Noncommutative Invariants of Dihedral Groups

Boyan Kostadinov Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

Joint work with Vesselin Drensky

Algebra and Logic Seminar (Sofia, Bulgaria, 17th November 2023)

1/35

The speaker is supported by National Programme "Young Scientists and Post Doctoral Researchers – 2" of the Ministry of Education and Science of Republic of Bulgaria and partially supported by the Bulgarian National Science Foundation, contract KP-06 N 32/1.

Based on the paper

 Vesselin Drensky, Boyan Kostadinov, Noncommutative invariants of dihedral groups, arXiv: 2311.09380 [math.RA].

- I. Definitions
- II. Introduction
- III. Preliminaries
- IV. Main Results

Definition 1

A vector space R is called an *algebra* over a field K (or a *K-algebra*) if R is equipped with a binary operation * (i.e., mapping $* : (R, R) \rightarrow R$), called *multiplication*, such that for any $a, b, c \in R$ and any $\alpha \in K$

(a+b)*c = a*c + b*c,

a*(b+c) = a*b+a*c,

 $\alpha(\mathbf{a} \ast \mathbf{b}) = (\alpha \mathbf{a}) \ast \mathbf{b} = \mathbf{a} \ast (\alpha \mathbf{b}).$

Usually, we denote the multiplication of R by \cdot (and write ab instead of $a \cdot b$), by \times , etc. Initially we do not require $1 \in R$, the associativity of R, etc.

The subspace S of the algebra R is called a *subalgebra* if it is closed with respect to the multiplication, i.e. $s_1, s_2 \in S$ implies $s_1 * s_2 \in S$.

The subalgebra I of R is called a *left ideal* of R if $RI \subseteq I$ (i.e., $r * i \in I$ for all $r \in R$, $i \in I$). Similarly one defines a *right ideal* and a *two-sided ideal* (or simply an *ideal*) (= left + right ideal in the same time, notation $I \triangleleft R$).

I. Definitions – Algebra Types & Free Algebras

Definition 2

Let R be an algebra over K.

- *R* is associative if (a ∗ b) ∗ c = a ∗ (b ∗ c) for every a, b, c ∈ R;
- R is commutative if a * b = b * a, $a, b \in R$;
- *R* is a *Lie algebra* if for every $a, b, c \in R$:

a * a = 0, the anticommutative law,

(a * b) * c + (b * c) * a + (c * a) * b = 0, the Jacoby identity.

Definition 3

Let \mathfrak{B} be a class of algebras and let $F \in \mathfrak{B}$ be an algebra generated by a set X. The algebra F is called a *free algebra in the class* \mathfrak{B} , *freely generated by the set* X, if for any algebra $R \in \mathfrak{B}$, every mapping $X \longrightarrow R$ can be extended to a homomorphism $F \longrightarrow R$.

Definition 4

Let M be a vector space, let R be an associative algebra and let

 $\rho: R \longrightarrow \operatorname{End}_{K}(M)$

be an algebra homomorphism (such that $\rho(1) = id$). Then ρ is called a *representation of R in M* and *M* is a *left R-module*. Similarly one defines a *right R-module* assuming that the linear operators of *M* act from the right.

Definition 5

Let $\{f_i(x_1, \ldots, x_{n_i}) \in K\langle X \rangle \mid i \in I\}$ be a set of polynomials in the free associative algebra $K\langle X \rangle$. The class \mathfrak{B} of all associative algebras satisfying the polynomial identities $f_i = 0, i \in I$, is called the variety (of associative algebras) defined (or determined) by the system of polynomial identities $\{f_i \mid i \in I\}$. The variety \mathfrak{W} is called a subvariety of \mathfrak{B} if $\mathfrak{W} \subseteq \mathfrak{B}$.

For a background on varieties of algebras see e.g.

- V. Drensky, Free Algebras and PI-Algebras, Graduate Course in Algebra, Springer-Verlag Singapore, 1999.
- Y. Bahturin, Identical Relations in Lie Algebras, 2nd edition, De Gruyter Expositions in Mathematics 68. Berlin: De Gruyter, 2021.

