebra I, W.H. Freeman & Company; 1989.




Basic derivations of the semiring of triangular matrices
Let A = (aj) € UTM,(R), where R is an additively idempotent
n

semiring, that is A = E ajjejj, where a; € R, i,j=1,...nand
ij=1
i<j

ejj are matrix units.

Let by =en1+--+ e, forl < k <n.

Let us note that in arbitrary ring (semiring) R by x oy = xy + yx
for any x,y € R we denote the Jordan product of x and y.

We obtain that for A € UTM,(R) it follows

Aol = Al +{, A=, A Moreover, £ is a left semicentral
idempotent, i.e. £, Al = Al, in sense of Birkenmeier?.

So, we have proved

The map oy : UTMp(R) — UTMy(R) such that §x(A) = Ao Uy is
a derivation.

?G. F. Birkenmeier et all, Extensions of rings and modules. Birkhauser;
Springer; 2013.




Next we consider the matrix ro;, = €p—mt1n—m+1+ -+ €nn,
where 1 < m < n and for an arbitrary A € UTM,(R) find that
Aorm=Arm+rmA= Arn,. Furthermore, ry, is a right
semicentral idempotent, that is r,Arm, = rnA.

The map dp, : UTMp(R) = UTM,(R) such that d,(A) = Ao ry, is
a derivation.

If m = n the map d, =i is an identity map, which is a derivation
in any additively idempotent semiring. The derivations Jy,

1< k<n,and d,, 1 < m < n, are called basic derivations.

We obtain that d, + dp = dp + 6 = ¢ and dx dp = dp 6k = Oy,
where k < /. Thus, if Dy is the set of derivations d, then
(Dy, +,.) is a semiring with a zero, which is the smallest element
01 and identity, which is the greatest element the identity map d,.
Similarly dp, + dp = dp + dy = dpy and dindp = ded, = dy, where
¢ < m. So, if D, is the set of derivations d,,, then (D,,+,.) is a
semiring with a zero, which is the smallest element d; and an
identity, which is the greatest element the identity map d,,.




Products of derivations

Let D be the semiring generated by the set Dy U Dr. As the
elements of semirings (D,, +,.) and (Dy, +,.) are derivations of
the semiring UTM,,(R) we can add them and their sums are
derivations. Thus 0, + d, € D.

The product dxdn,, where 1 < k, m < n is well defined by the rule
dkdm(A) = dm(dk(A)) for any A € UTM,(R),
but in general it is not a derivation.

Let 6y, dm € D, where1 < k,m < n. The map §ydy, = dndk is a
derivation if and only if §; + dn, is the identity map.




A principal connected submatrix of a matrix A = (a;;) € UTM,(R)
is a square submatrix of A in which the main diagonal consists of
the elements aj;, ..., aj, where i, ..., are consecutive numbers
and 1 < <j<n Let A= (aj) € UTM,(R) and A(ik, ni) is the
principal connected submatrix of A with main diagonal

i i, " " Ai+n—1i+n,—1- An arbitrary finite set of principal
connected submatrices A(ix, nk), where k =1,...,s, without
common elements is called a family.

Now we can present an arbitrary derivation § € D by the
derivatives 6(A).

Theorem 1. Let for any matrix A = (aj;) € UTM,(R) the matrix
d(A) € UTM,(R) has the same entries ajj, 1 <i<n,1<j<n
except the elements of a family of principal connected submatrices
A(ik, nk), where k =1,...,s, which are zeroes. Then the map

d: UTMp(R) — UTM,(R) is a derivation and § € D. Conversely,
for any § € D and matrix A = (ajj) € UTM,(R), the matrix §(A)
is of the same type.




Basis of D

We will construct a basis B of the semigroup (D, +), such that any
element of D can be represented as a sum of elements of 5.

For an arbitrary derivation 6; d; the number / + j is called a weight
of a derivation. From Theorem 1 it follows that the weight of J; d;
belongs to the interval [n,2n]. The derivations

(51 = 51i= 51 dn,52dn,1,...,5;dn_;+1,...,d1 = id1 = 5,,d1 are
of weight n+ 1. Each other derivation of weight n + 1 can be
represented as a sum of these derivations.

Each derivation of weight n+ p, where 1 < p < n—1 has the form
Ok dn—k+p (as a consequence of Theorem 1)) and can be
represented as a sum of two derivations of weight n + 1:

5k dn—k+p = 6k dn—k+1 + 6k—p+1 dn—k+p-

The derivations 61 dp—1,.-.,60; dn_j,...,0p_1 d1 are of weight n.




