Ideals of Q-algebras

Jörg Koppitz

Doklad za Godishnata Otchetnata Sesiya 01/12/2023

What is a Q-algebra?

- 2001: Joseph Neggers, Hee Sik Kim and Sun Shin Ahn

What is a Q-algebra?

- 2001: Joseph Neggers, Hee Sik Kim and Sun Shin Ahn
- Q-algebra $(X ; *, 0)$

What is a Q-algebra?

- 2001: Joseph Neggers, Hee Sik Kim and Sun Shin Ahn
- Q-algebra $(X ; *, 0)$
- * binary operation on set X (*: "implies")

What is a Q-algebra?

- 2001: Joseph Neggers, Hee Sik Kim and Sun Shin Ahn
- Q-algebra $(X ; *, 0)$
- * binary operation on set X ($*$: "implies")
- $0 \in X$ (0: "Troth")

What is a Q-algebra?

- 2001: Joseph Neggers, Hee Sik Kim and Sun Shin Ahn
- Q-algebra $(X ; *, 0)$
- * binary operation on set X (*: "implies")
- $0 \in X$ (0: "Troth")
- (Q1) $x * x=0$

What is a Q-algebra?

- 2001: Joseph Neggers, Hee Sik Kim and Sun Shin Ahn
- Q-algebra $(X ; *, 0)$
- * binary operation on set $X(*:$ "implies" $)$
- $0 \in X$ (0: "Troth")
- (Q1) $x * x=0$
-(Q2) $x * 0=0$

What is a Q-algebra?

- 2001: Joseph Neggers, Hee Sik Kim and Sun Shin Ahn
- Q-algebra $(X ; *, 0)$
- * binary operation on set X (*: "implies")
- $0 \in X$ (0: "Troth")
- (Q1) $x * x=0$
- (Q2) $x * 0=0$
- (Q3) $(x * y) * z=(x * z) * y$

What is a Q-algebra?

- 2001: Joseph Neggers, Hee Sik Kim and Sun Shin Ahn
- Q-algebra $(X ; *, 0)$
- * binary operation on set $X(*:$ "implies" $)$
- $0 \in X$ (0: "Troth")
- (Q1) $x * x=0$
- (Q2) $x * 0=0$
- (Q3) $(x * y) * z=(x * z) * y$

Examples

$(\mathbb{Z} ;-, 0)$ (- Subtraction) is Q-algebra
$(\mathbb{R} ;:, 1)$ (: Division) is Q-algebra

What is a Q-algebra?

- 2001: Joseph Neggers, Hee Sik Kim and Sun Shin Ahn
- Q-algebra $(X ; *, 0)$
- * binary operation on set $X(*:$ "implies" $)$
- $0 \in X$ (0: "Troth")
- (Q1) $x * x=0$
- (Q2) $x * 0=0$
- (Q3) $(x * y) * z=(x * z) * y$

Examples

$(\mathbb{Z} ;-, 0)(-$ Subtraction $)$ is Q-algebra
$(\mathbb{R} ;:, 1)$ (: Division) is Q-algebra

- $\varnothing \neq I \subseteq X$ is called Q-subalgebra of $(X ; *, 0)$ if $x * y \in I$ for all $x, y \in I$

What is a Q-algebra?

- 2001: Joseph Neggers, Hee Sik Kim and Sun Shin Ahn
- Q-algebra $(X ; *, 0)$
- * binary operation on set $X(*:$ "implies" $)$
- $0 \in X$ (0: "Troth")
- (Q1) $x * x=0$
- (Q2) $x * 0=0$
- (Q3) $(x * y) * z=(x * z) * y$

Examples

$(\mathbb{Z} ;-, 0)(-$ Subtraction $)$ is Q-algebra
$(\mathbb{R} ;:, 1)$ (: Division) is Q-algebra

- $\varnothing \neq I \subseteq X$ is called Q-subalgebra of $(X ; *, 0)$ if $x * y \in I$ for all $x, y \in I$
- If I is Q-subalgebra then $0 \in I$

