Emmy Noether's Theorem on the Finite Generation of Invariants

Marin Genov

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

Algebra & Logic Seminar, 13. Oct 2023

Outline

Introduction

The Original Proof (Slightly Modified)

Second Proof by Commutative Algebra

An Example: $\mathbb{C}[x, y]^{D_{2n}}$

Introduction

Problem Setting

Given:

- K a field;
- V a K-vector space, $\dim_K V = n < \infty$;
- G a group with $G \curvearrowright V$;

Then:

$$\begin{array}{l} \bullet \ G \curvearrowright V \Leftrightarrow \rho \colon G \to \operatorname{GL}(V). \\ \bullet \ G \curvearrowright V \text{ induces } G \curvearrowright V^* \text{ via} \\ \forall \lambda \in V^* \ \forall v \in V \colon (g \cdot \lambda)(v) \coloneqq \lambda(g^{-1} \cdot v). \\ \bullet \ G \curvearrowright V^* \text{ extends to } G \curvearrowright \mathcal{O}(V) = \operatorname{Sym}(V^*) = K[V^*] \text{ via} \\ (g \cdot F)(v) \coloneqq F(g^{-1} \cdot v). \\ \bullet \ x_1, \dots, x_n \in V^* \text{ dual basis } \Rightarrow \mathcal{O}(V) = K[x_1, \dots, x_n], \text{ hence} \\ G \curvearrowright K[x_1, \dots, x_n] \\ g \cdot P(x_1, \dots, x_n) = P(g \cdot x_1, \dots, g \cdot x_n). \\ \bullet \text{ In other words, } G \leq \operatorname{Aut}_K(K[x_1, \dots, x_n]) \text{ acting linearly.} \end{array}$$

One wants to understand $K[x_1,\ldots,x_n]^G$.

Very Brief History

- Originated in the 19th century with the work of Boole and Cayley on the invariance of algebraic forms under linear transformations.
- Felix Klein's work (19th century) on the invariant rings of finite group actions on C² lead later to the ADE classification (Arnold,70s) of Du Val singularities (Du Val,30s) (nowadays understood in the framework of McKay correspondence,80s).
- Hilbert discovered the eponymous Basissatz, Nullstellensatz, and Syzygy Theorem while pursuing Invariant Theory.
- Hilbert was mainly interested in the invariants of continuous groups (e.g. GL, SL), whereas Emmy Noether was more interested in the *invariants of finite groups*.

This talk is about a theorem of Emmy Noether on $K[x_1, \ldots, x_n]^G$ (slightly generalized).

The Original Proof (Slightly Modified)

Elementary Symmetric Polynomials & Newton Functions

Fix
$$R \in \mathsf{CRing}$$
 with $R \supseteq \mathbb{Q}$ and $n \in \mathbb{N}$.

In $R[x_1, \ldots, x_n]$ one defines:

Definition (Elementary Symmetric Polynomials)

$$e_0(x_1, \dots, x_n) \coloneqq 1$$
$$e_k(x_1, \dots, x_n) \coloneqq \sum_{1 \le j_1 < \dots < j_k \le n} x_{j_1} \dots x_{j_k}, \ 1 \le k \le n$$

and

Definition (Power Sums / Newton Functions)

$$p_k(x_1,\ldots,x_n) \coloneqq \sum_{i=1}^n x_i^k, \ k \in \mathbb{N}.$$

Newton's Identities

Proposition (Girard-Newton, 1629, 1666)

We have

$$ke_k(x_1,\ldots,x_n) = \sum_{i=1}^k (-1)^{i-1} p_i(x_1,\ldots,x_n) e_{k-i}(x_1,\ldots,x_n)$$

for all $1 \le k \le n$. (As written, already true in characteristic 0.)

 $\Rightarrow e_k$ can be expressed via p_i recursively.

Example

$$e_1 = p_1$$

 $e_2 = \frac{1}{2}(p_1^2 - p_2)$
 $e_3 = \frac{1}{6}(p_1^3 - 3p_1p_2 + p_3)$ etc.

A Familiar Example of Invariants

 $\mathfrak{S}_n \curvearrowright R[x_1,\ldots,x_n]$ via permutation of the variables.

