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I. Definitions – Algebra

Definition 1

A vector space R is called an algebra over a field K (or a
K -algebra) if R is equipped with a binary operation ∗ (i.e.,
mapping ∗ : (R,R)→ R), called multiplication, such that for any
a, b, c ∈ R and any α ∈ K

(a + b) ∗ c = a ∗ c + b ∗ c ,

a ∗ (b + c) = a ∗ b + a ∗ c ,

α(a ∗ b) = (αa) ∗ b = a ∗ (αb).

Usually, we denote the multiplication of R by · (and write ab
instead of a · b), by ×, etc. Initially we do not require 1 ∈ R, the
associativity of R, etc.
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I. Definitions – Subalgebra & Ideal

The subspace S of the algebra R is called a subalgebra if it is
closed with respect to the multiplication, i.e. s1, s2 ∈ S implies
s1 ∗ s2 ∈ S .

The subalgebra I of R is called a left ideal of R if RI ⊆ I (i.e.,
r ∗ i ∈ I for all r ∈ R, i ∈ I ). Similarly one defines a right ideal
and a two-sided ideal (or simply an ideal) (= left + right ideal in
the same time, notation I / R).
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I. Definitions – Algebra Types & Free Algebras

Definition 2

Let R be an algebra over K .

R is associative if (a ∗ b) ∗ c = a ∗ (b ∗ c) for every a, b, c ∈ R;

R is commutative if a ∗ b = b ∗ a, a, b ∈ R;

R is a Lie algebra if for every a, b, c ∈ R:

a ∗ a = 0, the anticommutative law,

(a ∗ b) ∗ c + (b ∗ c) ∗ a + (c ∗ a) ∗ b = 0, the Jacoby identity.

Definition 3

Let B be a class of algebras and let F ∈ B be an algebra generated
by a set X . The algebra F is called a free algebra in the class B,
freely generated by the set X, if for any algebra R ∈ B, every
mapping X −→ R can be extended to a homomorphism F −→ R.
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I. Defintions – Module of Algebra

Definition 4

Let M be a vector space, let R be an associative algebra and let

ρ : R −→ EndK (M)

be an algebra homomorphism (such that ρ(1) = id). Then ρ is
called a representation of R in M and M is a left R-module.
Similarly one defines a right R-module assuming that the linear
operators of M act from the right.
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I. Definitions – Variety & Subvariety

Definition 5

Let {fi (x1, . . . , xni ) ∈ K 〈X 〉 | i ∈ I} be a set of polynomials in the
free associative algebra K 〈X 〉. The class B of all associative
algebras satisfying the polynomial identities fi = 0, i ∈ I , is called
the variety (of associative algebras) defined (or determined) by the
system of polynomial identities {fi | i ∈ I}. The variety W is
called a subvariety of B if W ⊆ B.

For a background on varieties of algebras see e.g.

V. Drensky, Free Algebras and PI-Algebras, Graduate Course
in Algebra, Springer-Verlag Singapore, 1999.

Y. Bahturin, Identical Relations in Lie Algebras, 2nd edition,
De Gruyter Expositions in Mathematics 68. Berlin: De
Gruyter, 2021.
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I. Definitions – Hilbert (Poincaré) Series

A Hilbert (or Poincaré) series of a graded vector space
W =

∑
i≥0

W (i) with finite dimensional homogeneous components

W (i) (where dimW (i) < +∞) is the formal power series

H(W , t) = Hilb(W , t) =
∑
i≥0

dim(W (i))t i .
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I. Defintions – Commutator Ideal

Definition 6

The commutator ideal F ′ of the algebra F is given by
F ′ = F [F ,F ]F and its elements are of the form∑

αabcx
a1
1 · · · x

am
m [xb1 , xb2 ]xc11 · · · x

cm
m , αabc ∈ K

where all x ’s for each aj , bk and cj (k = 1, 2 and j = 1, . . . ,m)
belong to the algebra F .
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II. Introduction – Classical Commutative Invariant Theory

Let K be a field of characteristic 0. We consider the case K = C
although the results can be restated for any K of characteristic 0.

