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Introduction



Problem Setting
Given:
▶ K a field;
▶ V a K-vector space, dimK V = n < ∞;
▶ G a group with G ↷ V ;

Then:
▶ G ↷ V ⇔ ρ : G → GL(V ).
▶ G ↷ V induces G ↷ V ∗ via

∀λ ∈ V ∗ ∀ v ∈ V : (g · λ)(v) := λ(g−1 · v).
▶ G ↷ V ∗ extends to G ↷ O(V ) = Sym(V ∗) = K[V ∗] via

(g · F )(v) := F (g−1 · v).
▶ x1, . . . , xn ∈ V ∗ dual basis ⇒ O(V ) = K[x1, . . . , xn], hence

G ↷ K[x1, . . . , xn]
g · P (x1, . . . , xn) = P (g · x1, . . . , g · xn).

▶ In other words, G ≤ AutK(K[x1, . . . , xn]) acting linearly.

One wants to understand K[x1, . . . , xn]
G.



Very Brief History

▶ Originated in the 19th century with the work of Boole and
Cayley on the invariance of algebraic forms under linear
transformations.

▶ Felix Klein’s work (19th century) on the invariant rings of
finite group actions on C2 lead later to the ADE classification
(Arnold,70s) of Du Val singularities (Du Val,30s) (nowadays
understood in the framework of McKay correspondence,80s).

▶ Hilbert discovered the eponymous Basissatz, Nullstellensatz,
and Syzygy Theorem while pursuing Invariant Theory.

▶ Hilbert was mainly interested in the invariants of continuous
groups (e.g. GL, SL), whereas Emmy Noether was more
interested in the invariants of finite groups.

This talk is about a theorem of Emmy Noether
on K[x1, . . . , xn]

G (slightly generalized).



The Original Proof (Slightly Modified)



Elementary Symmetric Polynomials & Newton Functions

Fix R ∈ CRing with R ⊇ Q and n ∈ N.

In R[x1, . . . , xn] one defines:

Definition (Elementary Symmetric Polynomials)

e0(x1, . . . , xn) := 1

ek(x1, . . . , xn) :=
∑

1≤j1<···<jk≤n

xj1 . . . xjk , 1 ≤ k ≤ n

and

Definition (Power Sums / Newton Functions)

pk(x1, . . . , xn) :=
n∑

i=1

xki , k ∈ N.



Newton’s Identities

Proposition (Girard-Newton,1629,1666)

We have

kek(x1, . . . , xn) =

k∑
i=1

(−1)i−1pi(x1, . . . , xn)ek−i(x1, . . . , xn)

for all 1 ≤ k ≤ n. (As written, already true in characteristic 0.)

⇒ ek can be expressed via pi recursively.

Example

e1 = p1

e2 =
1

2
(p21 − p2)

e3 =
1

6
(p31 − 3p1p2 + p3) etc.



A Familiar Example of Invariants

Sn ↷ R[x1, . . . , xn] via permutation of the variables.

Theorem (Fundamental Theorem of Symmetric Polynomials)

R[x1, . . . , xn]
Sn = R[e1, . . . , en]

Corollary

R[x1, . . . , xn]
Sn = R[p1, . . . , pn]

In particular: ∀N > n : pN ∈ R[p1, . . . , pn].



A Lemma

Notation:

▶ R ∈ CRing with R ⊇ Q;

▶ α = (α1, . . . , αn) ∈ Nn
0 multi-index, |α| = α1 + · · ·+ αn;

▶ G ≤ AutR(R[x1, . . . , xn]) finite, e.g. G = {g1, . . . , gm};

Definition (Generic Invariants)

Fα :=
∑

g∈G g · (xα1
1 . . . xαn

n )
def
=

∑
g∈G(g · x1)α1 . . . (g · xn)αn .

Lemma

∀β ∈ Nn
0 : Fβ ∈ R[{Fα : |α| ≤ m}].

Remark

G is not assumed to act linearly.



Proof of the Lemma

Proof.

(i) G ↷ R[t1, . . . , tn, x1, . . . , xn] via g · ti = ti, 1 ≤ i ≤ n.