BCH-algebra

- Generalization of $\mathrm{BCH} / \mathrm{BCI} / \mathrm{BCK}$-algebra

BCH-algebra

- Generalization of $\mathrm{BCH} / \mathrm{BCI} / \mathrm{BCK}$-algebra
- BCH-algebra $(X ; *, 0)$ with

BCH-algebra

- Generalization of $\mathrm{BCH} / \mathrm{BCI} / \mathrm{BCK}$-algebra
- BCH-algebra $(X ; *, 0)$ with
- (Q1), (Q3) and

BCH-algebra

- Generalization of $\mathrm{BCH} / \mathrm{BCI} / \mathrm{BCK}$-algebra
- BCH-algebra $(X ; *, 0)$ with
- (Q1), (Q3) and
- (Q4) $x * y=y * x=0 \Rightarrow x=y$

BCK-algebra

- 1966: BCK-algebra $(X ; *, 0)$

BCK-algebra

- 1966: BCK-algebra $(X ; *, 0)$
- (Q1), (Q4)

BCK-algebra

- 1966: BCK-algebra $(X ; *, 0)$
- (Q1), (Q4)
- (Q5) $((x * y) *(x * z)) *(y * z)=0$

BCK-algebra

- 1966: BCK-algebra $(X ; *, 0)$
- (Q1), (Q4)
- (Q5) $((x * y) *(x * z)) *(y * z)=0$
- (Q6) $(x *(x * y)) * y=0$

BCK-algebra

- 1966: BCK-algebra $(X ; *, 0)$
- (Q1), (Q4)
- (Q5) $((x * y) *(x * z)) *(y * z)=0$
- (Q6) $(x *(x * y)) * y=0$
- $x * 0=0 \Rightarrow x=0$

BCK-algebra

- 1966: BCK-algebra $(X ; *, 0)$
- (Q1), (Q4)
- (Q5) $((x * y) *(x * z)) *(y * z)=0$
- (Q6) $(x *(x * y)) * y=0$
- $x * 0=0 \Rightarrow x=0$
- Algebraic formulation of propositional calculus (branch of logic)

BCK-algebra

- 1966: BCK-algebra $(X ; *, 0)$
- (Q1), (Q4)
- (Q5) $((x * y) *(x * z)) *(y * z)=0$
- (Q6) $(x *(x * y)) * y=0$
- $x * 0=0 \Rightarrow x=0$
- Algebraic formulation of propositional calculus (branch of logic)
- also called: propositional logic, statement logic, sentential calculus

Properties of Q-Algebras

- $(x *(x * y)) * y=0$

Properties of Q-Algebras

- $(x *(x * y)) * y=0$
- binary relation \leq on X

Properties of Q-Algebras

- $(x *(x * y)) * y=0$
- binary relation \leq on X
- $x \leq y \Leftrightarrow x * y=0$

Properties of Q-Algebras

- $(x *(x * y)) * y=0$
- binary relation \leq on X
- $x \leq y \Leftrightarrow x * y=0$
- $x \leq y \Rightarrow x *(x *(x * y))=0$

Properties of Q-Algebras

- $(x *(x * y)) * y=0$
- binary relation \leq on X
- $x \leq y \Leftrightarrow x * y=0$
- $x \leq y \Rightarrow x *(x *(x * y))=0$
- $(X ; *, 0)$ is called bounded if $\exists e \in X \forall x \in X(x \leq e)$

Properties of Q-Algebras

- $(x *(x * y)) * y=0$
- binary relation \leq on X
- $x \leq y \Leftrightarrow x * y=0$
- $x \leq y \Rightarrow x *(x *(x * y))=0$
- $(X ; *, 0)$ is called bounded if $\exists e \in X \forall x \in X(x \leq e)$
- e is called unit of $(X ; *, 0)$

Properties of Q-Algebras

- $(x *(x * y)) * y=0$
- binary relation \leq on X
- $x \leq y \Leftrightarrow x * y=0$
- $x \leq y \Rightarrow x *(x *(x * y))=0$
- $(X ; *, 0)$ is called bounded if $\exists e \in X \forall x \in X(x \leq e)$
- e is called unit of $(X ; *, 0)$
- $x^{*}=e x$ for $x \in X$