Theorem (Fundamental Theorem of Symmetric Polynomials) $R[x_1, \ldots, x_n]^{\mathfrak{S}_n} = R[e_1, \ldots, e_n]$

In particular: $\forall N > n \colon p_N \in R[p_1, \ldots, p_n].$

A Lemma

Notation:

▶ $R \in \mathsf{CRing}$ with $R \supseteq \mathbb{Q}$;

•
$$\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$$
 multi-index, $|\alpha| = \alpha_1 + \dots + \alpha_n$;

▶ $G \leq \operatorname{Aut}_R(R[x_1, \ldots, x_n])$ finite, e.g. $G = \{g_1, \ldots, g_m\}$;

Definition (Generic Invariants)

$$F_{\alpha} \coloneqq \sum_{g \in G} g \cdot (x_1^{\alpha_1} \dots x_n^{\alpha_n}) \stackrel{\text{def}}{=} \sum_{g \in G} (g \cdot x_1)^{\alpha_1} \dots (g \cdot x_n)^{\alpha_n}.$$

Lemma

$$\forall \beta \in \mathbb{N}_0^n \colon F_\beta \in R[\{F_\alpha : |\alpha| \le m\}].$$

Remark

G is not assumed to act linearly.

Proof of the Lemma

(i)
$$G \cap R[t_1, \dots, t_n, x_1, \dots, x_n]$$
 via $g \cdot t_i = t_i, 1 \le i \le n$.
(ii) Define $\lambda \coloneqq t_1 x_1 + \dots + t_n x_n \in R[t_1, \dots, t_n, x_1, \dots, x_n]$.
(iii) Put $P_k \coloneqq p_k(g_1 \cdot \lambda, \dots, g_m \cdot \lambda), k \in \mathbb{N}$. Then:
 $P_k \stackrel{\text{def}}{=} \sum_{g \in G} g \cdot (t_1 x_1 + \dots + t_n x_n)^k =$
 $= \sum_{g \in G} g \cdot \sum_{|\beta|=k} \frac{k!}{\beta_1! \dots \beta_n!} t_1^{\beta_1} \dots t_n^{\beta_n} x_1^{\beta_1} \dots x_n^{\beta_n} =$
 $= \sum_{|\beta|=k} \frac{k!}{\beta_1! \dots \beta_n!} t_1^{\beta_1} \dots t_n^{\beta_n} F_{\beta}, k \in \mathbb{N}.$

(iv) $\forall k \colon P_k \in R[P_1, \dots, P_m] \subseteq R[\{t_i\}_{1 \le i \le n}, \{F_\alpha : |\alpha| \le m\}].$ (v) Thus $\forall |\beta| > m \colon F_\beta$ is a polynomial in F_α -s with $|\alpha| \le m$.

Emmy Noether's Theorem

Theorem (E. Noether, Erlangen, 1915)

Let $G \leq \operatorname{Aut}_R(R[x_1, \ldots, x_n])$ with $|G| < \infty$. Then $R[x_1, \ldots, x_n]^G$ is generated by elements of the form F_{α} , $|\alpha| \leq |G|$. In particular, if the action is linear, then $R[x_1, \ldots, x_n]^G$ is f.g. by elements of degree $\leq |G|$.

Proof.

Let
$$F = \sum_{\beta} c_{\beta} x_1^{\beta_1} \dots x_n^{\beta_n} \in R[x_1, \dots, x_n]^G$$
. Then

$$F = \frac{1}{|G|} \sum_{g \in G} g \cdot F = \frac{1}{|G|} \sum_{g \in G} \sum_{\beta} c_{\beta}g \cdot (x_1^{\beta_1} \dots x_n^{\beta_n}) =$$
$$= \frac{1}{|G|} \sum_{\beta} c_{\beta} \sum_{g \in G} g \cdot (x_1^{\beta_1} \dots x_n^{\beta_n}) = \frac{1}{|G|} \sum_{\beta} c_{\beta}F_{\beta}$$

Second Proof by Commutative Algebra

Two Facts from Commutative Algebra

Let $A, B, C \in \mathsf{CRing}$.

Proposition

Let $A \xrightarrow{\varphi} B$ be a morphism of rings. We have:

 φ integral and of finite type $\Leftrightarrow \varphi$ finite.

Lemma (Artin-Tate)

Let $A \subseteq B \subseteq C$ be ring extensions such that:

(i) A is Noetherian;

(ii) C is a finitely generated A-algebra (i.e. of finite type over A);

(iii) C is a finite B-module ($\Leftrightarrow B \subseteq C$ integral).