(ii) Define λ := t1x1 + · · ·+ tnxn ∈ R[t1, . . . , tn, x1, . . . , xn].

(iii) Put Pk := pk(g1 · λ, . . . , gm · λ), k ∈ N. Then:

Pk
def
=

∑
g∈G

g · (t1x1 + · · ·+ tnxn)
k =

=
∑
g∈G

g ·
∑
|β|=k

k!

β1! . . . βn!
tβ1
1 . . . tβn

n xβ1
1 . . . xβn

n =

=
∑
|β|=k

k!

β1! . . . βn!
tβ1
1 . . . tβn

n Fβ, k ∈ N.

(iv) ∀ k : Pk ∈ R[P1, . . . , Pm] ⊆ R[{ti}1≤i≤n, {Fα : |α| ≤ m}].
(v) Thus ∀ |β| > m : Fβ is a polynomial in Fα-s with |α| ≤ m.



Emmy Noether’s Theorem

Theorem (E. Noether,Erlangen,1915)

Let G ≤ AutR(R[x1, . . . , xn]) with |G| < ∞. Then
R[x1, . . . , xn]

G is generated by elements of the form Fα, |α| ≤ |G|.
In particular, if the action is linear, then R[x1, . . . , xn]

G is f.g. by
elements of degree ≤ |G|.

Proof.

Let F =
∑

β cβx
β1
1 . . . xβn

n ∈ R[x1, . . . , xn]
G. Then

F =
1

|G|
∑
g∈G

g · F =
1

|G|
∑
g∈G

∑
β

cβg · (xβ1
1 . . . xβn

n ) =

=
1

|G|
∑
β

cβ
∑
g∈G

g · (xβ1
1 . . . xβn

n ) =
1

|G|
∑
β

cβFβ



Second Proof by Commutative Algebra



Two Facts from Commutative Algebra

Let A,B,C ∈ CRing.

Proposition

Let A
φ−→ B be a morphism of rings. We have:

φ integral and of finite type ⇔ φ finite.

Lemma (Artin-Tate)

Let A ⊆ B ⊆ C be ring extensions such that:

(i) A is Noetherian;

(ii) C is a finitely generated A-algebra (i.e. of finite type over A);

(iii) C is a finite B-module (⇔ B ⊆ C integral).

Then B too is a finitely generated A-algebra.



Integrality over RG

Recall:
∏n

k=1(t− xk) =
∑n

k=0(−1)n−ken−k(x1, . . . , xn)t
k

Now fix:

▶ R ∈ CRing;

▶ G := {g1, . . . , gn} ↷ R, i.e. G ≤ Aut(R) finite;

▶ For α ∈ R denote αk := gk · α, 1 ≤ k ≤ n.

Lemma

Every α ∈ R is integral over R[e1(α1, . . . , αn), . . . , en(α1, . . . , αn)].
In particular, R ⊇ RG is an integral extension.

Proof.

Consider Pα(t) :=
∏n

k=1(t− αk), which is monic and of degree
n = |G|.



Emmy Noether’s Theorem

Theorem

Given:

(i) A a Noetherian ring;

(ii) B ⊇ A a finitely generated A-algebra;

(iii) G ≤ AutA(B) finite subgroup;

Then BG too is a finitely generated A-algebra.

Proof.

(i) B f.g. A-algebra ⇒ B f.g. BG-algebra.

(ii) B ⊇ BG integral (by prev. Lemma) ⇒ B finite BG-module.

⇒ A ⊆ BG ⊆ B is as in Artin-Tate (since A Noetherian).

⇒ BG is a f.g. A-algebra.



An Example: C[x, y]D2n



The Action of D2n

D2n = ⟨ρ, σ | ρn = σ2 = 1, σρσ = ρn−1⟩ - the dihedral group of
order 2n (symmetry group of the regular n-gon), n ≥ 3.

D2n ↷ R2 ∼= C via the rotation ρ of a vector (x, y) by 2π/n and
the relfection σ of (x, y) with respect to the x-axis.

