Emmy Noether's Theorem on the Finite Generation of Invariants

Marin Genov
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

Algebra \& Logic Seminar, 13. Oct 2023

Outline

Introduction

The Original Proof (Slightly Modified)

Second Proof by Commutative Algebra

An Example: $\mathbb{C}[x, y]^{D_{2 n}}$

Introduction

Problem Setting

Given:

- K a field;
- V a K-vector space, $\operatorname{dim}_{K} V=n<\infty$;
- G a group with $G \curvearrowright V$;

Then:

- $G \curvearrowright V \Leftrightarrow \rho: G \rightarrow \mathrm{GL}(V)$.
- $G \curvearrowright V$ induces $G \curvearrowright V^{*}$ via

$$
\forall \lambda \in V^{*} \forall v \in V:(g \cdot \lambda)(v):=\lambda\left(g^{-1} \cdot v\right) .
$$

- $G \curvearrowright V^{*}$ extends to $G \curvearrowright \mathcal{O}(V)=\operatorname{Sym}\left(V^{*}\right)=K\left[V^{*}\right]$ via

$$
(g \cdot F)(v):=F\left(g^{-1} \cdot v\right)
$$

- $x_{1}, \ldots, x_{n} \in V^{*}$ dual basis $\Rightarrow \mathcal{O}(V)=K\left[x_{1}, \ldots, x_{n}\right]$, hence

$$
\begin{gathered}
G \curvearrowright K\left[x_{1}, \ldots, x_{n}\right] \\
g \cdot P\left(x_{1}, \ldots, x_{n}\right)=P\left(g \cdot x_{1}, \ldots, g \cdot x_{n}\right) .
\end{gathered}
$$

- In other words, $G \leq \operatorname{Aut}_{K}\left(K\left[x_{1}, \ldots, x_{n}\right]\right)$ acting linearly.

One wants to understand $K\left[x_{1}, \ldots, x_{n}\right]^{G}$.

Very Brief History

- Originated in the 19th century with the work of Boole and Cayley on the invariance of algebraic forms under linear transformations.
- Felix Klein's work (19th century) on the invariant rings of finite group actions on \mathbb{C}^{2} lead later to the ADE classification (Arnold,70s) of Du Val singularities (Du Val,30s) (nowadays understood in the framework of McKay correspondence,80s).
- Hilbert discovered the eponymous Basissatz, Nullstellensatz, and Syzygy Theorem while pursuing Invariant Theory.
- Hilbert was mainly interested in the invariants of continuous groups (e.g. GL, SL), whereas Emmy Noether was more interested in the invariants of finite groups.

> This talk is about a theorem of Emmy Noether on $K\left[x_{1}, \ldots, x_{n}\right]^{G}$ (slightly generalized).

The Original Proof (Slightly Modified)

Elementary Symmetric Polynomials \& Newton Functions

Fix $R \in \mathrm{CRing}$ with $R \supseteq \mathbb{Q}$ and $n \in \mathbb{N}$.
$\ln R\left[x_{1}, \ldots, x_{n}\right]$ one defines:

Definition (Elementary Symmetric Polynomials)

$$
\begin{aligned}
e_{0}\left(x_{1}, \ldots, x_{n}\right) & :=1 \\
e_{k}\left(x_{1}, \ldots, x_{n}\right) & :=\sum_{1 \leq j_{1}<\cdots<j_{k} \leq n} x_{j_{1}} \ldots x_{j_{k}}, 1 \leq k \leq n
\end{aligned}
$$

and

Definition (Power Sums / Newton Functions)

$$
p_{k}\left(x_{1}, \ldots, x_{n}\right):=\sum_{i=1}^{n} x_{i}^{k}, k \in \mathbb{N}
$$

Newton's Identities

Proposition (Girard-Newton,1629,1666)

We have

$$
k e_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{k}(-1)^{i-1} p_{i}\left(x_{1}, \ldots, x_{n}\right) e_{k-i}\left(x_{1}, \ldots, x_{n}\right)
$$

for all $1 \leq k \leq n$. (As written, already true in characteristic 0 .)

$$
\Rightarrow e_{k} \text { can be expressed via } p_{i} \text { recursively. }
$$

Example

$$
\begin{aligned}
e_{1} & =p_{1} \\
e_{2} & =\frac{1}{2}\left(p_{1}^{2}-p_{2}\right) \\
e_{3} & =\frac{1}{6}\left(p_{1}^{3}-3 p_{1} p_{2}+p_{3}\right) \text { etc. }
\end{aligned}
$$

A Familiar Example of Invariants

$\mathfrak{S}_{n} \curvearrowright R\left[x_{1}, \ldots, x_{n}\right]$ via permutation of the variables.
Theorem (Fundamental Theorem of Symmetric Polynomials)

$$
R\left[x_{1}, \ldots, x_{n}\right]^{\mathfrak{S}_{n}}=R\left[e_{1}, \ldots, e_{n}\right]
$$

Corollary

$$
R\left[x_{1}, \ldots, x_{n}\right]^{\mathfrak{S}_{n}}=R\left[p_{1}, \ldots, p_{n}\right]
$$

In particular: $\forall N>n: p_{N} \in R\left[p_{1}, \ldots, p_{n}\right]$.