A Hilbert (or Poincaré) series of a graded vector space $W = \sum_{i \ge 0} W^{(i)}$ with finite dimensional homogeneous components $W^{(i)}$ (where dim $W^{(i)} < +\infty$) is the formal power series $H(W, t) = \text{Hilb}(W, t) = \sum \dim(W^{(i)})t^{i}$.

i > 0

Definition 6

The commutator ideal F' of the algebra F is given by F' = F[F, F]F and its elements are of the form

$$\sum \alpha_{abc} x_1^{a_1} \cdots x_m^{a_m} [x_{b_1}, x_{b_2}] x_1^{c_1} \cdots x_m^{c_m}, \ \alpha_{abc} \in K$$

where all x's for each a_j , b_k and c_j (k = 1, 2 and j = 1, ..., m) belong to the algebra F.

Let K be a field of characteristic 0. We consider the case $K = \mathbb{C}$ although the results can be restated for any K of characteristic 0.

In classical commutative invariant theory the general linear group $GL_d(\mathbb{C})$ acts on the *d*-dimensional complex vector space V_d with basis $\{v_1, \ldots, v_d\}$ and this action induces an action on the algebra of polynomial functions $\mathbb{C}[X_d] = \mathbb{C}[x_1, \ldots, x_d]$. For a subgroup *G* of $GL_d(\mathbb{C})$ the algebra of *G*-invariants $\mathbb{C}[X_d]^G$ consists of all polynomials which are fixed under the action of *G*. In one of the main branches of noncommutative invariant theory one replaces the algebra $\mathbb{C}[X_d]$ with an algebra which shares some of the important properties of $\mathbb{C}[X_d]$. Among the candidates for such an algebra are the free associative algebra $\mathbb{C}\langle X_d \rangle = \mathbb{C}\langle x_1, \ldots, x_d \rangle$, the free Lie algebra L_d or the *d*-generated relatively free algebra of a variety of (associative, Lie, Jordan or other nonassociative) algebras, $d \ge 2$. In this case it is more convenient to assume that $GL_d(\mathbb{C})$ acts directly on the vector space $\mathbb{C}X_d$ with basis X_d instead of on V_d .

Going back to classical invariant theory this means that $GL_d(\mathbb{C})$ acts on the symmetric algebra $S(X_d)$ of $\mathbb{C}X_d$ instead on the algebra of polynomial functions $\mathbb{C}[X_d]$.

Let \mathfrak{V} be a variety of unitary associative algebras over a field K of characteristic 0 and let $A_d(\mathfrak{V})$ be the relatively free algebra of \mathfrak{V} freely generated by X_d , $d \ge 2$. The general linear group $GL_d(K)$ acts canonically on the vector space KX_d and this action is extended diagonally on the whole algebra $A_d(\mathfrak{V})$:

$$g(f(x_1,\ldots,x_d)) = f(g(x_1),\ldots,g(x_d)), f \in A_d(\mathfrak{V}), g \in GL_d(K).$$

For a subgroup G of $GL_d(K)$ the algebra of G-invariants is

$$A_d(\mathfrak{V})^G = \{f(X_d) \in A_d(\mathfrak{V}) \mid g(f(X_d)) = f(X_d) \text{ for all } g \in G\}.$$

II. Introduction – Varieties of Assoc. Algebras (continued)

Theorem 7

Let \mathfrak{V} be a variety of unitary associative algebras. The following conditions on \mathfrak{V} are equivalent. If some of them is satisfied for some $d_0 \geq 2$, then all of them hold for all $d \geq 2$: (i) The algebra $A_d(\mathfrak{V})^G$ is finitely generated for every finite subgroup G of $GL_d(K)$. (ii) The variety \mathfrak{V} satisfies the polynomial identity

$$[x_1, x_2, \ldots, x_2] x_3^n [x_4, x_5, \ldots, x_5] = 0$$

for sufficiently long commutators and n large enough.