⇒ linear action of D2n on the pair of functionals (x, y).

Want to determine C[x, y]D2n.

Ansatz:

▶ z := x+ iy, z̄ := x− iy ⇒ C[x, y] = C[z, z̄].
▶ Hence C[x, y]D2n = C[z, z̄]D2n .

▶ ζ := e2πi/n ⇒ ρ(z) = ζz and ρ(z̄) = ζ̄ z̄ = ζ−1z̄.

▶ σ(z) = z̄ and σ(z̄) = z.

▶ f(z, z̄) ∈ C[z, z̄]D2n ⇔ ρ · f = f and σ · f = f .



Comparison of Coefficients in Degree d

f(z, z̄) ∈ C[z, z̄]D2n ⇔ f symmetric and f(ζz, ζ−1z̄) = f(z, z̄).

(i) d = 1: none, since a(ζz + ζ−1z̄) ̸= a(z + z̄);

(ii) d = 2: aζzζ−1z̄ + b(ζ2z2 + ζ−2z̄2)
?
= azz̄ + b(z2 + z̄2) ⇒

zz̄ = x2 + y2 is the only invariant in degree 2 (up to scaling).

(iii) More generally for degree d:∑
k+ℓ=d
k<ℓ

ckℓ(ζ
k−ℓzkz̄ℓ + ζℓ−kzℓz̄k)

?
=

∑
k+ℓ=d
k<ℓ

ckℓ(z
kz̄ℓ + zℓz̄k)

if and only if ckℓ = 0 or n|(ℓ− k).

(iv) In other words, the invariants are linear combinations of

zkz̄mn+k+zmn+kz̄k = (zz̄)k
(
(zn)m+(z̄n)m

)
= (zz̄)kpm(zn, z̄n),

where k,m ∈ N0.



Recursion for pm(z
n, z̄n) and m odd

(v) Next notice that

pm(zn, z̄n) = (zn + z̄n)m −
m∑
k=1

(
m

k

)
(zn)k(z̄n)m−k =

= p1(z
n, z̄n)m −

m∑
k=1

(
m

k

)
(zkz̄m−k)n︸ ︷︷ ︸

=:qm(z,z̄)

Express qm(z, z̄) in terms of zz̄ and pj(z
n, z̄n), 1 ≤ j < m.

(vi) If m is odd, then:

qm(z, z̄) =

m−1
2∑

k=1

(
m

k

)(
(zkz̄m−k)n + (zm−kz̄k)m

)
=

=

m−1
2∑

k=1

(
m

k

)
(zz̄)knpm−2k(z

n, z̄n).



Recursion for pm(z
n, z̄n) and m even

(vii) If m is even, then

qm(z, z̄) =

m
2
−1∑

k=1

(
m

k

)(
(zkz̄m−k)n + (zm−kz̄k)n

)
+

(
m

m/2

)
(zz̄)

mn
2

=

m
2
−1∑

k=1

(
m

k

)
(zz̄)knpm−2k(z

n, z̄n) +

(
m

m/2

)
(zz̄)

mn
2

(viii) Thus, every pm(zn, z̄n) can always be expressed via zz̄ and
p1(z

n, z̄n), . . . , pm−1(z
n, z̄n). Therefore, we have:

∀m ∈ N : pm(zn, z̄n) ∈ C[zz̄, p1(zn, z̄n)].

⇒ C[z, z̄]D2n = C[zz̄, zn + z̄n] = C[|z|2 ,Re(zn)].



Concluding Remarks

Remarks

(1) Even though we’ve deviated from the original setting by
complexifying the problem, it became easier and we still
obtained “real” generators.

(2) D2n = {ρkσℓ : 1 ≤ k ≤ n, 1 ≤ ℓ ≤ 2} as a set ⇒ we could’ve
calculated the orbit of each zαz̄β, α+ β ≤ |D2n| = 2n, and
from there the generic invariants (but didn’t).

(3) In particular, we got away with only 2 generators.

(4) Noether’s bound |G| on the degree of the invariant generators
is not always optimal.



Thank You!
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