A Reduction of Temporary Coalitions in Infinite Multiplayer Games

Dimitar P. Guelev

http://www.www.math.bas.bg/~gelevdp/

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

D. P. Guelev, "Of Temporary Coalitions in Terms of Concurrent Game Models, Announcements, and Temporal Projection", Proceedings of LORI 2023, October 26-29, Jinan, China, LNCS 14329, pp. 126-134, Springer, 2023.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Plan of Talk

Introduction

Preliminaries

Forging coalitions by means of conditional promises

Encoding Negotiation: CGMs with negotiation steps

Promises as Truthful Announcements

Translating Winning Conditions by Temporal Projection

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Summary

Preliminaries: CGMs with incomplete information

 $\Sigma \triangleq \{1, \dots, N\}$ - a set players $AP = \{p, q, \dots\}$ - a set of atomic propositions

 $M \,\hat{=}\, \langle W, W_{I}, \langle Act_{i} : i \in \Sigma \rangle, \langle \sim_{i} : i \in \Sigma \rangle, \langle P_{i} : i \in \Sigma \rangle, o, V \rangle$

・ロト・ 日本・ 日本・ 日本・ 日本・ つくぐ

W - the set of states; $W_I \subseteq W$ - the initial states Act_i - the actions of player $i \in \Sigma$ $\sim_i \subseteq W \times W$ - the indistinguishability relation of player i $P_i: W \to \mathcal{P}(Act_i) \setminus \{\emptyset\}$ - i's protocol $Act_{\Gamma} \triangleq \prod_{i \in \Gamma} Act_i$ $o: W \times Act_{\Sigma} \to W$ - the outcome function $V \subseteq W \times AP$ is the valuation relation

 $P_i(w') = P_i(w'')$ is required, if $w' \sim_i w''$.

Negotiations as Sequences of Conditional Promises

Negotiations are sequences of promises of the form:

 $i \in \Sigma$ promises to choose an action from $B \subset Act_i$, if the players from $\Gamma \subseteq \Sigma \setminus \{i\}$ choose an action profile from $A \subset Act_{\Gamma}$.

(日) (日) (日) (日) (日) (日) (日)

The promise is made known to the members of Γ .

Let
$$\hat{A} \stackrel{c}{=} \bigvee_{a \in A} \bigwedge_{j \in \Gamma} a_j$$
 for $A \subseteq Act_{\Gamma}$.

Then this promise can be written in epistemic logic:

promise<sub>*i*,
$$\Gamma$$</sub>(*A*, *B*) $\stackrel{\circ}{=} C_{\{i\} \cup \Gamma}(K_i \hat{A} \Rightarrow C_{\Gamma} \hat{B})$.

Conditional Promises: Example

 $A, B, C \in \Sigma$ can agree on move $\langle a, b, c \rangle$ using the sequence of promises:

$$A: \ \mathsf{C}_{\{A,B,C\}}(\mathsf{K}_{\mathsf{A}}(b\wedge c)\Rightarrow\mathsf{C}_{\{B,C\}}a)$$

$$B: \mathsf{C}_{\{A,B,C\}} (\mathsf{K}_B c \Rightarrow \mathsf{C}_{\{C,A\}} b)$$

 $C: C_{\{A,B,C\}}c$

 $C_{\{A,B,C\}}(a \wedge b \wedge c)$ is a logical consequence of all the promises:

C's promise can be simplified to $C_{\{A,B,C\}}c$. Similarly *B*'s promise simplifies to $C_{\{A,B,C\}}(K_Bc \Rightarrow C_{\{C,A\}}b)$. *C*'s promise and *B*'s promise imply $C_{\{A,B,C\}}(b \land c)$.

Now $C_{\{A,B,C\}}(a \land b \land c)$ follows from *A*'s promise.

Honorability of Promises

A conjunction of promises s is honorable, if

(1) for every $a \in Act_{\Sigma}$, either $s \wedge C_{\Sigma} \bigwedge_{j \in \Sigma} a_j$ is consistent, or $s \wedge C_{\Sigma}a_i$ is inconsistent for some particular $i \in \Sigma$. and

(2) there exists an
$$a \in Act_{\Sigma}$$
 such that $s \wedge C_{\Sigma} \bigwedge_{i \in \Sigma} a_i$ is consistent.