For arbitrary n we construct a basis in D consisting of the
derivations:

1. 51, 52 dn—l, 500 5,7_1 d2, dy.

2. §1dp—1, 02dn—2, ..., 0p—2d>, Op_1di.

For any a € R and a derivation § € D the map

ad : UTMp(R) — UTM,(R), such that (ad)(A) = a§(A), where
A € UTM,(R), is a derivation.

Thus the semigroup D is an R-semimodule. If we denote

(5,‘,‘ :(5,'d,,,,'+1, i = 1,...,[7, 5jj+1 :5jd,,,j, j: 1,...,[7—1,
then the basis of the R-semimodule D is

B={6i, §jji1, i=1,...,n, j=1,...,n—1}.




The main theorem (the semiring case)

Theorem 2. An arbitrary derivation D : UTMp(R) — UTM,(R),
where R is an additively idempotent semiring, is a linear
combination of elements of the basis B of the R-semimodule D
with coefficients from R.

In the proof D(A) = Y 7, cidii(A) + Y 1—1 cjjs18j41(A) where
Ac UTMH(R) and Qji, A j+1 € R.

Corollary The images of the matrices of UTM,(R), where R is an
additively idempotent semiring, under arbitrary derivation form an
ideal of UTMp(R).

The set of upper triangular matrices with zeroes on the main
diagonal is an ideal N,(R) of UTM,(R). We denote the
subsemiring of diagonal matrices by Diag,(R).

If the semiring R contains no nilpotent elements then
UTMn(R) = Diagn(R) @ Nn(R)




n
The derivations Dp = Z)\;(S;i. Ai € R are called diagonal
i=1
derivations since Dp(A) has almost one nonzero element on the

main diagonal.
n—1

The derivations Dy = ZMj(Sjj.HL, ij € R are called nilpotent
j=1
derivations since (Dy(A))* = 0 for some positive integer k.

Theorem 3. Let the additively idempotent semiring R contain no
nonzero nilpotent elements, A € UTM,(R) and

D : UTM,(R) — UTM,(R) be an arbitrary derivation. Then there
exists a diagonal derivation Dp, nilpotent derivation Dy, diagonal

matrix Ap and nilpotent matrix Ay, such that

D(A) = Dp(Ap) + Dn(An).




Derivations generated by left semicentral idempotents of a ring

Now we recall some definitions.

Let R be an arbitrary associative (not necessarily commutative)
ring. For a fixed x € R the map dy(a) = [x, a] = xa — ax for any
a € R is a derivation called inner derivation of R determined by x.

Let Ri be a ring of matrices over R. The map d: R1 — Ry such
that d(A) = (d(ajj)) for any matrix A = (aj;) € Ry, where d is a
derivation of R, is a derivation called a hereditary derivation

generated by d.

As in the semiring case an idempotent £ € R (r € R) is called left
(right) semicentral if {x¢ = x{ (rxr = rx) for all x € R.

The set of left (right) semicentral idempotents of the ring R is a
multiplicative semigroup with identity.




The multiplicative semigroup of left (resp. right) semicentral
idempotents elements of the ring R is denoted by (L(R),.), (resp.
(R(R), ).

Let 41,05 € £(R) and V1 % ly = {1 + ¥ — {145. Similarly we denote
rn*r=r+rn—rr, where ri,rn € R(R).

The semigroup L(R), (R(R)) is closed under the operation x.

If ¢ € L(R), then r =1 — ¢ € R(R). So, for each left semicentral
element £ there is a right semicentral element r such that

£+ r =1. Moreover, if £+ r =1 for an arbitrary x € R we have
rxt = (1—{4)xt =xt — {x{ = 0.

Let ¢ be a left semicentral and r a right semicentral idempotent of
R such that { +r =1. The map dy : R — R such that dy(x) = {xr
for any x € R is a derivation of R.

Why we denote this derivation by d,?
Because dy(x) = fxr = Ix(1 —£) = {x — xt = [{, x].




The composition of two derivations in general is not a derivation,
but there are exceptions.

In 1957, Posner? has shown that for prime ring R of characteristic
different from 2 the composition of two non-zero derivations is not
a derivation. This result has been generalized in several ways — see
Chebotar and Lee?, Chuang®, Krempa and Matczuk?.