The commutator of z_1 and z_2 is $[z_1, z_2] = z_1z_2 - z_2z_1 = z_1 \operatorname{ad}(z_2)$ and the longer commutators are left normed:

$$[z_1,\ldots,z_{n-1},z_n] = [[z_1,\ldots,z_{n-1}],z_n], n \geq 3.$$

14/35

II. Introduction – Varieties of Lie Algebras

Definition 8

 $[[x_1, x_2], [x_3, x_4]] = 0$ (the metabelian identity),

where x_1, x_2, x_3 and x_4 are algebra elements.

Definition 9

The metabelian variety of Lie algebras \mathfrak{A}^2 is defined by the polynomial identity $[[x_1, x_2], [x_3, x_4]] = 0$.

Since the free metabelian Lie algebra $L_d(\mathfrak{A}^2)$ is naturally embedded into the free metabelian associative algebra $A_d(\mathfrak{M})$, when $K = \mathbb{C}$ the results for the algebra of invariants $A_2(\mathfrak{M})^{D_{2n}}$ allow easily to obtain a minimal set of generators of $L'_2(\mathfrak{A}^2)^{D_{2n}}$ as a $\mathbb{C}[x, y]^{D_{2n}}$ -module. As in the associative case, we compute the Hilbert series of the algebra $L_2(\mathfrak{A}^2)^{D_{2n}}$.

5/35

Theorem 10

For any finite subgroups G of $GL_d(\mathbb{C})$ the algebra of invariants $\mathbb{C}[X_d]^G$ is finitely generated and has a homogeneous system of generators of degree $\leq |G|$.

 E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77 (1916), 89-92. Reprinted in "Gesammelte Abhandlungen. Collected Papers", Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983, 181-184.

Theorem 11

Every ideal of $K[X_d]$ is finitely generated.

 D. Hilbert, Über die Theorie der algebraischen Formen, Math. Ann. 36 (1890), 473-534; reprinted in "Gesammelte Abhandlungen, Band II, Algebra, Invariantentheorie, Geometrie", Zweite Auflage, Springer-Verlag, Berlin-Heidelberg- New York, 1970, 199-257. The Molien formula gives the Hilbert series of the algebra of invariants of the finite subgroup G of $GL_d(K)$:

$$H\left(K[X_d]^G, t\right) = rac{1}{|G|} \sum_{g \in G} rac{1}{det(1-gt)}.$$

 T. Molien, Über die Invarianten der linearen Substitutionsgruppen, Sitz. König Preuss. Akad. Wiss (1897), No. 52, 1152-1156.

III. Preliminaries – Generalisation of The Molien formula

A generalisation of the Molien formula is established by Formanek.

Theorem 12

Let G be a finite subgroup of $GL_d(K)$ and let $\xi_1(g), \ldots, \xi_d(g)$ be the eigenvalues of $g \in G$. If \mathfrak{B} is a variety of algebras and $H(F_d(\mathfrak{B}), t_1, \cdots, t_d)$ is the Hilbert series of $F_d(\mathfrak{B})$ considered as a \mathbb{Z}^d -graded vector space, then the Hilbert series of the algebra $F_d(\mathfrak{B})^G$ is

$$H\left(F_d(\mathfrak{B})^G,t\right)=rac{1}{|G|}\sum_{g\in G}H(F_d(\mathfrak{B}),\xi_1(g)t,\ldots,\xi_d(g)t).$$

 Formanek, E.: Noncommutative invariant theory. In: Montgomery, S. (ed.) Group Actions on Rings. Contemp. Math. 43, 87119. American Mathematical Society, Providence (1985).

9/35

III. Preliminaries – Theorem of Chevalley-Shephard-Todd

An element $g \in GL_d(\mathbb{C})$ of finite order is a (pseudo) reflection if it has an eigenvalue 1 of multiplicity d-1 and another eigenvalue of multiplicity 1 which is a root of unity. The group $G < GL_d(\mathbb{C})$ is called a reflection group if it is generated by reflections.

