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Introduction

Finite groups, simple Lie algebras and reductive algebraic groups
are all rigid; so we can’t construct families depending on a
continuous parameter.
Let V be an (irreducible) representation. The category of invariant
tensors has objects 0,1,2,... and the morphisms are

Hom(⊗nV ,⊗mV )

These categories have additional structure e.g. tensor product,
symmetry,... We can construct families of categories with these
structures depending on one, or more, continuous parameters.



This is well-known for V the defining representation of a classical
series

SL(n),GL(n),SO(n),Sp(2n),Sn

where n becomes a formal parameter.

▶ SL(n),GL(n) Schur-Weyl duality

▶ SO(n),Sp(2n) Brauer category

▶ Sn Partition category

and the first two cases have quantum analogues.
What about exceptional simple Lie algebras?



Exceptional series

The exceptional series is a finite sequence of Lie algebras
parametrised by m ∈ Q.

m -3/2 -4/3 -1 -2/3 0 1 2 4 8
osp(1|2) A1 A2 G2 D4 F4 E6 E7 E8

These are the simple Lie algebras with no primitive quartic Casimir.
Equivalently, the simple Lie algebras for which 4 is not an
exponent.



Decompositions

Let L be a Lie algebra on the exceptional series and consider L as a
representation of the algebraic group Aut(L). Then, for m ⩾ −1,
we have the decompositions

∧2L(θ) ∼= L(θ)⊕ L(µ) S2L(θ) ∼= L(0)⊕ L(2θ)⊕ L(ν)

where θ is the highest root.



Casimirs

The values of the Casimir are computed using

C (λ) = ⟨λ, λ+ 2ρ⟩

The key observation is that the values of the Casimir can be
interpolated by linear functions of m. The linear functions are

θ µ 2θ ν

6m + 12 12m + 24 12m + 28 10m + 16



Vogel plane

Let L be a simple Lie algebra considered as a representation of the
algebraic group Aut(L).
The decomposition of L⊗ L is

∧2L ∼= L⊕ X2

S2L ∼= I ⊕ Y (α)⊕ Y (β)⊕ Y (γ)

The Casimirs are

I L X2 Y (α) Y (β) Y (γ)

0 t 2t 2t − α 2t − β 2t − γ

where t = α+ β + γ = ȟ.

dim(L) =
(α− 2t)(β − 2t)(γ − 2t)

αβγ



Vogel plane
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Magic square

The Freudenthal magic square is the following square of Lie
algebras.

R C H O
R B3

1 A8
2 C 21

3 F 52
4

C A8
2 2A16

2 A35
5 E 78

6

H C 21
3 A35

5 D66
6 E 133

7

O F 52
4 E 78

6 E 133
7 E 248

8

▶ The subscript is the rank of the Lie algebra.

▶ The superscript is the dimension of the Lie algebra



Dimensions

The following gives the dimension of the preferred representation
and the dimension of the adjoint representation

V L

R (3m + 2) 3m(3m+2)
(m+4)

C (3m + 3) 4(m+1)(3m+2)
(m+4)

H (6m + 8) 3(3m+4)(2m+3)
(m+4)

O 2(5m+8)(3m+7)
(m+4)

2(5m+8)(3m+7)
(m+4)



Quaternion row

This gives Freudenthal triple sytems.

m -2/3 0 1 2 4 8

g A1 3A1 C3 A5 D6 E7

G SL(2) S3 ⋊ SL(2) Sp(6) S2 ⋊ SL(6)/µ2 Spin(12) E7

λ 3ω1 ω1 + ω2 + ω3 ω3 ω3 ω6 ω7

m -3 -8/3 -5/2

g D5 B3 G2

G SO(10) Spin(7) G2

ω ω1 ω3 ω1



Features

The features of a series are:

▶ members of the series are indexed by a point in a projective
space

▶ shared Bratteli diagram (branching rules)

▶ shared Schur functors (e.g. symmetric and exterior powers)

▶ Casimirs are linear functions of homogeneous coordinates

▶ dimensions are rational functions

For a classical series the Bratteli diagram is known indefinitely and
dimensions are polynomial functions.



Notation

L(λ) is a highest weight module with highest weight λ.

▶ 0 is the zero weight so L(0) is the trivial representation

▶ θ is the highest root so L(θ) is the adjoint representation



Property

The decomposition of L(λ)⊗ L(λ) is

∧2L(λ) ∼= L(θ)⊕ L(µ)

S2L(λ) ∼= L(0)⊕ L(2λ)

The representation L(λ) has an anti-symmetric quartic form.



Strategy

We find the quantum dimensions first and then find the dimensions
by taking q → 1.

▶ Interpolate Casimirs/eigenvalues

▶ Construct representation of braid group, B3.

▶ Determine structure constants of algebra A(2).

▶ (Optional) Take limit q → 1.



Property

The decomposition of L(λ)⊗ L(λ) is

∧2L(λ) ∼= L(θ)⊕ L(µ)

S2L(λ) ∼= L(0)⊕ L(2λ)⊕ L(ν)

This includes the first (R) line of the magic square (λ = θ) and the
fourth (O) line (λ = ν). The representation L(λ) for the first (R)
line has an invariant symmetric cubic form and ahe representation
L(λ) for the fourth (O) line has an invariant anti-symmetric cubic
form



Exceptional symmetric spaces

Associated to a symmetric space is a Lie algebra with an
involution. The +1-eigenspace is a Lie algebra, L, and the
−1-eigenspace is an L-module, V .

2/3 1 4/3 8/3 5 8 10 12

EVIII EV E1 A1 BD1 FII EIV
E8 E7 E6 A2 OSp(1|2) D4 F4 E6

D8 A∗
7 C4 A1 A1 B3 B4 F4

128 70 42 5 7 16 26



Property
The decomposition of L(λ)⊗ L(λ) is

∧2L(λ) ∼= L(θ)⊕ L(µ)

S2L(λ) ∼= L(0)⊕ L(2λ)⊕ L(ν1)⊕ L(ν2)

This includes the Vogel plane, λ = θ.
This includes the representations L(2ω1) of SO(n) and the
representations L(ω2) of Sp(n). These are the infinite series of
symmetric spaces AI and AII.
This includes the representations L(ω1;ω1) of
(SO(n)× SO(n))⋊S2.

∧2L(ω1;ω1) ∼= [L(ω2; 0)⊕ L(0;ω2)]⊕ [L(ω2; 2ω1)⊕ L(2ω1;ω2)]

S2L(ω1;ω1) ∼= L(0; 0)⊕ L(2ω1; 2ω1)⊕ L(ω2;ω2)⊕ [L(2ω1; 0)⊕ L(0; 2ω1)]
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