A Lemma

Notation:

- $R \in$ CRing with $R \supseteq \mathbb{Q}$;
- $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$ multi-index, $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$;
- $G \leq \operatorname{Aut}_{R}\left(R\left[x_{1}, \ldots, x_{n}\right]\right)$ finite, e.g. $G=\left\{g_{1}, \ldots, g_{m}\right\}$;

Definition (Generic Invariants)

$$
F_{\alpha}:=\sum_{g \in G} g \cdot\left(x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}\right) \stackrel{\text { def }}{=} \sum_{g \in G}\left(g \cdot x_{1}\right)^{\alpha_{1}} \ldots\left(g \cdot x_{n}\right)^{\alpha_{n}} .
$$

Lemma

$$
\forall \beta \in \mathbb{N}_{0}^{n}: F_{\beta} \in R\left[\left\{F_{\alpha}:|\alpha| \leq m\right\}\right] .
$$

Remark

$$
G \text { is not assumed to act linearly. }
$$

Proof of the Lemma

Proof.

(i) $G \curvearrowright R\left[t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{n}\right]$ via $g \cdot t_{i}=t_{i}, 1 \leq i \leq n$.
(ii) Define $\lambda:=t_{1} x_{1}+\cdots+t_{n} x_{n} \in R\left[t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{n}\right]$.
(iii) Put $P_{k}:=p_{k}\left(g_{1} \cdot \lambda, \ldots, g_{m} \cdot \lambda\right), k \in \mathbb{N}$. Then:

$$
\begin{aligned}
P_{k} & \stackrel{\text { def }}{=} \sum_{g \in G} g \cdot\left(t_{1} x_{1}+\cdots+t_{n} x_{n}\right)^{k}= \\
& =\sum_{g \in G} g \cdot \sum_{|\beta|=k} \frac{k!}{\beta_{1}!\ldots \beta_{n}!} t_{1}^{\beta_{1}} \ldots t_{n}^{\beta_{n}} x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}}= \\
& =\sum_{|\beta|=k} \frac{k!}{\beta_{1}!\ldots \beta_{n}!} t_{1}^{\beta_{1}} \ldots t_{n}^{\beta_{n}} F_{\beta}, k \in \mathbb{N} .
\end{aligned}
$$

(iv) $\forall k: P_{k} \in R\left[P_{1}, \ldots, P_{m}\right] \subseteq R\left[\left\{t_{i}\right\}_{1 \leq i \leq n},\left\{F_{\alpha}:|\alpha| \leq m\right\}\right]$.
(v) Thus $\forall|\beta|>m: F_{\beta}$ is a polynomial in F_{α}-s with $|\alpha| \leq m$.

Emmy Noether's Theorem

Theorem (E. Noether, Erlangen,1915)

Let $G \leq \operatorname{Aut}_{R}\left(R\left[x_{1}, \ldots, x_{n}\right]\right)$ with $|G|<\infty$. Then $R\left[x_{1}, \ldots, x_{n}\right]^{G}$ is generated by elements of the form $F_{\alpha},|\alpha| \leq|G|$. In particular, if the action is linear, then $R\left[x_{1}, \ldots, x_{n}\right]^{G}$ is f.g. by elements of degree $\leq|G|$.

Proof.

Let $F=\sum_{\beta} c_{\beta} x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}} \in R\left[x_{1}, \ldots, x_{n}\right]^{G}$. Then

$$
\begin{aligned}
F & =\frac{1}{|G|} \sum_{g \in G} g \cdot F=\frac{1}{|G|} \sum_{g \in G} \sum_{\beta} c_{\beta} g \cdot\left(x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}}\right)= \\
& =\frac{1}{|G|} \sum_{\beta} c_{\beta} \sum_{g \in G} g \cdot\left(x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}}\right)=\frac{1}{|G|} \sum_{\beta} c_{\beta} F_{\beta}
\end{aligned}
$$

Second Proof by Commutative Algebra

Two Facts from Commutative Algebra

Let $A, B, C \in$ CRing.

Proposition

Let $A \xrightarrow{\varphi} B$ be a morphism of rings. We have:
φ integral and of finite type $\Leftrightarrow \varphi$ finite.