In classical commutative invariant theory the general linear group
GLd(C) acts on the d-dimensional complex vector space Vd with
basis {v1, . . . , vd} and this action induces an action on the algebra
of polynomial functions C[Xd ] = C[x1, . . . , xd ].
For a subgroup G of GLd(C) the algebra of G -invariants C[Xd ]G

consists of all polynomials which are fixed under the action of G .

B. Kostadinov Noncommutative Invariants of Dihedral Groups



12/ 35

II. Introduction – Noncommutative Invariant Theory

In one of the main branches of noncommutative invariant theory
one replaces the algebra C[Xd ] with an algebra which shares some
of the important properties of C[Xd ]. Among the candidates for
such an algebra are the free associative algebra
C〈Xd〉 = C〈x1, . . . , xd〉, the free Lie algebra Ld or the d-generated
relatively free algebra of a variety of (associative, Lie, Jordan or
other nonassociative) algebras, d ≥ 2. In this case it is more
convenient to assume that GLd(C) acts directly on the vector
space CXd with basis Xd instead of on Vd .

Going back to classical invariant theory this means that GLd(C)
acts on the symmetric algebra S(Xd) of CXd instead on the
algebra of polynomial functions C[Xd ].
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II. Introduction – Varieties of Associative Algebras

Let V be a variety of unitary associative algebras over a field K of
characteristic 0 and let Ad(V) be the relatively free algebra of V
freely generated by Xd , d ≥ 2. The general linear group GLd(K )
acts canonically on the vector space KXd and this action is
extended diagonally on the whole algebra Ad(V):

g(f (x1, . . . , xd)) = f (g(x1), . . . , g(xd)), f ∈ Ad(V), g ∈ GLd(K ).

For a subgroup G of GLd(K ) the algebra of G -invariants is

Ad(V)G = {f (Xd) ∈ Ad(V) | g(f (Xd)) = f (Xd) for all g ∈ G}.

B. Kostadinov Noncommutative Invariants of Dihedral Groups



14/ 35

II. Introduction – Varieties of Assoc. Algebras (continued)

Theorem 7

Let V be a variety of unitary associative algebras. The following
conditions on V are equivalent. If some of them is satisfied for
some d0 ≥ 2, then all of them hold for all d ≥ 2:
(i) The algebra Ad(V)G is finitely generated for every finite
subgroup G of GLd(K ).
(ii) The variety V satisfies the polynomial identity

[x1, x2, . . . , x2]xn3 [x4, x5, . . . , x5] = 0

for sufficiently long commutators and n large enough.

The commutator of z1 and z2 is [z1, z2] = z1z2 − z2z1 = z1 ad(z2)
and the longer commutators are left normed:

[z1, . . . , zn−1, zn] = [[z1, . . . , zn−1], zn], n ≥ 3.
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II. Introduction – Varieties of Lie Algebras

Definition 8

[[x1, x2], [x3, x4]] = 0 (the metabelian identity),

where x1, x2, x3 and x4 are algebra elements.

Definition 9

The metabelian variety of Lie algebras A2 is defined by the
polynomial identity [[x1, x2], [x3, x4]] = 0.

Since the free metabelian Lie algebra Ld(A2) is naturally
embedded into the free metabelian associative algebra Ad(M),
when K = C the results for the algebra of invariants A2(M)D2n

allow easily to obtain a minimal set of generators of L′2(A2)D2n as a
C[x , y ]D2n -module. As in the associative case, we compute the
Hilbert series of the algebra L2(A2)D2n .
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III. Preliminaries – Endlichkeitssatz of Emmy Noether

Theorem 10

For any finite subgroups G of GLd(C) the algebra of invariants
C[Xd ]G is finitely generated and has a homogeneous system of
generators of degree ≤ |G |.