Theorem 13

The following properties of the finite subgroup G of $GL_d(\mathbb{C})$ are equivalent:

- G is a finite reflection group;
- **2** $\mathbb{C}[X_d]$ is a free graded module over $\mathbb{C}[X_d]^G$ with a finite basis;
- C[X_d]^G is generated by d algebraically independent homogeneous elements.
 - T.A. Springer, Invariant Theory, Lect. Notes in Math. 585, Springer-Verlag, Berlin-Heidelberg-New York, 1977.

For our purposes we need a form of the Chevalley-Shephard-Todd theorem that is stronger than the one in the original papers:

- C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 67 (1955), 778-782.
- G.C. Shephard, J.A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304.

III. Preliminaries – "Stronger" Theorem of Chevalley-Shephard-Todd (continued)

Corollary 14

Let G be a reflection group and let $\mathbb{C}[X_d]^G = \mathbb{C}[f_1, \ldots, f_n]$, where f_i is homogeneous of degree d_i . Then up to order the integers d_i are uniquely determined by G. The order |G| of G is equal to $\prod_{i=1}^n d_i$ and the number of reflections in G is equal to $\sum_{i=1}^n (d_i - 1)$.

• T.A. Springer, Invariant Theory, Lect. Notes in Math. 585, Springer-Verlag, Berlin-Heidelberg-New York, 1977.

Proposition 1

If G is a reflection group then the free $\mathbb{C}[X_d]^G$ -module $\mathbb{C}[X_d]$ is freely generated by |G| homogeneous elements.

• J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge, Cambridge University Press, 1992.

The dihedral group D_{2n} , $n \ge 3$, acts on the two dimensional real vector space xOy as the group of symmetries of the regular *n*-gon. It is generated by a rotation by angle $\frac{2\pi}{n}$ around the origin and a reflection with respect to the axis Ox.

III. Preliminaries – Change of Var.'s & Dihedral Invariants

We change the coordinate system, as introduced by Riemann:

$$u=x+iy, v=x-iy.$$

Then D_{2n} is generated by the rotation $\rho: u \longrightarrow \xi u, v \longrightarrow \overline{\xi} u$, where $\xi = e^{\frac{2\pi i}{n}}$, and the reflection $\tau: u \longleftrightarrow v$.

Proposition 2

The algebra of invariants $\mathbb{C}[u, v]^{D_{2n}}$ is generated by uv and $u^n + v^n$.

Proposition 3

The polynomial algebra $\mathbb{C}[u, v]$ is a free $\mathbb{C}[u, v]^{D_{2n}}$ -module with free generators

$$W = (1, u, u^2, \dots, u^n, v, v^2, \dots, v^{n-1}).$$

Due to the algebra isomorphism below the next corollary follows

 $\mathbb{C}[u_1, v_1, u_2, v_2] \cong \mathbb{C}[u_1, v_1] \otimes_{\mathbb{C}} \mathbb{C}[u_2, v_2].$

Corollary 15

Let D_{2n} act on $\mathbb{C}[u_1, v_1]$ and $\mathbb{C}[u_2, v_2]$ in the same way as on $\mathbb{C}[u, v]$. Then $\mathbb{C}[u_1, v_1, u_2, v_2]$ is a free $\mathbb{C}[u_1, v_1]^{D_{2n}} \otimes_{\mathbb{C}} \mathbb{C}[u_2, v_2]^{D_{2n}}$ -module freely generated by

 $u_1^a u_2^c, u_1^a v_2^d, v_1^b u_2^c, v_1^b v_2^d, 0 \le a, c \le n, 1 \le b, d \le n-1.$

III. Preliminaries – Properties of Free Associative Metabelian Algebra

Proposition 4

The free metabelian algebra $A_d(\mathfrak{M})$ has a basis consisting of all

$$x_1^{a_1}, \ldots, x_d^{a_d}, x_1^{a_1} \cdots x_d^{a_d}[x_{i_1}, \ldots, x_{i_n}],$$

where

W

$$a_1,\ldots,a_d\geq 0,\ i_1>i_2\leq\cdots\leq i_n.$$

It satisfies the identities

$$\begin{aligned} x_{\varphi(1)} \cdots x_{\varphi(m)} [x_{m+1}, x_{m+2}, x_{\psi(m+3)}, \dots, x_{\psi(m+n)}] \\ &= x_1 \cdots x_m [x_{m+1}, x_{m+2}, x_{m+3}, \dots, x_{m+n}], \ m \ge 0, n \ge 3, \end{aligned}$$

where φ and ψ are permutations of $\{1, \dots, m\}$ and $m + 3, \dots, m + n\}$, respectively.