Condition (2) states that what is promised in *s* is doable.

Condition (1) states that a player can independently assess whether its action is consistent with its promises.

・ロト・日本・日本・日本・日本

We let

 $s \star p \stackrel{\circ}{=} \left\{ egin{array}{cc} s \wedge p, & ext{if } s \wedge p ext{ is honorable;} \\ s, & ext{otherwise.} \end{array}
ight.$

Extending CGMs to Provide a Meaning for Promises

To enable the interpretation of $C_{\{i\}\cup\Gamma}(K_i\hat{A}\Rightarrow C_{\Gamma}\hat{B})$ we

- (1) include all actions in the vocabulary $AP^1 = AP \uplus \bigcup_{i \in \Sigma} Act_i$, and
- (2) extend states to store latest actions.

$$M^{1} \triangleq \langle W^{1}, W^{1}_{i}, \langle Act_{i} : i \in \Sigma \rangle, \langle \sim_{i}^{1} : i \in \Sigma \rangle, \langle P_{i} : i \in \Sigma \rangle, o^{1}, V^{1} \rangle$$

$$W^{1} \stackrel{c}{=} W \times (Act_{\Sigma} \uplus \{*\}), \quad W^{1}_{l} \stackrel{c}{=} W_{l} \times \{*\}$$
$$\langle w', a' \rangle \sim^{1}_{i} \langle w'', a'' \rangle \stackrel{c}{=} w' \sim_{i} w'' \land a'_{i} = a''_{i}$$
$$o^{1}(\langle w, b \rangle, a) \stackrel{c}{=} \langle o(w, a), a \rangle$$
$$V^{1}(\langle w, b \rangle, p) \stackrel{c}{=} V(w, p), \text{ if } p \in AP$$
$$V^{1}(\langle w, b \rangle, a) \stackrel{c}{=} b_{i} = a, \text{ if } a \in Act_{i}$$

Now
$$C_{\{i\}\cup\Gamma}(K_i\hat{A}\Rightarrow C_{\Gamma}\hat{B})$$
 is fulfilled at $\langle w, a \rangle \in W^1$, if
 $M^1, \langle w, a \rangle \models \forall \bigcirc (C_{\{i\}\cup\Gamma}(K_i\hat{A}\Rightarrow C_{\Gamma}\hat{B}))$

CGMs with Negotiation: Negotiation Moves

To incorporate negotiation steps in CGMs, we regard making promises as players' actions; extend states to store promises.

We extend M^1 to

$$\begin{split} \check{M} &\doteq \langle \check{W}, \check{W}_{l}, \langle \check{Act}_{i} : i \in \Sigma \rangle, \langle \check{\sim}_{i} : i \in \Sigma \rangle, \langle \check{P}_{i} : i \in \Sigma \rangle, \check{o}, \check{V} \rangle \\ \mathcal{S}_{i} &\triangleq \{ \mathsf{promise}_{i,\Gamma}(A, B) : \Gamma \subseteq \Sigma \setminus \{i\}, A \subseteq \mathsf{Act}_{\Gamma_{k}}, B \subseteq \mathsf{Act}_{i} \} \\ \mathcal{S}^{\wedge} &\triangleq \{ s_{1} \land \ldots \land s_{k} : s_{1}, \ldots, s_{k} \in \mathcal{S}_{i}, i \in \Sigma \} \\ \check{Act}_{i} &\triangleq \mathsf{Act}_{i} \cup \mathcal{S}_{i}. \end{split}$$

We end up with 2 kinds of moves. Move $a \in Act_{\Sigma} = \prod_{i \in \Sigma} Act_i \cup S_i$ is

```
negotiation - if a_i \in S_i for some i;
implementation, if a_i \in Act_i for all i.
```

CGMs with Negotiation: States and Outcome Function

In $\langle w, a, s \rangle \in \check{W} = W \times Act_{\Sigma} \times S^{\wedge}$:

 $w \in W$ is a state from the given game;

 $a \in Act_{\Sigma}$ is the latest implementation move (as in M^1);

 $\pmb{s} \in \mathcal{S}^{\wedge}$ stands for the promises accumulated

since the last implementation move.