E. Noether, Der Endlichkeitssatz der Invarianten endlicher
Gruppen, Math. Ann. 77 (1916), 89-92. Reprinted in
“Gesammelte Abhandlungen. Collected Papers”,
Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983,
181-184.
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III. Preliminaries – Basissatz of Hilbert

Theorem 11

Every ideal of K [Xd ] is finitely generated.

D. Hilbert, Über die Theorie der algebraischen Formen, Math.
Ann. 36 (1890), 473-534; reprinted in “Gesammelte
Abhandlungen, Band II, Algebra, Invariantentheorie,
Geometrie”, Zweite Auflage, Springer-Verlag,
Berlin-Heidelberg- New York, 1970, 199-257.
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III. Preliminaries – The Molien formula

The Molien formula gives the Hilbert series of the algebra of
invariants of the finite subgroup G of GLd(K ):

H
(
K [Xd ]G , t

)
=

1

|G |
∑
g∈G

1

det(1− gt)
.

T. Molien, Über die Invarianten der linearen
Substitutionsgruppen, Sitz. König Preuss. Akad. Wiss
(1897), No. 52, 1152-1156.
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III. Preliminaries – Generalisation of The Molien formula

A generalisation of the Molien formula is established by Formanek.

Theorem 12

Let G be a finite subgroup of GLd(K ) and let ξ1(g), . . . , ξd(g) be
the eigenvalues of g ∈ G . If B is a variety of algebras and
H(Fd(B), t1, · · · , td) is the Hilbert series of Fd(B) considered as a
Zd -graded vector space, then the Hilbert series of the algebra
Fd(B)G is

H
(
Fd(B)G , t

)
=

1

|G |
∑
g∈G

H(Fd(B), ξ1(g)t, . . . , ξd(g)t).

Formanek, E.: Noncommutative invariant theory. In:
Montgomery, S. (ed.) Group Actions on Rings. Contemp.
Math. 43, 87119. American Mathematical Society,
Providence (1985).
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III. Preliminaries – Theorem of Chevalley-Shephard-Todd

An element g ∈ GLd(C) of finite order is a (pseudo) reflection if it
has an eigenvalue 1 of multiplicity d − 1 and another eigenvalue of
multiplicity 1 which is a root of unity. The group G < GLd(C) is
called a reflection group if it is generated by reflections.

Theorem 13

The following properties of the finite subgroup G of GLd(C) are
equivalent:

1 G is a finite reflection group;

2 C[Xd ] is a free graded module over C[Xd ]G with a finite basis;

3 C[Xd ]G is generated by d algebraically independent
homogeneous elements.

T.A. Springer, Invariant Theory, Lect. Notes in Math. 585,
Springer-Verlag, Berlin–Heidelberg–New York, 1977.
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III. Preliminaries – “Stronger” Theorem of
Chevalley-Shephard-Todd

For our purposes we need a form of the Chevalley-Shephard-Todd
theorem that is stronger than the one in the original papers:

C. Chevalley, Invariants of finite groups generated by
reflections, Amer. J. Math. 67 (1955), 778-782.

G.C. Shephard, J.A. Todd, Finite unitary reflection groups,
Canad. J. Math. 6 (1954), 274-304.
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III. Preliminaries – “Stronger” Theorem of
Chevalley-Shephard-Todd (continued)

Corollary 14

Let G be a reflection group and let C[Xd ]G = C[f1, . . . , fn], where
fi is homogeneous of degree di . Then up to order the integers di
are uniquely determined by G . The order |G | of G is equal to
n∏

i=1
di and the number of reflections in G is equal to

n∑
i=1

(di − 1).

T.A. Springer, Invariant Theory, Lect. Notes in Math. 585,
Springer-Verlag, Berlin–Heidelberg–New York, 1977.
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III. Preliminaries – Dihedral Groups

Proposition 1

If G is a reflection group then the free C[Xd ]G -module C[Xd ] is
freely generated by |G | homogeneous elements.

