Regularity of algebras of $\mathrm{O}(n)$-invariants using Hilbert series

Elitza Hristova

Annual report session of the Department of Algebra and Logic

December 18, 2020

Definitions and notations

- Let G be a reductive complex linear algebraic group (e.g. $G=\mathrm{GL}(n), \mathrm{SL}(n), \mathrm{O}(n), \mathrm{SO}(n), \mathrm{Sp}(2 k))$. A finite-dimensional representation W of G is called coregular if the algebra of invariants $\mathbb{C}[W]^{G}$ is regular, i.e. isomophic to a polynomial algebra.
- The irreducible coregular representations of connected simple complex algebraic groups were classified by Kac, Popov and Vinberg. They also described the degrees of the generators in a minimal generating set.
- The reducible coregular representations of connected simple complex algebraic groups were classified by Schwarz.

Question: What can we say about $\mathbb{C}[W]^{\mathrm{O}(n)}$?

Definitions and notations

Definition

Let $A=\bigoplus A^{i}$ be a finitely generated graded algebra over \mathbb{C} such that $i \geq 0$
$A^{0}=\mathbb{C}$ or $A^{0}=0$. The Hilbert series of A is the formal power series

$$
H(A, t)=\sum_{i \geq 0}\left(\operatorname{dim} A^{i}\right) t^{i}
$$

Definition

A finitely generated graded algebra A is called Cohen-Macaulay if there exist homogeneous elements $u_{1}, \ldots, u_{k} \in A$ with the two properties:
(i) The elements u_{i} are algebraically independent, i.e., the algebra they generate is a polynomial ring in the u_{i}.
(ii) The ring A is a free module over $\mathbb{C}\left[u_{1}, \ldots, u_{k}\right]$.

Definitions and notations

- By Hochster-Roberts theorem, for any reductive linear algebraic group G the algebra of invariants $\mathbb{C}[W]^{G}$ is Cohen-Macaulay. Therefore, its Hilbert series has the form

$$
H\left(\mathbb{C}[W]^{G}, t\right)=\frac{p(t)}{\prod_{i}\left(1-t^{h_{i}}\right)}, \quad \text { where } p(t)=\sum_{j} t^{l_{j}}
$$

- If $p(t) \neq 1$ then $\mathbb{C}[W]^{G}$ is not polynomial, hence W is not coregular.

Definitions and notations

- Let $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right) \in\left(\mathbb{N}_{0}\right)^{n}$ be a non-negative integer partition. By V_{λ} we denote the irreducible GL(n)-module with highest weight λ.

Definitions and notations

- Let $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right) \in\left(\mathbb{N}_{0}\right)^{n}$ be a non-negative integer partition. By V_{λ} we denote the irreducible GL(n)-module with highest weight λ.
- A finite dimensional GL(n)-module W is called polynomial if

$$
W \cong \bigoplus_{\lambda} k(\lambda) V_{\lambda} .
$$

Definitions and notations

- Let $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right) \in\left(\mathbb{N}_{0}\right)^{n}$ be a non-negative integer partition. By V_{λ} we denote the irreducible GL(n)-module with highest weight λ.
- A finite dimensional GL(n)-module W is called polynomial if

$$
W \cong \bigoplus_{\lambda} k(\lambda) V_{\lambda}
$$

Let W be a polynomial GL(n)-module and let $S(W)=\oplus_{i \geq 0} S^{i} W$ denote the symmetric algebra of W. For $G=\mathrm{O}(n), \mathrm{SO}(n), \mathrm{Sp}(2 k)$ we have that

$$
\mathbb{C}[W]^{G} \cong S(W)^{G}
$$

Question: When is $S(W)^{\mathrm{O}(n)}$ a polynomial algebra, i.e. when is W a coregular $\mathrm{O}(n)$-representation?

Coregular O(2)-representations

Theorem

Let W be a polynomial GL(2)-module. If the algebra $S(W)^{\mathrm{O}(2)}$ is polynomial, then up to an $\mathrm{O}(2)$-isomorphism W is one of the following:
(1) $V, S^{2} V, S^{3} V, S^{4} V, \Lambda^{2} V, V_{(3,1)}$;
(2) $V \oplus V, V \oplus S^{2} V, S^{2} V \oplus S^{2} V, V \oplus \Lambda^{2} V, S^{2} V \oplus \Lambda^{2} V$.

Coregular O(2)-representations

Theorem

Let W be a polynomial GL(2)-module. If the algebra $S(W)^{\mathrm{O}(2)}$ is polynomial, then up to an $\mathrm{O}(2)$-isomorphism W is one of the following:
(1) $V, S^{2} V, S^{3} V, S^{4} V, \Lambda^{2} V, V_{(3,1)}$;
(2) $V \oplus V, V \oplus S^{2} V, S^{2} V \oplus S^{2} V, V \oplus \Lambda^{2} V, S^{2} V \oplus \Lambda^{2} V$.