Implementation moves *a* update *w* and reset *s*:

$$\check{o}(\langle w, b, s \rangle, a) = \langle o(w, a), a, p(o(w, a)) \rangle$$

where $p(v) = C_{\Sigma} \bigwedge_{i \in \Sigma} (\bigvee P_i(v) \lor \bigvee S_i)$ -

Negotiation moves update only s.

Let p_1, \ldots, p_K be the promise actions in *a*. Then

$$\check{o}(\langle w, b, s \rangle, a) \,\hat{=}\, \langle w, b, (\dots (s \star p_1) \star \dots \star p_{K-1}) \star p_K \rangle$$

(日) (日) (日) (日) (日) (日) (日)

CGMs with Negotiation

The rest of the components of

$$\check{M} \stackrel{\circ}{=} \langle \check{W}, \check{W}_{l}, \langle \check{Act}_{i} : i \in \Sigma \rangle, \langle \check{\sim}_{i} : i \in \Sigma \rangle, \langle \check{P}_{i} : i \in \Sigma \rangle, \check{o}, \check{V} \rangle$$

are defined as expected:

Let $k_i(s) = \{s' \in S^{\wedge} : \models s \Rightarrow K_i s'\}$ - *i*'s forecast on the next move. Then

$$\begin{split} \check{W}_{l} &\triangleq \{\langle w, *, \mathsf{p}(w) \rangle : w \in W_{l} \} \\ \langle w', a', s' \rangle &\sim_{i} \langle w'', a'', s'' \rangle \triangleq \langle w', a' \rangle \sim_{i}^{1} \langle w'', a'' \rangle \wedge \mathsf{k}_{i}(s') = \mathsf{k}_{i}(s''); \\ \check{P}_{i}(\langle w, a, s \rangle) \triangleq P_{i}(w) \cup \mathcal{S}_{i}; \\ \check{V}(\langle w, a, s \rangle, x) \triangleq V^{1}(\langle w, a \rangle, x), \ x \in AP \bigcup_{i \in \Sigma} Act_{i}. \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Promises as Announcements on Kripke Models

Let $\langle w, a, s \rangle \models \eta$, if $\langle w, a, s \rangle$ is reached by an implementation move in \check{M} . Then the promises from *s* are kept at $\langle w, a, s \rangle$ in \check{M} , if

 $\check{\textit{M}}, \langle \textit{\textit{w}}, \textit{\textit{a}}, \textit{\textit{s}} \rangle \models \forall (\neg \eta \, \mathsf{U} \, \eta \land \textit{\textit{s}})$

This relates the semantics of making promises to announcements.

Given an epistemic model $K \triangleq \langle W, \langle \sim_i : i \in \Sigma \rangle, V \rangle$ and $W' \subseteq W$, let

$$\mathcal{K}|_{\mathcal{W}'} \triangleq \langle \mathcal{W} \cap \mathcal{W}', \langle \sim_i |_{\mathcal{W}' \times \mathcal{W}'} : i \in \Sigma \rangle, \mathcal{V}|_{\mathcal{W}' \times \mathcal{AP}} \rangle$$

$$\llbracket A \rrbracket_{\mathcal{K}} \, \hat{=} \, \{ w \in W : M, w \models A \}$$

Then $K, w \models [A]B$ iff $K|_{\llbracket A \rrbracket_K}, w \models B$

Here $\forall (\neg \eta \cup \eta \land ...)$ plays the role the announcement modality [*s*]. However, the transition relation $R(w, w') \triangleq (\exists a \in \prod_{i \in \Sigma} P_i(w))(w' = o(w, a))$ does not restrict players to honor their promises.

Hence promises from *s* are not guaranteed to be kept at $\langle w, a, s \rangle$ in \check{M} . This can be achieved by appropriately revising players' protocols.

Honest Moves and Honest CGMs

Action $a_i \in Act_i$ is honest at $\langle w, a, s \rangle \in W$ in M, if $s \wedge a_i$ is consistent. Promise $p \in S_i$ is honest at $\langle w, a, s \rangle$, if $s \wedge p$ is honorable and $\not\models s \Rightarrow p$. The condition $\not\models s \Rightarrow p$ guarantees that p has something 'substantial' in it. By restricting protocols, a negotiation CGM can be transformed into a CGM where all moves are honest:

Consider
$$\overline{M} \triangleq \langle \overline{W}, \overline{W}_{I}, \langle A\overline{c}t_{i} : i \in \Sigma \rangle, \langle \overline{\sim}_{i} : i \in \Sigma \rangle, \langle \overline{P}_{i} : i \in \Sigma \rangle, \overline{o}, \overline{V} \rangle$$

 $\overline{P}_{i}(\langle w, b, s \rangle) \triangleq \{a \in P_{i}(w) : \not\models s \Rightarrow K_{i} \neg a\} \cup$
where $\{p \in S_{i} : \not\models s \Rightarrow \neg p, \not\models s \Rightarrow p\}$.

p is honorable p is substantial

The other components of \overline{M} are as in M.

