Artificial Intelligence

Definition, Realization and Consequences

Dimiter Dobrev

d@dobrev.com

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences

Artificial General Intelligence

Weak

Strong

Specialized
Universal

The definition of the Council of Europe (2020)

AI is actually a young discipline of about sixty years, which brings together sciences, theories and techniques (including mathematical logic, statistics, probabilities, computational neurobiology and computer science) and whose goal is to achieve the imitation by a machine of the cognitive abilities of a human being.

Approaches

Full Observability

Partial Observability

Device without

Memory

Device with Memory

function

Full Observability

$f:$ Observations \rightarrow Actions

$$
f\left(o_{i}\right)=a_{i}
$$

Training Data is:

$$
\left\{\left\langle o_{i}, a_{i}\right\rangle \mid i \in I\right\}
$$

Partial Observability

$f:$ Memory \times Observations \rightarrow Actions \times Memory

$$
f\left(m_{i}, o_{i}\right)=\left\langle a_{i}, m_{i+1}\right\rangle
$$

Training Data is:

$$
O_{0}, \quad a_{0}, \quad O_{1}, \quad a_{1}, \ldots, O_{n-1}, \quad a_{n-1}, \quad o_{n}
$$

Partial Observability

$f:$ Memory \times Observations \rightarrow Actions \times Memory $g:$ States \times Actions \rightarrow Observations \times States

$$
\begin{aligned}
& f\left(m_{i}, o_{i}\right)=\left\langle a_{i}, m_{i+1}\right\rangle \\
& g\left(s_{i}, a_{i}\right)=\left\langle o_{i+1}, s_{i+1}\right\rangle
\end{aligned}
$$

Training Data, state and memory:
$m_{0}, O_{0}, s_{0}, a_{0}, m_{1}, O_{1}, s_{1}, a_{1}, \ldots, o_{n-1}, s_{n-1}, a_{n-1}, m_{n}, o_{n}, s_{n}$

Partial Observability

$f:$ Memory \times Observations \rightarrow Actions \times Memory $g:$ States \times Actions \rightarrow Observations \times States

$$
\begin{aligned}
& f\left(m_{i}, o_{i}\right)=\left\langle a_{i}, m_{i+1}\right\rangle \\
& g\left(s_{i}, a_{i}\right)=\left\langle o_{i+1}, s_{i+1}\right\rangle
\end{aligned}
$$

Training Data and state:

$$
O_{0}, s_{0}, a_{0}, \quad o_{1}, s_{1}, a_{1}, \ldots, o_{n-1}, s_{n-1}, a_{n-1}, \quad o_{n}, s_{n}
$$

How will we understand the world?

We will approximate the function g
(and the current state s_{n})
and we will obtain the function g^{\prime}

(and the state s_{n}^{\prime}).

$s_{n}^{\prime}=n$ - this is a possible solution but not a good idea.

Where will we look for the function g^{\prime}

We can think that:
$g^{\prime}: \mathbb{N} \times$ Actions \rightarrow Observations $\times \mathbb{N}$
or
$g^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$

1. Computable
2. Computable with randomness
3. Computable with agents

What will be the structure of s_{n}^{\prime}

$$
s_{n}^{\prime}=\left\langle\boldsymbol{A r} g_{1}, \ldots, \operatorname{Ar} g_{k}\right\rangle
$$

Arg is a state of Event-Driven model.

Arg is an array.

Event-Driven models

the algorithm of the knight

One proposition

$$
\begin{gathered}
p \in[0,1]-\text { possibility } \\
\omega=b_{1}, \ldots, b_{n}-\text { Boolean sequence } \\
P\left(b_{i}=1\right)=p \text { or } L_{1} \omega=[p . n] \\
b_{n+1} \text { is the natural continuation of } \omega \\
\lim _{n \rightarrow \infty} P\left(b_{n+1}=1\right)=p
\end{gathered}
$$

It does not depend on the definition of natural continuation.

The second part of the dissertation

Language for Description of Worlds

The third part of the dissertation

Consequences