26/35

Corollary 16

(i) In the special case of d = 2 the algebra $A_2(\mathfrak{M})$ has a basis with respect to the set $\{u, v\}$

$$u, v, u^a v^b [v, u] u^c v^d, a, b, c, d \ge 0.$$

(ii) The commutator ideal $A'_2(\mathfrak{M})$ is a free $\mathbb{C}[u_1, v_1, u_2, v_2]$ -module generated by [v, u], where $\mathbb{C}[u_1, v_1]$ and $\mathbb{C}[u_2, v_2]$ act on $A'_2(\mathfrak{M})$ by multiplication by u and v from the left and the right, respectively.

III. Preliminaries – Properties of Free Metabelian Lie Algebras

As in the associative case, the structure of free metabelian Lie algebra $L_d(\mathfrak{A}^2)$ is also well known. It has a basis

$$x_1, \ldots, x_d, [x_{i_1}, \ldots, x_{i_n}], i_1 > i_2 \le \cdots \le i_n.$$

Clearly, $L_d(\mathfrak{A}^2)$ may be considered as the Lie subalgebra of $A_d(\mathfrak{M})$ generated with respect to the commutator operation by x_1, \ldots, x_d . In the special case d = 2 the basis of $L_2(\mathfrak{A}^2)$ consists of

$$u,v,\,[v,u]$$
ad $^{a}(u)$ ad $^{b}(v),\,a,b\geq0,$

and $L'_d(\mathfrak{A}^2)$ is a free $\mathbb{C}[u, v]$ -module generated by [v, u] with respect to the action

$$f(u,v): w \longrightarrow wf(\operatorname{ad}(u), \operatorname{ad}(v)), \quad w \in L'_d(\mathfrak{A}^2), f(u,v) \in \mathbb{C}[u,v].$$

IV. Main Results – Associative Case: Basis of A'_2 as Module of Dihedral Invariants

Let us define an isomorphism of $\mathbb{C}[u_1, v_1, u_2, v_2]$ -modules

$$\nu: \mathcal{A}'_{2}(\mathfrak{M}) \longrightarrow \mathbb{C}[u_{1}, v_{1}, u_{2}, v_{2}] \text{ by } \nu(u^{a}v^{b}[v, u]u^{c}v^{d}) = u_{1}^{a}v_{1}^{b}u_{2}^{c}v_{2}^{d}.$$

Proposition 5

Let D_{2n} act on $\mathbb{C}[u_1, v_1]$ and $\mathbb{C}[u_2, v_2]$ in the same way as on $\mathbb{C}[u, v]$. Then $A'_2(\mathfrak{M})$ is a free $\mathbb{C}[u_1, v_1]^{D_{2n}} \otimes_{\mathbb{C}} \mathbb{C}[u_2, v_2]^{D_{2n}}$ -module freely generated by

$$u^{a}[v, u]u^{c}, u^{a}[v, u]v^{d}, v^{b}[v, u]u^{c}, v^{b}[v, u]v^{d},$$

 $0 < a, c < n, 1 < b, d < n - 1.$

Proposition 6

(i) A polynomial $f(u, v) \in A'_2(\mathfrak{M})$ belongs to $A'_2(\mathfrak{M})^{D_{2n}}$ iff it is fixed under the rotation ϱ and reflection τ which generate D_{2n} , i.e.

$$f(\xi u, \overline{\xi}v) = f(u, v), f(v, u) = f(u, v), \text{ where } \xi = e^{\frac{2\pi i}{n}}$$