J.E. Humphreys, Reflection Groups and Coxeter Groups,
Cambridge Studies in Advanced Mathematics, 29, Cambridge,
Cambridge University Press, 1992.

The dihedral group D2n, n ≥ 3, acts on the two dimensional real
vector space xOy as the group of symmetries of the regular n-gon.

It is generated by a rotation by angle
2π

n
around the origin and a

reflection with respect to the axis Ox .
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III. Preliminaries – Change of Var.’s & Dihedral Invariants

We change the coordinate system, as introduced by Riemann:

u = x + iy , v = x − iy .

Then D2n is generated by the rotation ρ : u −→ ξu, v −→ ξ̄u,

where ξ = e
2πi
n , and the reflection τ : u ←→ v .

Proposition 2

The algebra of invariants C[u, v ]D2n is generated by uv and
un + vn.

Proposition 3

The polynomial algebra C[u, v ] is a free C[u, v ]D2n -module with
free generators

W = (1, u, u2, . . . , un, v , v2, . . . , vn−1).
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III. Preliminaries – Action on C[u1, v1, u2, v2]

Due to the algebra isomorphism below the next corollary follows

C[u1, v1, u2, v2] ∼= C[u1, v1]⊗C C[u2, v2].

Corollary 15

Let D2n act on C[u1, v1] and C[u2, v2] in the same way as on
C[u, v ]. Then C[u1, v1, u2, v2] is a free
C[u1, v1]D2n ⊗C C[u2, v2]D2n -module freely generated by

ua1u
c
2 , u

a
1v

d
2 , v

b
1 u

c
2 , v

b
1 v

d
2 , 0 ≤ a, c ≤ n, 1 ≤ b, d ≤ n − 1.
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III. Preliminaries – Properties of Free Associative
Metabelian Algebra

Proposition 4

The free metabelian algebra Ad(M) has a basis consisting of all

xa11 , . . . , x
ad
d , xa11 · · · x

ad
d [xi1 , . . . , xin ],

where
a1, . . . , ad ≥ 0, i1 > i2 ≤ · · · ≤ in.

It satisfies the identities

xϕ(1) · · · xϕ(m)[xm+1, xm+2, xψ(m+3), . . . , xψ(m+n)]

= x1 · · · xm[xm+1, xm+2, xm+3, . . . , xm+n], m ≥ 0, n ≥ 3,

where ϕ and ψ are permutations of {1, . . . ,m} and
{m + 3, . . . ,m + n}, respectively.
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III. Preliminaries – Associative Case with Rank 2

Corollary 16

(i) In the special case of d = 2 the algebra A2(M) has a basis with
respect to the set {u, v}

u, v , uavb[v , u]ucvd , a, b, c , d ≥ 0.

(ii) The commutator ideal A′2(M) is a free C[u1, v1, u2, v2]-module
generated by [v , u], where C[u1, v1] and C[u2, v2] act on A′2(M) by
multiplication by u and v from the left and the right, respectively.
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III. Preliminaries – Properties of Free Metabelian Lie
Algebras

As in the associative case, the structure of free metabelian Lie
algebra Ld(A2) is also well known. It has a basis

x1, . . . , xd , [xi1 , . . . , xin ], i1 > i2 ≤ · · · ≤ in.

Clearly, Ld(A2) may be considered as the Lie subalgebra of Ad(M)
generated with respect to the commutator operation by x1, . . . , xd .
In the special case d = 2 the basis of L2(A2) consists of

u, v , [v , u]ada(u)adb(v), a, b ≥ 0,

and L′d(A2) is a free C[u, v ]-module generated by [v , u] with
respect to the action

f (u, v) : w −→ wf (ad(u), ad(v)), w ∈ L′d(A2), f (u, v) ∈ C[u, v ].
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IV. Main Results – Associative Case: Basis of A′2 as
Module of Dihedral Invariants

Let us define an isomorphism of C[u1, v1, u2, v2]-modules

ν : A′2(M) −→ C[u1, v1, u2, v2] by ν(uavb[v , u]ucvd) = ua1v
b
1 u

c
2v

d
2 .

