(2, 3)-GENERATION OF THE GROUPS

$PSL_6(q)$

K. Tabakov, K. Tchakerian

Outline

1. Introduction
 - Common features

2. Basic concept
 - Main theorem
 - Preliminaries

3. Case 1
 - Case 1: $q \neq 2, 4$

4. Lemma 2

5. Case 2
 - Case 2: $q = 2, 4$

6. Conclusion

7. Bibliography
Common features

- A group G is called $(2, 3)$-generated if $G = \langle x, y \rangle$ for some elements x and y of orders 2 and 3, respectively.
Common features

- A group G is called $(2, 3)$-generated if $G = \langle x, y \rangle$ for some elements x and y of orders 2 and 3, respectively.
- A group is $(2, 3)$-generated if and only if it is a homomorphic image of the modular group $PSL_2(\mathbb{Z})$.
A group G is called $(2, 3)$-generated if $G = \langle x, y \rangle$ for some elements x and y of orders 2 and 3, respectively.

A group is $(2, 3)$-generated if and only if it is a homomorphic image of the modular group $PSL_2(\mathbb{Z})$.

The theorem of Liebeck-Shalev and Lübeck-Malle states that all finite simple groups, except the symplectic groups $PSp_4(2^m)$, $PSp_4(3^m)$, the Suzuki groups $Sz(2^m)$ (m odd), and finitely many other groups, are $(2, 3)$-generated (see [11])

For the $PSL_n(q)$,
$(2, 3)$-generation has been proved in the cases $n = 2, q \neq 9$ [8], $n = 3, q \neq 4$ [4], [1], $n = 4, q \neq 2$ [12], [13], [9], $n = 5$, any q [14], $n \geq 5$, odd $q \neq 9$ [2],[3], and $n \geq 13$, any q [10].
Outline

1. Introduction
 - Common features

2. Basic concept
 - Main theorem
 - Preliminaries

3. Case 1
 - Case 1: \(q \neq 2, 4 \)

4. Lemma 2

5. Case 2
 - Case 2: \(q = 2, 4 \)

6. Conclusion

7. Bibliography
Main theorem

Theorem

The group $\text{PSL}_6(q)$ is $(2, 3)$-generated for any q.
Preliminaries

- $G = \text{SL}_6(q)$, $\overline{G} = G/Z(G) = \text{PSL}_6(q)$, where $q = p^m$ and p is a prime. Set $d = (6, q - 1)$, also $Q = q^5 - 1$ if $q \neq 3, 7$ and $Q = (q^5 - 1)/2$ if $q = 3$ or 7.

- The group G acts naturally on a six-dimensional vector space V over the field $F = GF(q)$ and \overline{G} acts on the corresponding projective space $P(V)$.
Lemma 1

Let \overline{M} be a maximal subgroup of the group \overline{G}. Then either \overline{M} is reducible on the space $P(V)$ or \overline{M} has no element of order $Q/(d, Q)$.
The maximal subgroups of $\text{PSL}_6(q)$ are determined (up to conjugacy) in [5]. In particular, this implies that one of the following holds:

(i) \bar{M} belongs to the family C_1 of reducible subgroups of \bar{G};

(ii) \bar{M} is a member of one of the remaining families C_2, C_3, C_4, C_5, C_8 of (irreducible) geometric subgroups of \bar{G};

(iii) $\bar{M} \cong \text{PSL}_3(q)$ if q is odd or $\bar{M} \cong \text{PSL}_2(11), A_7, M_{12}, \text{PSL}_3(4).\mathbb{Z}_2, \text{PSU}_4(3)$, or $\text{PSU}_4(3).\mathbb{Z}_2$ for specific values of p and q.
Case 1: $q \neq 2, 4$

Let $\omega \in GF(q^5)^*$, $|\omega| = Q$

$$f(t) = \prod_{i=0}^{4} (t - \omega^{q^i}) = t^5 - \alpha t^4 + \beta t^3 - \gamma t^2 + \delta t - \varepsilon.$$