The polynomial $h(u_1, v_1, u_2, v_2) = \nu(f(u, v)) \in \mathbb{C}[u_1, v_1, u_2, v_2]$ belongs to $\mathbb{C}[u_1, v_1, u_2, v_2]^{D_{2n}}$ iff

$$\varrho(h(u_1, v_1, u_2, v_2)) = h(\xi u_1, \overline{\xi} v_1, \xi u_2, \overline{\xi} v_2) = h(u_1, v_1, u_2, v_2),$$

 $\tau(h(u_1, v_1, u_2, v_2)) = h(v_1, u_1, v_2, u_2) = -h(u_1, v_1, u_2, v_2).$

(ii) The $\mathbb{C}[u_1, v_1]^{D_{2n}} \otimes_{\mathbb{C}} \mathbb{C}[u_2, v_2]^{D_{2n}}$ -module $A'_2(\mathfrak{M})^{D_{2n}}$ is free with a set of free generators

$$u^{a}[v, u]u^{n-a} - v^{a}[v, u]v^{n-a}, a = 0, 1, \dots, n, u^{n}[v, u]u^{n} - v^{n}[v, u]v^{n},$$

$$u^{a}[v, u]v^{a} - v^{a}[v, u]u^{a}, a = 1, \dots, n-1.$$

IV. Main Results – Associative Case: Invariants

Theorem 17

(i) For $n \ge 3$ the algebra $A_2(\mathfrak{M})^{D_{2n}}$ is generated by uv + vu, $u^n + v^n$ and

$$u^{a}[v, u]u^{n-a} - v^{a}[v, u]v^{n-a}, a = 0, 1, \dots, n, u^{n}[v, u]u^{n} - v^{n}[v, u]v^{n},$$

$$u^{a}[v, u]v^{a} - v^{a}[v, u]u^{a}, a = 1, \dots, n-1.$$

(ii) The Hilbert series of $A_2(\mathfrak{M})^{D_{2n}}$ is

$$H(A_2(\mathfrak{M})^{D_{2n}}, t) = \frac{1}{(1-t^2)(1-t^n)} + \frac{1}{(1-t^2)^2(1-t^n)^2} \left((n+1)t^{n+2} + \frac{t^4(1-t^{2n})}{1-t^2} \right)$$

IV. Main Results – Associative Case: Generating Set of $A_2(\mathfrak{M})^{D_{2n}}$

Remark 1

The generating set of the algebra $A_2(\mathfrak{M})^{D_{2n}}$ is not minimal because the commutator $[uv + vu, u^n + v^n]$ is of degree n + 2 and can be expressed as a linear combination of the n + 1 generators

$$u^{a}[v, u]u^{n-a} - v^{a}[v, u]v^{n-a}, a = 0, 1, \dots, n.$$

It is easy to see that if we remove one of these generators, we shall obtain a minimal generating set of the algebra $A_2(\mathfrak{M})^{D_{2n}}$.

IV. Main Results – Lie Case: Basis of L'_2 as a Module of Dihedral Invariants

In the Lie case our considerations are similar, but are much simpler because the commutator ideal $L'_2(\mathfrak{A}^2)$ is a free $\mathbb{C}[u, v]$ -module generated by [v, u] and hence we obtain the following Proposition.

Proposition 7

The commutator ideal $L'_2(\mathfrak{A}^2)$ is a free $\mathbb{C}[u, v]^{D_{2^n}}$ -module freely generated by

 $[v, u]ad^{a}(u), a = 0, 1, ..., n, [v, u]ad^{b}(v), b = 1, ..., n - 1.$

Theorem 18

(i) The $\mathbb{C}[u,v]^{D_{2n}}\text{-module }L_2'(\mathfrak{A}^2)^{D_{2n}}$ is freely generated by

 $[v, u](\mathrm{ad}^n(u) - \mathrm{ad}^n(v)).$

(ii) The Hilbert series of $L_2(\mathfrak{A}^2)^{D_{2n}}$ is

$$H(L_2(\mathfrak{A}^2)^{D_{2n}},t)=rac{t^{n+2}}{(1-t^2)(1-t^n)}$$

THANK YOU VERY MUCH FOR YOUR ATTENTION!