 \overline{M} 's plays are exactly those of M's plays in which promises are kept at all moves and negotiation is always terminates.

Temporal Projection: Translating Winning Conditions

To use \overline{M} , winning conditions $L \subseteq R_M^{\inf}$ must be translated to account of negotiation moves.

In \overline{M} , η can be defined by putting $V(\langle w, a, s \rangle, \eta) \leftrightarrow s \neq p(w)$. Given a play $\mathbf{w} = \langle w^0, *, p(w^0) \rangle \langle w^1, a^1, s^1 \rangle \dots$, let $k_0 < k_1 < \dots$ be the sequence of the positions k in \mathbf{w} such that $\langle w^k, a^k, s^k \rangle \models \neg \eta$. Since infinite negotiation is ruled out in \overline{M} , $k_0 < k_1 < \dots$ is infinite. Furthermore $\mathbf{w}|_{\neg \eta} = \mathbf{w}^{k_0} \mathbf{w}^{k_1} \dots$ is a play in M, except for the additional \overline{M} -specific components of the states involved.

 $\mathbf{w}|_{\neg \eta}$ is obtained from \mathbf{w} by hiding negotiation moves.

Hence the \overline{M} -equivalent \overline{L} of a temporal condition L written for M must satisfy the equivalence:

 $\overline{M}, \mathbf{w} \models \overline{L} \text{ iff } M, \mathbf{w}|_{\neg \eta} \models L$

where the states $\langle w, a, s \rangle$ from $\mathbf{w}|_{\neg \eta}$ are additionally stripped of their *a*- and *s*-components.

Temporal Projection

 $M, \mathbf{w} \models (A \sqcap B) \text{ iff } |\mathbf{w}|_A| = \omega \text{ and } M, \mathbf{w}|_A \models B.$

where $\mathbf{w}|_A$ consists of \mathbf{w} 's states which satisfy A.

 $(. \Pi .)$ is known to be expressible in LTL, propositional ITL, etc. E.g., if

$$B ::= \bot \mid p \mid B \Rightarrow B \mid \bigcirc B \mid (B \cup B)$$

we have

$$\begin{array}{l} (A \sqcap \bot) \Leftrightarrow \bot \qquad (A \sqcap p) \Leftrightarrow (\neg A \cup A \land p) \\ (A \sqcap \circ B) \Leftrightarrow (\neg p \cup p \land \circ (A \sqcap B)) \\ (A \sqcap (B_1 \Rightarrow B_2)) \Leftrightarrow \Box \diamond A \land ((A \sqcap B_1) \Rightarrow (A \sqcap B_2)) \\ (A \sqcap (B_1 \cup B_2)) \Leftrightarrow ((A \sqcap B_1) \cup (A \sqcap B_2)) \end{array}$$

(. П.) was first introduced in

Halpern, Manna and Moszkowski, ICALP 1983

and rediscovered in

Eisner, Fisman, Havlicek, McIsaac and Van Campenhout, ICALP 2003

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Summary

A game on some given CGM M as the arena and L_1, \ldots, L_N as the relevant winning conditions, the analysis of this game with the possibility to have temporary coalitions in account can be reduced to the analysis of the game based on \overline{M} and $\neg \eta \Pi L_1, \ldots, \neg \eta \Pi L_N$.

Assuming temporary coalitions to be formed by the exchange of promises, this is achieved by subsequently extending M to

```
enable specifying promises (M^1),
```

allow inserting negotiation moves (\check{M}) , and

rule out breaking promises and infinite negotiation (\overline{M}).

If the given *M* is finite, then so are M^1 , \check{M} and \bar{M} .

Winning conditions written for M can be translated to apply to \overline{M} too.

The End