But a composition of inner derivations can be a nonzero
derivation, for many examples see Lanski€.

?E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 1957 8;
1093-1100.

bM. A. Chebotar, P-H Lee P-H, A Note on Compositions of Derivations of
Prime Rings, Commun. Algebra. 2003 31:6; 2965-2969.

°C. L. Chuang, On compositions of derivations of prime rings, Proc. Amer.
Math. Soc. 1990; 108(3): 647-652.

4], Krempa, J. Matczuk, On the composition of derivations. Rend. Circ.
Mat. Palermo, 1984 33:441-455.

€C. Lanski, Differential identities of prime rings, Kharchenko's theorem and
applications, Contemporary Math. 124 (1992) 111-128.




The next result is a little step in this direction.

Theorem 4. Let (1,0, € L(R). The composition dy, dy, is a
derivation if and only if the Jordan product is equal to the sum:
by + ol = b1 + 5.




Basic derivations of the ring of upper triangular matrices

Let R be an associative ring with identity 1 and UTM,(R) the ring
of upper triangular n X n matrices over R.

As in the semiring case we consider

by = €11+ -+ + exk, where 1 < k < n,

and prove that these matrices are left semicentral idempotents.
Consequently, from the result above we obtain that

the map dy, : UTM,(R) — UTM,(R), where R is a ring and
dy, (A) = [k, A], 1 < k < n—1, for any matrix A € UTM,(R), is a
derivation of the ring UTM,(R), generated by /.

As a consequence for any matrix A = (a;;) € UTM,(R) we obtain




0 .-~ 0 ayks1 -+ ain

0 0 a <+« aAkn
(A= o o o 0 |

0 --- 0 0 e 0

where k=1,...,n— 1.
Since £ = e11 + - - - + exk, where 1 < k < n, we prefer to consider
new derivations

6i(A) = [eii, Al

k
for any A€ UTM,(R), i =1,...,n. Now dy, (A) = > 6;(A).
i=1

Another reason to consider these derivations is the fact that the
matrix d;(A) in the general case contains more zeroes than the
matrix dp, (A).




Thus we calculate

0 ap
0 O
51(A) - dfl (A) — . .
0 O
and
0 0 —ay; 0
0o --- 0 —aj—1i 0
5,’(/4): o --- 0 0 dji+1

o --- 0 0 0
o --- 0 0 0

where i =2,...,nand A= (aj) € UTM,(R).




Some properties of these basic derivations of UTM,(R) are:

(i) The derivation 91 is an idempotent.

(ii) For alli=2,...,n it follows 63 = &, i.e. the derivations §; are
tripotent.

(iii) Foranyi,j=1,...,n wherei < j and A = (a;) € UTM,(R) it
follows (5.(5J(A)) = (51((5,(A)) = —ajj.

(iv) 01+ 92+ ---+ 0, =0.

Let us denote by D the additive group of derivations generated by
d2,...,0n. Since d2,...,0d, are R-derivations, it follows (as in the
semiring case) that D is an R-module.

The derivations 6», . ..,d, forms a basis of the R-module D.

All derivations dy,, k = 1,...,n are elements of D.




Are there any other left semicentral idempotents ¢ € UTM,(R)
such that d, € D7

The answer is positive. Denote by R an arbitrary left semicentral
idempotent of R. Similarly to ¢, = Z/I'(:l eji we consider

k-1
R = E eii + LR ey
=i

For an arbitrary matrix A = (aj;) € UTM,(S) we find that

ffAéR = Aff.

Note that unlike dp,, Kk = 1,...,n, the new derivations dg;k?, where
(R is any left semicentral idempotent of R, are not R-derivations.
Another difference between derivations dy, and the new derivations
def is in the following reasoning.

The composition dy, d,, is not a derivation since £l = by = Uy
and /i + £, = £, where k < m and then the equality of Jordan

product and sum of idempotents, considered in Theorem 4, fail to
hold.




Let ¢/,¢" € L(R). Consider the left semicentral idempotents

k—1 k—1
/ / 1 7
K= E eii + U e, and £ = E ei + 4" exy.
i=i! i=1

Now by Theorem 4 if £/¢" + ¢"¢' = ¢' + (", it follows that the
composition dg;{dg: is a derivation.

Are there another derivations of UTM(R)?