In the proof we use the following:

- Every subrepresentation of a coregular representation must be coregular.
- Consider the irreducible GL(2)-module $V_{(k, l)}$.
(i) If at least one of k and l is even, then $V_{(k, l)} \cong S^{k-l} V$ as $\mathrm{O}(2)$-modules;
(ii) If both k and I are odd, then $V_{(k, l)} \cong V_{(k-1+1,1)}$ as $\mathrm{O}(2)$-modules.
- Branching rules for $S^{k} V$ and $V_{(k, 1)}$ as $\mathrm{O}(2)$-modules.

Coregular O(2)-representations

Table: Hilbert series for $n=2$

W	$\left.H(S(W))^{\mathrm{O}(2)}, t\right)$	$H\left(S(W){ }^{\mathrm{SO}(2)}, t\right)$
$V=\mathbb{C}^{2}$	$\frac{1}{1-t^{2}}$	$\frac{1}{1-t^{2}}$
$S^{2} V$	$\frac{1}{(1-t)\left(1-t^{2}\right)}$	$\frac{1}{(1-t)\left(1-t^{2}\right)}$
	$(1-t)\left(1-t^{2}\right)$	(1-t)(1-t2)
$S^{3} V$	$\frac{1}{\left(1-t^{2}\right)^{2}\left(1-t^{4}\right)}$	$\frac{1+t^{4}}{\left(1-t^{2}\right)^{2}\left(1-t^{4}\right)}$
$S^{4} V$	$\frac{1}{(1-t)\left(1-t^{2}\right)^{2}\left(1-t^{3}\right)}$	$\frac{1+t^{3}}{(1-t)\left(1-t^{2}\right)^{2}\left(1-t^{3}\right)}$
$S^{5} V$	$\frac{1+t^{2}+3 t^{4}+4 t^{+}+5 t^{8}+4 t^{10}+3 t^{12}+t^{14}+t^{10}}{\left(1-t^{6}\left(1-t^{6}\right)\left(1-t^{4}\right)\left(1-t^{2}\right)^{2}\right.}$	$\frac{1+t^{2}+6 t^{4}+90^{6}+12 t^{8}+9 t^{10}+6 t^{12}+t^{14}+t^{10}}{\left(1-t^{6}\right)\left(1-t^{6}\right)\left(1-t^{4}\right)\left(1 t^{2}\right)^{2}}$
$S^{6} V$	$\frac{1+t^{2}+t^{3}+2 t^{4}+t^{5}+2 t^{6}+t^{+}+t^{3}+t^{0}}{(1-t)\left(1-t^{2}\right)^{2}\left(1-t^{3}\right)\left(1-t^{4}\right)\left(1-t^{5}\right)}$	$\frac{1+t^{2}+3 t^{3}+4 t^{4}+4 t^{5}+4 t^{6}+3 t^{7}+t^{8}+t^{10}}{(1-t)\left(1-t^{2}\right)^{2}\left(1-t^{3}\right)\left(1-t^{4}\right)\left(1-t^{5}\right)}$
$\Lambda^{2} V$	$\frac{1}{1-t^{2}}$	$\frac{1}{1-t}$
	$\frac{1-t^{2}}{1}$	
$V_{(3,1)}$	$\frac{\left(1-t^{2}\right)^{2}}{}$	$\overline{(1-t)\left(1-t^{2}\right)}$
$V_{(5,1)}$	$\frac{1+t^{4}}{\left(1-t^{2}\right)^{3}\left(1-t^{3}\right)}$	$\frac{1+t^{3}}{(1-t)\left(1-t^{2}\right)^{2}\left(1-t^{3}\right)}$