Properties of Q-Algebras

- $(x *(x * y)) * y=0$
- binary relation \leq on X
- $x \leq y \Leftrightarrow x * y=0$
- $x \leq y \Rightarrow x *(x *(x * y))=0$
- $(X ; *, 0)$ is called bounded if $\exists e \in X \forall x \in X(x \leq e)$
- e is called unit of $(X ; *, 0)$
- $x^{*}=e x$ for $x \in X$
- x is called involution if $x^{* *}=x$

Examples

Example

$*$	0	a	b	c
0	0	0	b	0
a	a	0	0	0
b	b	0	0	0
c	c	c	c	0

Examples

Example

$*$	0	a	b	c
0	0	0	b	0
a	a	0	0	0
b	b	0	0	0
c	c	c	c	0

- bounded Q-algebra and c is a unit

Examples

Example

$*$	0	a	b	c
0	0	0	b	0
a	a	0	0	0
b	b	0	0	0
c	c	c	c	0

- bounded Q-algebra and c is a unit
- unit of Q-algebra is not unique

Examples

Example

$*$	0	a	b	c
0	0	0	b	0
a	a	0	0	0
b	b	0	0	0
c	c	c	c	0

- bounded Q-algebra and c is a unit
- unit of Q-algebra is not unique

Example

$*$	0	a	b
0	0	0	0
a	a	0	0
b	b	0	0

Examples

Example

$*$	0	a	b	c
0	0	0	b	0
a	a	0	0	0
b	b	0	0	0
c	c	c	c	0

- bounded Q-algebra and c is a unit
- unit of Q-algebra is not unique

Example

$*$	0	a	b
0	0	0	0
a	a	0	0
b	b	0	0

- bounded Q-algebra and a, b are the units

Ideals

- $I \subseteq X$ is called ideal if $0 \in I$ and for all $x, y \in X$:

Ideals

- $I \subseteq X$ is called ideal if $0 \in I$ and for all $x, y \in X$:
- $y * x, x \in I \Rightarrow y \in I$

Ideals

- $I \subseteq X$ is called ideal if $0 \in I$ and for all $x, y \in X$:
- $y * x, x \in I \Rightarrow y \in I$
- $\{0\}$ (zero ideal) and X (trivial ideal) are ideals

Ideals

- $I \subseteq X$ is called ideal if $0 \in I$ and for all $x, y \in X$:
- $y * x, x \in I \Rightarrow y \in I$
- $\{0\}$ (zero ideal) and X (trivial ideal) are ideals

Lemma (A \& K, 2023)
$I \subseteq X$ is ideal of Q-algebra X if $0 \in X$ and $(X \backslash I) * I \subseteq(X \backslash I)$.

Ideals

- $I \subseteq X$ is called ideal if $0 \in I$ and for all $x, y \in X$:
- $y * x, x \in I \Rightarrow y \in I$
- $\{0\}$ (zero ideal) and X (trivial ideal) are ideals

Lemma (A \& K, 2023)
$I \subseteq X$ is ideal of Q-algebra X if $0 \in X$ and $(X \backslash I) * I \subseteq(X \backslash I)$.
Example

$*$	0	a	b	c	d
0	0	a	d	d	b
a	a	0	b	b	d
b	b	d	0	0	a
c	c	d	0	0	a
d	d	b	a	a	0

Ideals

- $I \subseteq X$ is called ideal if $0 \in I$ and for all $x, y \in X$:
- $y * x, x \in I \Rightarrow y \in I$
- $\{0\}$ (zero ideal) and X (trivial ideal) are ideals

Lemma (A \& K, 2023)
$I \subseteq X$ is ideal of Q-algebra X if $0 \in X$ and $(X \backslash I) * I \subseteq(X \backslash I)$.
Example

$*$	0	a	b	c	d
0	0	a	d	d	b
a	a	0	b	b	d
b	b	d	0	0	a
c	c	d	0	0	a
d	d	b	a	a	0

- Ideals: $\{0\},\{0, a\}, X$

Other Ideals

- $I \subseteq X$ is called Q-ideal if $0 \in I$ and for all $x, y, z \in X$:

Other Ideals

- $I \subseteq X$ is called Q-ideal if $0 \in I$ and for all $x, y, z \in X$:
- $(x * y) * z \in I, y \in I \Rightarrow x * z \in I$

Other Ideals

- $I \subseteq X$ is called Q-ideal if $0 \in I$ and for all $x, y, z \in X$:
- $(x * y) * z \in I, y \in I \Rightarrow x * z \in I$
- I is ideal if and only I is Q-ideal

Other Ideals

- $I \subseteq X$ is called Q-ideal if $0 \in I$ and for all $x, y, z \in X$:
- $(x * y) * z \in I, y \in I \Rightarrow x * z \in I$
- I is ideal if and only I is Q-ideal
- $I \subseteq X$ is called complete ideal (c-ideal) if $0 \in I$ and for all $x, y \in X$:

Other Ideals

- $I \subseteq X$ is called Q-ideal if $0 \in I$ and for all $x, y, z \in X$:
- $(x * y) * z \in I, y \in I \Rightarrow x * z \in I$
- I is ideal if and only I is Q-ideal
- $I \subseteq X$ is called complete ideal (c-ideal) if $0 \in I$ and for all $x, y \in X$:
- $y * x, x \in I \Rightarrow y \in I$ or $x=0$

Other Ideals

- $I \subseteq X$ is called Q-ideal if $0 \in I$ and for all $x, y, z \in X$:
- $(x * y) * z \in I, y \in I \Rightarrow x * z \in I$
- I is ideal if and only I is Q-ideal
- $I \subseteq X$ is called complete ideal (c-ideal) if $0 \in I$ and for all $x, y \in X$:
- $y * x, x \in I \Rightarrow y \in I$ or $x=0$
- Every ideal of a bounded Q-algebra is a c-ideal.

Other Ideals

- $I \subseteq X$ is called Q-ideal if $0 \in I$ and for all $x, y, z \in X$:
- $(x * y) * z \in I, y \in I \Rightarrow x * z \in I$
- I is ideal if and only I is Q-ideal
- $I \subseteq X$ is called complete ideal (c-ideal) if $0 \in I$ and for all $x, y \in X$:
- $y * x, x \in I \Rightarrow y \in I$ or $x=0$
- Every ideal of a bounded Q-algebra is a c-ideal.
- Let $(X ; *, 0)$ be a bounded Q-algebra

Other Ideals

- $I \subseteq X$ is called Q-ideal if $0 \in I$ and for all $x, y, z \in X$:
- $(x * y) * z \in I, y \in I \Rightarrow x * z \in I$
- I is ideal if and only I is Q-ideal
- $I \subseteq X$ is called complete ideal (c-ideal) if $0 \in I$ and for all $x, y \in X$:
- $y * x, x \in I \Rightarrow y \in I$ or $x=0$
- Every ideal of a bounded Q-algebra is a c-ideal.
- Let $(X ; *, 0)$ be a bounded Q-algebra
- (2018) $I \subseteq X$ is called K-ideal if $0 \in I$ and for all $x, y \in X$:

Other Ideals

- $I \subseteq X$ is called Q-ideal if $0 \in I$ and for all $x, y, z \in X$:
- $(x * y) * z \in I, y \in I \Rightarrow x * z \in I$
- I is ideal if and only I is Q-ideal
- $I \subseteq X$ is called complete ideal (c-ideal) if $0 \in I$ and for all $x, y \in X$:
- $y * x, x \in I \Rightarrow y \in I$ or $x=0$
- Every ideal of a bounded Q-algebra is a c-ideal.
- Let $(X ; *, 0)$ be a bounded Q-algebra
- (2018) $I \subseteq X$ is called K-ideal if $0 \in I$ and for all $x, y \in X$:
- $(e * x) * y, x \in I$ and $\Rightarrow(e * y) \in I$