Then B too is a finitely generated A-algebra.

Integrality over R^G

Recall:
$$\prod_{k=1}^{n} (t - x_k) = \sum_{k=0}^{n} (-1)^{n-k} e_{n-k}(x_1, \dots, x_n) t^k$$

Now fix:

- ▶ $R \in \mathsf{CRing};$
- $G \coloneqq \{g_1, \ldots, g_n\} \curvearrowright R$, i.e. $G \le \operatorname{Aut}(R)$ finite;
- For $\alpha \in R$ denote $\alpha_k \coloneqq g_k \cdot \alpha$, $1 \le k \le n$.

Lemma

Every $\alpha \in R$ is integral over $R[e_1(\alpha_1, \ldots, \alpha_n), \ldots, e_n(\alpha_1, \ldots, \alpha_n)]$. In particular, $R \supseteq R^G$ is an integral extension.

Proof.

Consider $P_{\alpha}(t) := \prod_{k=1}^{n} (t - \alpha_k)$, which is monic and of degree n = |G|.

Emmy Noether's Theorem

Theorem

Given:

- (i) A a Noetherian ring;
- (ii) $B \supseteq A$ a finitely generated A-algebra;
- (iii) $G \leq \operatorname{Aut}_A(B)$ finite subgroup;

Then B^G too is a finitely generated A-algebra.

Proof.

(i) B f.g. A-algebra
$$\Rightarrow$$
 B f.g. B^G -algebra.

(ii) $B \supseteq B^G$ integral (by prev. Lemma) $\Rightarrow B$ finite B^G -module.

 $\Rightarrow A \subseteq B^G \subseteq B$ is as in Artin-Tate (since A Noetherian).

 $\Rightarrow B^G$ is a f.g. A-algebra.

An Example: $\mathbb{C}[x,y]^{D_{2n}}$

The Action of D_{2n}

 $D_{2n} = \langle \rho, \sigma \mid \rho^n = \sigma^2 = 1, \ \sigma \rho \sigma = \rho^{n-1} \rangle$ - the dihedral group of order 2n (symmetry group of the regular *n*-gon), $n \geq 3$.

 $D_{2n} \curvearrowright \mathbb{R}^2 \cong \mathbb{C}$ via the rotation ρ of a vector (x, y) by $2\pi/n$ and the reflection σ of (x, y) with respect to the x-axis.

 \Rightarrow linear action of D_{2n} on the pair of functionals (x, y).

Want to determine $\mathbb{C}[x,y]^{D_{2n}}$.

Ansatz:

$$\begin{array}{l} \mathbf{D} \quad z \coloneqq x + iy, \ \bar{z} \coloneqq x - iy \Rightarrow \mathbb{C}[x, y] = \mathbb{C}[z, \bar{z}].\\ \mathbf{D} \quad \text{Hence} \ \mathbb{C}[x, y]^{D_{2n}} = \mathbb{C}[z, \bar{z}]^{D_{2n}}.\\ \mathbf{D} \quad \zeta \coloneqq e^{2\pi i/n} \Rightarrow \rho(z) = \zeta z \ \text{and} \ \rho(\bar{z}) = \bar{\zeta} \bar{z} = \zeta^{-1} \bar{z}.\\ \mathbf{D} \quad \sigma(z) = \bar{z} \ \text{and} \ \sigma(\bar{z}) = z.\\ \mathbf{D} \quad f(z, \bar{z}) \in \mathbb{C}[z, \bar{z}]^{D_{2n}} \Leftrightarrow \rho \cdot f = f \ \text{and} \ \sigma \cdot f = f. \end{array}$$

Comparison of Coefficients in Degree d

$$\begin{split} f(z,\bar{z}) \in \mathbb{C}[z,\bar{z}]^{D_{2n}} &\Leftrightarrow f \text{ symmetric and } f(\zeta z,\zeta^{-1}\bar{z}) = f(z,\bar{z}). \\ \text{(i)} \quad d=1: \text{ none, since } a(\zeta z+\zeta^{-1}\bar{z}) \neq a(z+\bar{z}); \\ \text{(ii)} \quad d=2: \ a\zeta z\zeta^{-1}\bar{z} + b(\zeta^2 z^2+\zeta^{-2}\bar{z}^2) \stackrel{?}{=} az\bar{z} + b(z^2+\bar{z}^2) \Rightarrow \\ z\bar{z} = x^2 + y^2 \text{ is the only invariant in degree 2 (up to scaling).} \\ \text{(iii)} \quad \text{More generally for degree } d: \end{split}$$