Coregular O(2)-representations

Table: Hilbert series for $n=2$

W	$H\left(S(W)^{\mathrm{O}(2)}, t\right)$	$H\left(S(W)^{\mathrm{SO}(2)}, t\right)$
$V \oplus V$	$\frac{1}{\left(1-t^{2}\right)^{3}}$	$\frac{1+t^{2}}{\left(1-t^{2}\right)^{3}}$
$V \oplus S^{2} V$	$\frac{1+t^{3}}{(1-t)\left(1-t^{2}\right)^{2}\left(1-t^{3}\right)}$	$\frac{1}{(1-t)\left(1-t^{2}\right)^{2}\left(1-t^{3}\right)}$
$S^{2} V \oplus S^{2} V$	$\frac{1}{(1-t)^{2}\left(1-t^{2}\right)^{3}}$	$\frac{1+t^{2}}{(1-t)^{2}\left(1-t^{2}\right)^{3}}$
$V \oplus \Lambda^{2} V$	$\frac{1}{\left(1-t^{2}\right)^{2}}$	$\frac{1}{(1-t)\left(1-t^{2}\right)}$
$S^{2} V \oplus \Lambda^{2} V$	$\frac{1}{(1-t)\left(1-t^{2}\right)^{2}}$	$\frac{1}{(1-t)^{2}\left(1-t^{2}\right)}$
$\Lambda^{2} V \oplus \Lambda^{2} V$	$\frac{1+t^{2}}{\left(1-t^{2}\right)^{2}}$	$\frac{1}{(1-t)^{2}}$
$V \oplus V \oplus V$	$\frac{1+t^{2}+t^{4}}{\left(1-t^{2}\right)^{5}}$	$\frac{1+t^{2}+t^{4}}{\left(1-t^{2}\right)^{5}}$
$V \oplus V \oplus S^{2} V$	$\frac{\left(1+t+t^{2}+t^{3}+t^{4}\right)\left(1+t^{3}\right)}{\left(1-t^{2}\right)^{4}\left(1-t^{3}\right)^{2}}$	$\frac{1+2 t^{2}+4 t^{3}+2 t^{4}+t^{6}}{(1-t)\left(1-t^{2}\right)^{3}\left(1-t^{3}\right)^{2}}$
$V \oplus S^{3} V$	$\frac{1+t^{2}+t^{4}+t^{+}}{\left(1-t^{2}\right)^{3}\left(1-t^{4}\right)^{2}}$	$\frac{1+2 t^{2}+8 t^{4}+2 t^{+}+t^{8}}{\left(1 t^{2}\right)^{3}\left(1-t^{4}\right)^{2}}$
$V \oplus S^{4} V$	$\frac{\left(1+t^{4}\right)\left(1+t+t^{2}+t^{3}+t^{4}+t^{5}+t^{6}\right)}{\left(1-t^{2}\right)^{3}\left(1-t^{3}\right)^{2}\left(1-t^{5}\right)}$	$\frac{1+t^{2}+4 t^{4}+t^{5}+t^{7}}{\left(1-t^{2}\right)^{3}\left(1-t^{3}\right)\left(1-t^{5}\right)\left(1-t^{6}\right)}$

Comparing algebras of $\mathrm{O}(n)$-invariants and algebras of $\mathrm{SO}(n)$-invariants

Let $V=\mathbb{C}^{n}$ denote the standard $\mathrm{GL}(n)$-module and let $W=S^{2} V$ be the second symmetric power of V. Then

$$
H\left(S\left(S^{2} V\right)^{\mathrm{O}(n)}, t\right)=H\left(S\left(S^{2} V\right)^{\mathrm{SO}(n)}, t\right)=\prod_{i=1}^{n} \frac{1}{1-t^{i}}
$$

Corollary

For all n we have

$$
S\left(S^{2} V\right)^{\mathrm{O}(n)}=S\left(S^{2} V\right)^{\mathrm{SO}(n)}
$$

In particular, $S\left(S^{2} V\right)^{\mathrm{O}(n)}$ is a polynomial algebra.
Remark: The above corollary is trivially true for $n=2 k+1$ since $\mathrm{O}(2 k+1)=\mathrm{SO}(2 k+1) \times\{\mathrm{Id},-\mathrm{Id}\}$.

Comparing algebras of $\mathrm{O}(n)$-invariants and algebras of $\mathrm{SO}(n)$-invariants

Next, let us take $W=\Lambda^{2} V$, the second exterior power of V. Then

$$
\begin{gathered}
H\left(S\left(\Lambda^{2} V\right)^{\mathrm{O}(n)}, t\right)=\prod_{i=1}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{1-t^{2 i}}, \\
H\left(S\left(\Lambda^{2} V\right)^{\mathrm{SO}(n)}, t\right)= \begin{cases}\frac{1}{1-t^{k}} \prod_{i=1}^{k-1} \frac{1}{1-t^{2 i}}, & \text { if } n=2 k, \\
\prod_{i=1}^{k} \frac{1}{1-t^{2 i}}, & \text { if } n=2 k+1 .\end{cases}
\end{gathered}
$$

For $n=2 k+1$ we have again $S\left(\Lambda^{2} V\right)^{\mathrm{O}(2 k+1)}=S\left(\Lambda^{2} V\right)^{\mathrm{SO}(2 k+1)}$.

Comparing algebras of $\mathrm{O}(n)$-invariants and algebras of $\mathrm{SO}(n)$-invariants

Lemma

If $\operatorname{dim} S^{\prime}(W)^{\mathrm{SO}(n)}=1$ and if f is a generator of $S^{\prime}(W)^{\mathrm{SO}(n)}$ then f or f^{2} is an $\mathrm{O}(n)$-invariant.