Other Ideals

- $I \subseteq X$ is called Q-ideal if $0 \in I$ and for all $x, y, z \in X$:
- $(x * y) * z \in I, y \in I \Rightarrow x * z \in I$
- I is ideal if and only I is Q-ideal
- $I \subseteq X$ is called complete ideal (c-ideal) if $0 \in I$ and for all $x, y \in X$:
- $y * x, x \in I \Rightarrow y \in I$ or $x=0$
- Every ideal of a bounded Q-algebra is a c-ideal.
- Let $(X ; *, 0)$ be a bounded Q-algebra
- (2018) $I \subseteq X$ is called K-ideal if $0 \in I$ and for all $x, y \in X$:
- $(e * x) * y, x \in I$ and $\Rightarrow(e * y) \in I$
- Every ideal (in bounded) Q-algebra is a K-ideal.

The G-part

- $B(X)=\{x \in X: 0 * x=0\} p$-radical of X

The G-part

- $B(X)=\{x \in X: 0 * x=0\} p$-radical of X
- $G(X)=\{x \in X: 0 * x=x\}$ G-part of X

The G-part

- $B(X)=\{x \in X: 0 * x=0\} p$-radical of X
- $G(X)=\{x \in X: 0 * x=x\}$ G-part of X

Theorem (Neggers et al., 2001)
$B(X)$ is an ideal of a Q-algebra $(X ; *, 0)$.

The G-part

- $B(X)=\{x \in X: 0 * x=0\} p$-radical of X
- $G(X)=\{x \in X: 0 * x=x\}$ G-part of X

Theorem (Neggers et al., 2001)

$B(X)$ is an ideal of a Q-algebra $(X ; *, 0)$.

Theorem (Neggers et al., 2001)

Let $(X ; *, 0)$ be Q-algebra.
a) If $|X|=2$ then $G(X)$ is an ideal.
b) $|X|=3$ then $G(X)$ is an ideal if and only if $G(X)=\{0\}$.

The G-part

- $B(X)=\{x \in X: 0 * x=0\} p$-radical of X
- $G(X)=\{x \in X: 0 * x=x\}$ G-part of X

Theorem (Neggers et al., 2001)

$B(X)$ is an ideal of a Q-algebra $(X ; *, 0)$.

Theorem (Neggers et al., 2001)

Let $(X ; *, 0)$ be Q-algebra.
a) If $|X|=2$ then $G(X)$ is an ideal.
b) $|X|=3$ then $G(X)$ is an ideal if and only if $G(X)=\{0\}$.

Problem

Characterization of all Q-algebras X such that $G(X)$ is an ideal.

Properties of the G-part

- Properties of $G(X)$

Properties of the G-part

- Properties of $G(X)$

Theorem (A \& K, 2023)

For $a, b, c \in G(X)$, it holds:
a) $a \neq b \Rightarrow a b \notin\{0, a, b\}$
b) $a b=b a$
c) $a b=c \Rightarrow(a c=b$ and $b c=a)$
d) $b \neq 0 \Rightarrow b a \neq b$

Properties of the G-part

- Properties of $G(X)$

Theorem (A \& K, 2023)

For $a, b, c \in G(X)$, it holds:
a) $a \neq b \Rightarrow a b \notin\{0, a, b\}$
b) $a b=b a$
c) $a b=c \Rightarrow(a c=b$ and $b c=a)$
d) $b \neq 0 \Rightarrow b a \neq b$

Theorem

a) $|X|$ odd $\Rightarrow G(X) \neq X$.
b) If $G(X)$ is an ideal then $G(X)$ is an abelian Group.
c) $G(X)=X$ if and only if $(X ; *)$ is an abelian Group.

When is the G-part an ideal?

- When $G(X)$ is an ideal?

When is the G-part an ideal?

- When $G(X)$ is an ideal?

```
Lemma (A & K, 2023)
If }G(X)\mathrm{ is an ideal then }|G(X)|\not=|X|-1
```


When is the G-part an ideal?

- When $G(X)$ is an ideal?

Lemma (A \& K, 2023)

If $G(X)$ is an ideal then $|G(X)| \neq|X|-1$.
Theorem (A \& K, 2023)
$G(X)$ is an ideal of a Q-algebra X if and only if $(a b=c b \wedge$ $b \in G(X)) \Rightarrow(a=c$ or $a, c \notin G(X))$.

