On the Degree of Dependence of Two Events as a Relative Invariant of the Dihedral Group of order 8
 Valentin Vankov Iliev

Abstract

The joint experiment $\Im_{(A, B)}$ of two binary trials $A \cup A^{c}$ and $B \cup B^{c}$ in a probability space can be produced not only by the ordered pair (A, B) but by a set consisting, in general, of 24 ordered pairs of events (named Yule's pairs). The probabilities $\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}$ of the four results of $\Im_{(A, B)}$ are linear functions in three variables $\alpha=\operatorname{Pr}(A), \beta=\operatorname{Pr}(B), \gamma=\operatorname{Pr}(A \cap B)$, and constitute a probability distribution. The symmetric group S_{4} of degree four has an exact representation in the affine group $\operatorname{Aff}(3, \mathrm{R})$, which is constructed by using the types of the form $[\alpha, \beta, \theta]$ of those 24 Yule's pairs. The corresponding action of S_{4} permutes the components of the probability distribution ($\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}$), and, in particular, its entropy function is S_{4}-invariant. The function of degree of dependence of two events, defined via modifying the entropy function, turns out to be a relative invariant of the dihedral group of order 8 .