Corollary

Let $n=2 k$. There exists a generating set $\left\{f_{2 i}\right\}_{i=1}^{k-1} \cup\{g\}$ of $S\left(\Lambda^{2} V\right)^{\mathrm{SO}(2 k)}$ (where $\operatorname{deg} f_{j}=j$ and $\operatorname{deg} g=k$) such that $\left\{f_{2 i}\right\}_{i=1}^{k-1} \cup\left\{g^{2}\right\}$ is a generating set for $S\left(\Lambda^{2} V\right)^{\mathrm{O}(2 k)}$. In particular, $S\left(\Lambda^{2} V\right)^{\mathrm{O}(2 k)}$ is a polynomial algebra.

Comparing algebras of $\mathrm{O}(n)$-invariants and algebras of $\mathrm{SO}(n)$-invariants

Let $W=V \oplus \Lambda^{2} V$. Then, when $n=2 k$ we obtain

$$
\begin{gathered}
H\left(S(W)^{\mathrm{O}(2 k)}, t\right)=\prod_{i \leq k} \frac{1}{\left(1-t^{2 i}\right)^{2}} \\
H\left(S(W)^{\mathrm{SO}(2 k)}, t\right)=\frac{1}{\left(1-t^{2 k}\right)\left(1-t^{k}\right)} \prod_{i \leq k-1} \frac{1}{\left(1-t^{2 i}\right)^{2}} .
\end{gathered}
$$

For $n=2 k+1$ we have

$$
\begin{aligned}
& H\left(S(W)^{\mathrm{O}(2 k+1)}, t\right)=\frac{1}{1-t^{n+1}} \prod_{i \leq k} \frac{1}{\left(1-t^{2 i}\right)^{2}} \\
& H\left(S(W)^{\mathrm{SO}(2 k+1)}, t\right)=\frac{1}{1-t^{k+1}} \prod_{i \leq k} \frac{1}{\left(1-t^{2 i}\right)^{2}}
\end{aligned}
$$

Comparing algebras of $O(n)$-invariants and algebras of $\mathrm{SO}(n)$-invariants

The degrees of the generators of $S\left(V \oplus \Lambda^{2} V\right)^{\mathrm{SO}(n)}$ (using the fact that $\left.S\left(V \oplus \Lambda^{2} V\right)=S(V) \otimes S\left(\Lambda^{2} V\right)\right)$ are as follows (see Schwarz):

- For $S(W)^{\mathrm{SO}(2 k)}$ we have generators in degrees

$$
(0,2),(0,4), \ldots,(0,2 k-2) ;(2,0),(2,2),(2,4), \ldots,(2,2 k-2) ;(0, k)
$$

- For $S(W)^{\mathrm{SO}(2 k+1)}$ we have generators in degrees

$$
(0,2),(0,4), \ldots,(0,2 k) ;(2,0),(2,2),(2,4), \ldots,(2,2 k-2) ;(1, k)
$$

Comparing algebras of $\mathrm{O}(n)$-invariants and algebras of $\mathrm{SO}(n)$-invariants

Corollary

Let $n=2 k+1$. Let $\left\{f_{2 i}, g_{2 i}\right\}_{i=1}^{k} \cup\{h\}$ be a generating set for $S\left(V \oplus \Lambda^{2} V\right)^{\mathrm{SO}(2 k+1)}\left(\right.$ where $\operatorname{deg} f_{j}=(0, j), \operatorname{deg} g_{j}=(2, j-2)$, $\operatorname{deg} h=(1, k))$. Then $\left\{f_{2 i}, g_{2 i}\right\}_{i=1}^{k} \cup\left\{h^{2}\right\}$ is a generating set for $S\left(V \oplus \Lambda^{2} V\right)^{\mathrm{O}(2 k+1)}$. Hence, $S\left(V \oplus \Lambda^{2} V\right)^{\mathrm{O}(2 k+1)}$ is a polynomial algebra.

Corollary

Let $n=2 k$. There exists a generating set $\left\{f_{2 i}\right\}_{i=1}^{k-1} \cup\left\{g_{2 i}\right\}_{i=1}^{k} \cup\{h\}$ of $S\left(V \oplus \Lambda^{2} V\right)^{\mathrm{SO}(2 k)}$ (where $\operatorname{deg} f_{j}=(0, j), \operatorname{deg} g_{j}=(2, j-2)$, $\operatorname{deg} h=(0, k))$ such that $\left\{f_{2 i}\right\}_{i=1}^{k-1} \cup\left\{g_{2 i}\right\}_{i=1}^{k} \cup\left\{h^{2}\right\}$ is a generating set for $S\left(V \oplus \Lambda^{2} V\right)^{\mathrm{O}(2 k)}$. Hence, $S\left(V \oplus \Lambda^{2} V\right)^{\mathrm{O}(2 k)}$ is a polynomial algebra.

The end

Thank you for your attention!