$$\sum_{\substack{k+\ell=d\\k<\ell}} c_{k\ell} (\zeta^{k-\ell} z^k \bar{z}^\ell + \zeta^{\ell-k} z^\ell \bar{z}^k) \stackrel{?}{=} \sum_{\substack{k+\ell=d\\k<\ell}} c_{k\ell} (z^k \bar{z}^\ell + z^\ell \bar{z}^k)$$

if and only if $c_{k\ell} = 0$ or $n|(\ell - k)$.

(iv) In other words, the invariants are linear combinations of

$$z^{k}\bar{z}^{mn+k} + z^{mn+k}\bar{z}^{k} = (z\bar{z})^{k} ((z^{n})^{m} + (\bar{z}^{n})^{m}) = (z\bar{z})^{k} p_{m}(z^{n}, \bar{z}^{n}),$$

where $k, m \in \mathbb{N}_{0}$.

Recursion for $p_m(z^n, \overline{z}^n)$ and m odd

(v) Next notice that

$$p_m(z^n, \bar{z}^n) = (z^n + \bar{z}^n)^m - \sum_{k=1}^m \binom{m}{k} (z^n)^k (\bar{z}^n)^{m-k} =$$
$$= p_1(z^n, \bar{z}^n)^m - \sum_{\substack{k=1 \\ k \neq 1}}^m \binom{m}{k} (z^k \bar{z}^{m-k})^n$$
$$=:q_m(z, \bar{z})$$

Express $q_m(z, \bar{z})$ in terms of $z\bar{z}$ and $p_j(z^n, \bar{z}^n)$, $1 \le j < m$. (vi) If m is odd, then:

$$q_m(z,\bar{z}) = \sum_{k=1}^{\frac{m-1}{2}} \binom{m}{k} \left((z^k \bar{z}^{m-k})^n + (z^{m-k} \bar{z}^k)^m \right) = \sum_{k=1}^{\frac{m-1}{2}} \binom{m}{k} (z\bar{z})^{kn} p_{m-2k}(z^n, \bar{z}^n).$$

Recursion for $p_m(z^n, \overline{z}^n)$ and m even

(vii) If m is even, then

$$q_m(z,\bar{z}) = \sum_{k=1}^{\frac{m}{2}-1} \binom{m}{k} \left((z^k \bar{z}^{m-k})^n + (z^{m-k} \bar{z}^k)^n \right) + \binom{m}{m/2} (z\bar{z})^{\frac{mn}{2}}$$
$$= \sum_{k=1}^{\frac{m}{2}-1} \binom{m}{k} (z\bar{z})^{kn} p_{m-2k}(z^n, \bar{z}^n) + \binom{m}{m/2} (z\bar{z})^{\frac{mn}{2}}$$

(viii) Thus, every $p_m(z^n, \bar{z}^n)$ can always be expressed via $z\bar{z}$ and $p_1(z^n, \bar{z}^n), \ldots, p_{m-1}(z^n, \bar{z}^n)$. Therefore, we have: $\forall m \in \mathbb{N} \colon p_m(z^n, \bar{z}^n) \in \mathbb{C}[z\bar{z}, p_1(z^n, \bar{z}^n)].$

$$\Rightarrow \mathbb{C}[z,\bar{z}]^{D_{2n}} = \mathbb{C}[z\bar{z},z^n + \bar{z}^n] = \mathbb{C}[|z|^2,\operatorname{Re}(z^n)].$$

Concluding Remarks

Remarks

- (1) Even though we've deviated from the original setting by complexifying the problem, it became easier and we still obtained "real" generators.
- (2) $D_{2n} = \{\rho^k \sigma^\ell : 1 \le k \le n, 1 \le \ell \le 2\}$ as a set \Rightarrow we could've calculated the orbit of each $z^{\alpha} \overline{z}^{\beta}$, $\alpha + \beta \le |D_{2n}| = 2n$, and from there the generic invariants (but didn't).
- (3) In particular, we got away with only 2 generators.
- (4) Noether's bound |G| on the degree of the invariant generators is not always optimal.

Thank You!