When is the G-part an ideal?

- When $G(X)$ is an ideal?

Lemma (A \& K, 2023)

If $G(X)$ is an ideal then $|G(X)| \neq|X|-1$.
Theorem (A \& K, 2023)
$G(X)$ is an ideal of a Q-algebra X if and only if $(a b=c b \wedge$ $b \in G(X)) \Rightarrow(a=c$ or $a, c \notin G(X))$.

Example

$|X|=4: G(X)$ is an ideal if and only if $G(X)=\{0\}$ or $G(X)=X$ or $G(X)=\{0, a\}(a \in X \backslash\{0\})$ with $b a \neq c a$, whenever $b \neq c$.

Homomorphims

- $\left(X_{1} ; *_{1}, 0_{1}\right),\left(X_{2} ; *_{2}, 0_{2}\right) Q$-algebras

Homomorphims

- $\left(X_{1} ; *_{1}, 0_{1}\right),\left(X_{2} ; *_{2}, 0_{2}\right) Q$-algebras
- $f: X_{1} \rightarrow X_{2}$ is homomorphismus

Homomorphims

- $\left(X_{1} ; *_{1}, 0_{1}\right),\left(X_{2} ; *_{2}, 0_{2}\right) Q$-algebras
- $f: X_{1} \rightarrow X_{2}$ is homomorphismus
- if $f\left(a *_{1} b\right)=f(a) *_{2} f(b)\left(a, b \in X_{1}\right)$

Homomorphims

- $\left(X_{1} ; *_{1}, 0_{1}\right),\left(X_{2} ; *_{2}, 0_{2}\right) Q$-algebras
- $f: X_{1} \rightarrow X_{2}$ is homomorphismus
- if $f\left(a *_{1} b\right)=f(a) *_{2} f(b)\left(a, b \in X_{1}\right)$
- if f is bijective then f is isomorphism: $X_{1} \cong X_{2}$

Homomorphims

- $\left(X_{1} ; *_{1}, 0_{1}\right),\left(X_{2} ; *_{2}, 0_{2}\right) Q$-algebras
- $f: X_{1} \rightarrow X_{2}$ is homomorphismus
- if $f\left(a *_{1} b\right)=f(a) *_{2} f(b)\left(a, b \in X_{1}\right)$
- if f is bijective then f is isomorphism: $X_{1} \cong X_{2}$
- $f\left(0_{1}\right)=0_{2}$

Homomorphims

- $\left(X_{1} ; *_{1}, 0_{1}\right),\left(X_{2} ; *_{2}, 0_{2}\right) Q$-algebras
- $f: X_{1} \rightarrow X_{2}$ is homomorphismus
- if $f\left(a *_{1} b\right)=f(a) *_{2} f(b)\left(a, b \in X_{1}\right)$
- if f is bijective then f is isomorphism: $X_{1} \cong X_{2}$
- $f\left(0_{1}\right)=0_{2}$
- If $G(X)=X(G(X)$ is ideal!! $)$ then $|X|=2^{k}(k \in \mathbb{N})$ and $X \cong \mathbb{Z}_{2^{k}}$.

Homomorphims

- $\left(X_{1} ; *_{1}, 0_{1}\right),\left(X_{2} ; *_{2}, 0_{2}\right) Q$-algebras
- $f: X_{1} \rightarrow X_{2}$ is homomorphismus
- if $f\left(a *_{1} b\right)=f(a) *_{2} f(b)\left(a, b \in X_{1}\right)$
- if f is bijective then f is isomorphism: $X_{1} \cong X_{2}$
- $f\left(0_{1}\right)=0_{2}$
- If $G(X)=X\left(G(X)\right.$ is ideal!!) then $|X|=2^{k}(k \in \mathbb{N})$ and $X \cong \mathbb{Z}_{2^{k}}$.
- If X_{1} and X_{2} are Q-algebras with $G\left(X_{1}\right)=X_{1}$ and $G\left(X_{2}\right)=X_{2}$ then $X_{1} \cong X_{2}$.