Lemma (Artin-Tate)

Let $A \subseteq B \subseteq C$ be ring extensions such that:
(i) A is Noetherian;
(ii) C is a finitely generated A-algebra (i.e. of finite type over A);
(iii) C is a finite B-module ($\Leftrightarrow B \subseteq C$ integral).

Then B too is a finitely generated A-algebra.

Integrality over R^{G}

Recall: $\prod_{k=1}^{n}\left(t-x_{k}\right)=\sum_{k=0}^{n}(-1)^{n-k} e_{n-k}\left(x_{1}, \ldots, x_{n}\right) t^{k}$

Now fix:

- $R \in$ CRing;
- $G:=\left\{g_{1}, \ldots, g_{n}\right\} \curvearrowright R$, i.e. $G \leq \operatorname{Aut}(R)$ finite;
- For $\alpha \in R$ denote $\alpha_{k}:=g_{k} \cdot \alpha, 1 \leq k \leq n$.

Lemma

Every $\alpha \in R$ is integral over $R\left[e_{1}\left(\alpha_{1}, \ldots, \alpha_{n}\right), \ldots, e_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right]$. In particular, $R \supseteq R^{G}$ is an integral extension.

Proof.

Consider $P_{\alpha}(t):=\prod_{k=1}^{n}\left(t-\alpha_{k}\right)$, which is monic and of degree $n=|G|$.

Emmy Noether's Theorem

Theorem

Given:
(i) A a Noetherian ring;
(ii) $B \supseteq A$ a finitely generated A-algebra;
(iii) $G \leq \operatorname{Aut}_{A}(B)$ finite subgroup;

Then B^{G} too is a finitely generated A-algebra.

Proof.

(i) B f.g. A-algebra $\Rightarrow B$ f.g. B^{G}-algebra.
(ii) $B \supseteq B^{G}$ integral (by prev. Lemma) $\Rightarrow B$ finite B^{G}-module.
$\Rightarrow A \subseteq B^{G} \subseteq B$ is as in Artin-Tate (since A Noetherian). $\Rightarrow B^{G}$ is a f.g. A-algebra.

An Example: $\mathbb{C}[x, y]^{D_{2 n}}$

The Action of $D_{2 n}$

$D_{2 n}=\left\langle\rho, \sigma \mid \rho^{n}=\sigma^{2}=1, \sigma \rho \sigma=\rho^{n-1}\right\rangle$ - the dihedral group of order $2 n$ (symmetry group of the regular n-gon), $n \geq 3$.
$D_{2 n} \curvearrowright \mathbb{R}^{2} \cong \mathbb{C}$ via the rotation ρ of a vector (x, y) by $2 \pi / n$ and the relfection σ of (x, y) with respect to the x-axis.
\Rightarrow linear action of $D_{2 n}$ on the pair of functionals (x, y).

Want to determine $\mathbb{C}[x, y]^{D_{2 n}}$.

Ansatz:

- $z:=x+i y, \bar{z}:=x-i y \Rightarrow \mathbb{C}[x, y]=\mathbb{C}[z, \bar{z}]$.
- Hence $\mathbb{C}[x, y]^{D_{2 n}}=\mathbb{C}[z, \bar{z}]^{D_{2 n}}$.
- $\zeta:=e^{2 \pi i / n} \Rightarrow \rho(z)=\zeta z$ and $\rho(\bar{z})=\bar{\zeta} \bar{z}=\zeta^{-1} \bar{z}$.
- $\sigma(z)=\bar{z}$ and $\sigma(\bar{z})=z$.
- $f(z, \bar{z}) \in \mathbb{C}[z, \bar{z}]^{D_{2 n}} \Leftrightarrow \rho \cdot f=f$ and $\sigma \cdot f=f$.

Comparison of Coefficients in Degree d

$$
f(z, \bar{z}) \in \mathbb{C}[z, \bar{z}]^{D_{2 n}} \Leftrightarrow f \text { symmetric and } f\left(\zeta z, \zeta^{-1} \bar{z}\right)=f(z, \bar{z}) .
$$

(i) $d=1$: none, since $a\left(\zeta z+\zeta^{-1} \bar{z}\right) \neq a(z+\bar{z})$;
(ii) $d=2: a \zeta z \zeta^{-1} \bar{z}+b\left(\zeta^{2} z^{2}+\zeta^{-2} \bar{z}^{2}\right) \stackrel{?}{=} a z \bar{z}+b\left(z^{2}+\bar{z}^{2}\right) \Rightarrow$ $z \bar{z}=x^{2}+y^{2}$ is the only invariant in degree 2 (up to scaling).
(iii) More generally for degree d :