To answer this question we return again to a left (respectively
right) semicentral idempotents of the ring R. Since dj(x) = ¢xr for
any x € R is a derivation of the ring R, it follows that the
corresponding dy is a hereditary derivation of UTM(R). Since
dy(A) = LAr for matrix A€ UTM(R) and £ is in general not a
central idempotent we see that dy is not an R-derivation.




Representation of arbitrary derivations of triangular matrices

In Theorem 2 (the case when R is an additively idempotent
semiring) we proved that an arbitrary derivation

D : UTMn(R) — UTM,(R) is a linear combination of elements of
the basis of the R-semimodule D with coefficients from R.

Note that this result is stronger than the next result.

Theorem 5. Let D : UTMy(R) — UTM,(R) be an arbitrary
R-derivation of the ring UTMp(R) and A = (aj;) € UTM,(R).
Then there exist matrices

mP MI??NDGUTM( ), i,j =1,...,n, such that

9= 3o () + 3| S () + 5 () |

/<j

where 6;, i = 1,...,n, are the basic derivations.




Note that the entries a;; of the matrix A are the coefficients of the
linear combinations in the right side of the equality.

Since the proof of this theorem is constructive we can show the
entries of the matrices MP, M,-JD and N,-JD.

n
If we denote D (epq) = Z agp’q)e,-j, where1<p<n 1<gqg<n,

ij=1
i<
we construct the matrix
1,1 1,1 1,1
0 ol off) ol
0 0 o . o
MP =
n—1,n—1
0 0 0 rpea
0 0 0 0




Then we prove that D(e;) = §;(MP) for i =1,...,n

In the final step of the proof we construct new matrices M,-JD a

N,-?, where / < j and represent the derivative D(ej;) by the
derivatives of these matrices.

Thus
I7
I\/l,-JD— gJeU—F g a e,, and
_J—‘,-l
i—1
D _ (i) .
NU = — Qi " €kj-
k=1
Then

D(ey) = b (MP) + 5 (NP)
Some consequences of the theorem. Immediately follows

If D is an arbitrary R-derivation of the ring UTM,(R), then
D(E) = 0, where E is the identity matrix.

nd




As we know from Theorem 2 of Amitsur’s article, cited above, an
arbitrary derivation is a sum of a hereditary derivation and an inner
derivation.

What happens when the considered derivation is an R-derivation.
Let § : R — R be a derivation and D = § a hereditary derivation of
UTM,(R). Since D is an R-derivation we have

D(AA) = AD(A) = Ad(A) = A(6(a;j)),
where A € R and A € UTM,(R). On the other hand
D(AA) = (6(Aay)) = (6(A)ay + Ad(aj)) = 6(A)A + A(d(ay))-

Then §(A)A = 0. Since A is an arbitrary matrix we have §(\) =0
and since A is an arbitrary element of R we obtain that d is a zero
derivation.

Hence there are no nonzero hereditary derivations which are
R-derivations. In other words

any R-derivation D : UTMp(R) — UTMpn(R) is an inner
derivation.




Thus there is a fixed matrix X = (xj;) € UTM,(R) such that
D(A) = Dx(A)) = [X, A]. So

[x11, a11] * e *

0 [x22,a20] --- *

Dx(A) = : : . :
0 0 T [Xnm ann]

By Theorem 5. it follows that [xj;,a;] =0, i =1,...,n. Thus the
elements on the main diagonal of the matrix X belongs to the
centre C(R).

To describe the entries of the matrix Dx(A) over the main
diagonal we consider

i _
Al (ajk) = xjajk — aiXjk;

where 1 < i <j <k < n, but i< n and call this difference an
index commutator of elements of the matrices X and A.




All entries of the matrix Dx(A) are represented by sums of index
commutators:

Dx(A) =
0 Al(an2) +Ak(az) --- >oim1 Ak (ain)
0 0 >oims A% (ain)
0 0 A% Han—1n) + A% (ann)
0 0 0




Now for the given matrix X = (x;;) we consider the map

Al : R — R such that A} (aj) is the index commutator,
i=1,...,n—1and A= (aj;) € UTM,(R).

Let B = (bjj) € UTM,(R). Then we find

Al (aj + bix) = Ak (ajk) + Al (bjk), i.e. Al is a linear map. We
obtain A&(ajk)bkg + a,'jAJX(bkg) = A&(ajkbkg).

Hence the index commutator is similar to derivation.

The fact that the index commutators are not derivations
emphasizes the crucial role of derivations §; for studying arbitrary
R-derivations.




THANK YOU!!