Then $f(t) \in F[t]$ and the polynomial $f(t)$ is irreducible over F.
Case 1

Generators

\[x = \begin{pmatrix} -1 & 0 & 0 & \gamma \varepsilon^{-1} & 0 & \gamma \\ 0 & -1 & 0 & \beta \varepsilon^{-1} & 0 & \beta \\ 0 & 0 & 0 & \alpha \varepsilon^{-1} & -1 & \delta \\ 0 & 0 & -1 & \delta \varepsilon^{-1} & 0 & \alpha \\ 0 & 0 & 0 & \varepsilon^{-1} & 0 & 0 \end{pmatrix}, \ x \in G, |x| = 2, \]

\[y = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \ y \in G, |y| = 3. \]
Case 1

\[z = xy = \begin{pmatrix} 0 & 0 & -1 & 0 & \gamma & \gamma \varepsilon^{-1} \\ -1 & 0 & 0 & 0 & \beta & \beta \varepsilon^{-1} \\ 0 & 0 & 0 & -1 & \delta & \alpha \varepsilon^{-1} \\ 0 & 0 & 0 & 0 & \varepsilon & 0 \\ 0 & -1 & 0 & 0 & \alpha & \delta \varepsilon^{-1} \\ 0 & 0 & 0 & 0 & 0 & \varepsilon^{-1} \end{pmatrix}. \]

The characteristic polynomial of \(z \) is

\[f_z(t) = (t - \varepsilon^{-1}) f(t) \]

and the characteristic roots \(\varepsilon^{-1}, \omega, \omega q, \omega q^2, \omega q^3, \omega q^4 \) of \(z \) are pairwise distinct. Then, in \(GL_6(q^5) \), \(z \) is conjugate to

\[\text{diag}(\varepsilon^{-1}, \omega, \omega q, \omega q^2, \omega q^3, \omega q^4) \]

and hence \(z \) is an element of \(G \) of order \(Q \).
Outline

1. Introduction
 - Common features

2. Basic concept
 - Main theorem
 - Preliminaries

3. Case 1
 - Case 1: $q \neq 2, 4$

4. Lemma 2

5. Case 2
 - Case 2: $q = 2, 4$

6. Conclusion

7. Bibliography
Lemma 2

Let $H = \langle x, y \rangle$, $H \leq G$. The group H acts irreducibly on the space V.
Outline

1. Introduction
 - Common features

2. Basic concept
 - Main theorem
 - Preliminaries

3. Case 1
 - Case 1: $q \neq 2, 4$

4. Lemma 2

5. Case 2
 - Case 2: $q = 2, 4$

6. Conclusion

7. Bibliography
Let now $q = 2$ or 4

The element $y \in G$, $|y|=3$ is the same like in Case 1 and

$$x = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & \eta & 0 & \eta^2 \\ 0 & 0 & 0 & \eta & 1 & \eta^2 \\ 0 & 0 & 0 & 0 & 0 & \eta \\ 0 & 0 & 1 & \eta & 0 & \eta^2 \\ 0 & 0 & 0 & \eta^2 & 0 & 0 \end{pmatrix}, \quad x \in G, |x| = 2.$$

Here $\langle \eta \rangle = F^*$.
\[z = xy = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & \eta^2 & \eta \\ 0 & 0 & 0 & 1 & \eta^2 & \eta \\ 0 & 0 & 0 & 0 & \eta & 0 \\ 0 & 1 & 0 & 0 & \eta^2 & \eta \\ 0 & 0 & 0 & 0 & 0 & \eta^2 \end{pmatrix} \]

The characteristic polynomial of \(z \) is \(f_z(t) = (t + \eta^2)g(t) \), where
\[
g(t) = t^5 + \eta^2 t^4 + \eta^2 t^3 + \eta^2 t^2 + (\eta^2 + \eta) t + \eta.
\]
It follows that both for \(q = 2 \) and \(q = 4 \) the element \(z \) has order \(q^5 - 1 = Q \).
Outline

1. Introduction
 - Common features
2. Basic concept
 - Main theorem
 - Preliminaries
3. Case 1
 - Case 1: \(q \neq 2, 4 \)
4. Lemma 2
5. Case 2
 - Case 2: \(q = 2, 4 \)
6. Conclusion
7. Bibliography
Now, in \overline{G}, the elements \overline{x}, \overline{y}, and \overline{z} have orders 2, 3, and $Q/(d, Q)$ in Case 1 (Q/d - Case 2), respectively. So the group $\overline{H} = \langle \overline{x}, \overline{y} \rangle$ has an element of order $Q/(d, Q)$ (or Q/d) and \overline{H} is irreducible on $P(V)$ as H is irreducible on V by Lemma 2. Lemma 1 implies that \overline{H} cannot be contained in any maximal subgroup of \overline{G}. Thus $\overline{H} = \overline{G}$ and $\overline{G} = \langle \overline{x}, \overline{y} \rangle$ is a $(2, 3)$-generated group.
Outline

1. Introduction
 - Common features

2. Basic concept
 - Main theorem
 - Preliminaries

3. Case 1
 - Case 1: $q \neq 2, 4$

4. Lemma 2

5. Case 2
 - Case 2: $q = 2, 4$

6. Conclusion

7. Bibliography
Bibliography