$$
\sum_{\substack{k+\ell=d \\ k<\ell}} c_{k \ell}\left(\zeta^{k-\ell} z^{k} \bar{z}^{\ell}+\zeta^{\ell-k} z^{\ell} \bar{z}^{k}\right) \stackrel{?}{=} \sum_{\substack{k+\ell=d \\ k<\ell}} c_{k \ell}\left(z^{k} \bar{z}^{\ell}+z^{\ell} \bar{z}^{k}\right)
$$

if and only if $c_{k \ell}=0$ or $n \mid(\ell-k)$.
(iv) In other words, the invariants are linear combinations of

$$
z^{k} \bar{z}^{m n+k}+z^{m n+k} \bar{z}^{k}=(z \bar{z})^{k}\left(\left(z^{n}\right)^{m}+\left(\bar{z}^{n}\right)^{m}\right)=(z \bar{z})^{k} p_{m}\left(z^{n}, \bar{z}^{n}\right)
$$

where $k, m \in \mathbb{N}_{0}$.

Recursion for $p_{m}\left(z^{n}, \bar{z}^{n}\right)$ and m odd

(v) Next notice that

$$
\begin{aligned}
p_{m}\left(z^{n}, \bar{z}^{n}\right) & =\left(z^{n}+\bar{z}^{n}\right)^{m}-\sum_{k=1}^{m}\binom{m}{k}\left(z^{n}\right)^{k}\left(\bar{z}^{n}\right)^{m-k}= \\
& =p_{1}\left(z^{n}, \bar{z}^{n}\right)^{m}-\underbrace{\sum_{k=1}^{m}\binom{m}{k}\left(z^{k} \bar{z}^{m-k}\right)^{n}}_{=: q_{m}(z, \bar{z})}
\end{aligned}
$$

Express $q_{m}(z, \bar{z})$ in terms of $z \bar{z}$ and $p_{j}\left(z^{n}, \bar{z}^{n}\right), 1 \leq j<m$. (vi) If m is odd, then:

$$
\begin{aligned}
q_{m}(z, \bar{z}) & =\sum_{k=1}^{\frac{m-1}{2}}\binom{m}{k}\left(\left(z^{k} \bar{z}^{m-k}\right)^{n}+\left(z^{m-k} \bar{z}^{k}\right)^{m}\right)= \\
& =\sum_{k=1}^{\frac{m-1}{2}}\binom{m}{k}(z \bar{z})^{k n} p_{m-2 k}\left(z^{n}, \bar{z}^{n}\right)
\end{aligned}
$$

Recursion for $p_{m}\left(z^{n}, \bar{z}^{n}\right)$ and m even

(vii) If m is even, then

$$
\begin{aligned}
& q_{m}(z, \bar{z})=\sum_{k=1}^{\frac{m}{2}-1}\binom{m}{k}\left(\left(z^{k} \bar{z}^{m-k}\right)^{n}+\left(z^{m-k} \bar{z}^{k}\right)^{n}\right)+\binom{m}{m / 2}(z \bar{z})^{\frac{m n}{2}} \\
& =\sum_{k=1}^{\frac{m}{2}-1}\binom{m}{k}(z \bar{z})^{k n} p_{m-2 k}\left(z^{n}, \bar{z}^{n}\right)+\binom{m}{m / 2}(z \bar{z})^{\frac{m n}{2}}
\end{aligned}
$$

(viii) Thus, every $p_{m}\left(z^{n}, \bar{z}^{n}\right)$ can always be expressed via $z \bar{z}$ and $p_{1}\left(z^{n}, \bar{z}^{n}\right), \ldots, p_{m-1}\left(z^{n}, \bar{z}^{n}\right)$. Therefore, we have:

$$
\forall m \in \mathbb{N}: p_{m}\left(z^{n}, \bar{z}^{n}\right) \in \mathbb{C}\left[z \bar{z}, p_{1}\left(z^{n}, \bar{z}^{n}\right)\right]
$$

$$
\Rightarrow \mathbb{C}[z, \bar{z}]^{D_{2 n}}=\mathbb{C}\left[z \bar{z}, z^{n}+\bar{z}^{n}\right]=\mathbb{C}\left[|z|^{2}, \operatorname{Re}\left(z^{n}\right)\right]
$$

Concluding Remarks

Remarks

(1) Even though we've deviated from the original setting by complexifying the problem, it became easier and we still obtained "real" generators.
(2) $D_{2 n}=\left\{\rho^{k} \sigma^{\ell}: 1 \leq k \leq n, 1 \leq \ell \leq 2\right\}$ as a set \Rightarrow we could've calculated the orbit of each $z^{\alpha} \bar{z}^{\beta}, \alpha+\beta \leq\left|D_{2 n}\right|=2 n$, and from there the generic invariants (but didn't).
(3) In particular, we got away with only 2 generators.
(4) Noether's bound $|G|$ on the degree of the invariant generators is not always optimal.

Thank You!