Proposition 5

Let D2n act on C[u1, v1] and C[u2, v2] in the same way as on
C[u, v ]. Then A′2(M) is a free C[u1, v1]D2n ⊗C C[u2, v2]D2n -module
freely generated by

ua[v , u]uc , ua[v , u]vd , vb[v , u]uc , vb[v , u]vd ,

0 ≤ a, c ≤ n, 1 ≤ b, d ≤ n − 1.
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Proposition 6

(i) A polynomial f (u, v) ∈ A′2(M) belongs to A′2(M)D2n iff it is
fixed under the rotation % and reflection τ which generate D2n, i.e.

f (ξu, ξ̄v) = f (u, v), f (v , u) = f (u, v), where ξ = e
2πi
n .

The polynomial h(u1, v1, u2, v2) = ν(f (u, v)) ∈ C[u1, v1, u2, v2]
belongs to C[u1, v1, u2, v2]D2n iff

%(h(u1, v1, u2, v2)) = h(ξu1, ξ̄v1, ξu2, ξ̄v2) = h(u1, v1, u2, v2),

τ(h(u1, v1, u2, v2)) = h(v1, u1, v2, u2) = −h(u1, v1, u2, v2).

(ii) The C[u1, v1]D2n ⊗C C[u2, v2]D2n -module A′2(M)D2n is free with
a set of free generators

ua[v , u]un−a−va[v , u]vn−a, a = 0, 1, . . . , n, un[v , u]un−vn[v , u]vn,

ua[v , u]va − va[v , u]ua, a = 1, . . . , n − 1.
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IV. Main Results – Associative Case: Invariants

Theorem 17

(i) For n ≥ 3 the algebra A2(M)D2n is generated by uv + vu,
un + vn and

ua[v , u]un−a−va[v , u]vn−a, a = 0, 1, . . . , n, un[v , u]un−vn[v , u]vn,

ua[v , u]va − va[v , u]ua, a = 1, . . . , n − 1.

(ii) The Hilbert series of A2(M)D2n is

H(A2(M)D2n , t) =
1

(1− t2)(1− tn)

+
1

(1− t2)2(1− tn)2

(
(n + 1)tn+2 +

t4(1− t2n)

1− t2

)
.
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IV. Main Results – Associative Case: Generating Set of
A2(M)D2n

Remark 1

The generating set of the algebra A2(M)D2n is not minimal
because the commutator [uv + vu, un + vn] is of degree n + 2 and
can be expressed as a linear combination of the n + 1 generators

ua[v , u]un−a − va[v , u]vn−a, a = 0, 1, . . . , n.

It is easy to see that if we remove one of these generators, we shall
obtain a minimal generating set of the algebra A2(M)D2n .
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IV. Main Results – Lie Case: Basis of L′2 as a Module of
Dihedral Invariants

In the Lie case our considerations are similar, but are much simpler
because the commutator ideal L′2(A2) is a free C[u, v ]-module
generated by [v , u] and hence we obtain the following Proposition.

Proposition 7

The commutator ideal L′2(A2) is a free C[u, v ]D2n -module freely
generated by

[v , u]ada(u), a = 0, 1, . . . , n, [v , u]adb(v), b = 1, . . . , n − 1.
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IV. Main Results – Lie Case: Invariants

Theorem 18

(i) The C[u, v ]D2n -module L′2(A2)D2n is freely generated by

[v , u](adn(u)− adn(v)).

(ii) The Hilbert series of L2(A2)D2n is

H(L2(A2)D2n , t) =
tn+2

(1− t2)(1− tn)
.
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