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I. Anniversary: 150 Years of idempotents

An element a in a ring A is called an idempotent if a2 = a.
In 2020 we celebrate an anniversary of the idempotents – 150 years
of their discovery. The idempotents were introduced in Ring
Theory by Benjamin Peirce in 1870. Already 150 years their study
is among the main topics in Ring Theory and its applications. For
example the search in the database of Mathematical Reviews gives
more than 2600 publications with the word “idempotents” in the
title.



A couple of words for Benjamin Peirce

(Taken from https://mathshistory.st-andrews.ac.uk/
Biographies/Peirce Benjamin/)

Benjamin Peirce
4 April 1809 – 6 October 1880

Benjamin Peirce was a remarkable person. He spent the whole of
his career in Harvard, starting from 1831 until his death.



In the beginning of his career Peirce published a number of original
and mathematically elegant textbooks which turned to be too
difficult for the Amercian students. All of them were named An
Elementary Treatise: on Plane Trigonometry, on Spherical
Trigonometry, on Sound, on Algebra: To which are added
Exponential Equations and Logarithms, etc.



Peirce made contributions on a wide range of mathematical topics
– from celestial mechanics and geodesy in applied mathematics to
linear associative algebra and number theory in pure mathematics.
He helped determine the orbit of Neptune (discovered in 1846) and
calculated the perturbations produced by Neptune on the orbit of
Uranus and on the other planets.
Peirce introduced methods into the theory of errors applied to
observations which would allow faulty observations to be discarded.
There was an interesting consequence of this, namely that he was
called as an expert witness in a court case which concerned the
forging of the signature on a contested will.



Peirce was involved in a major way in the United States Coast
Survey, as director of the longitude determinations and then as
director of the institution, and overseeing the production of a map
of the United States. He organised expeditions by the Survey to
Sicily, Nagasaki, the Chatham Islands, and Alaska to observe
astronomical events.
In 1863 Pierce was one of the founders of the National Academy of
Sciences of the United States. He was also elected to the
American Philosophical Society (1842), the Royal Astronomical
Society (1850), and the Royal Society (1852).



The following text from the address of Peirce to the American
Association for the Year 1853 as its President shows his strong
believe in mathematics:
Mathematics is the great master-key, which unlocks every door of
knowledge, and without which no discovery – no discovery which
deserves the name, which is law and not isolated fact – has been or
ever can be made.



Back to the history of idempotents

Peirce presented his results to the National Academy of Sciences in
Washington in 1870 but they could not afford to print them.
By an initiative taken by Coast Survey staff, a lady without
mathematical training but possessing a fine hand was found who
could both read his ghastly script and write out the entire text 12
pages at a time on lithograph stones. As a result, in 1870 Peirce
published his seminal book
B. Peirce, Linear Associative Algebra, Washington, 1870.
http://www.math.harvard.edu/history/peirce algebra/index.html
The book was published lithographically at his own expense in 100
copies for distribution among his friends.





To my friends

This work has been the pleasantest mathematical effort of my life.
In no other have I seemed to myself to have received to full a
reward for my mental labor in the novelty and breadth of the
results. I presume that to the uninitiated the formulae will appear
cold and cheerless. But let it be remembered that, like other
mathematical formulae, they find their origin in the divine source
of all geometry. Whether I shall have the satisfaction of taking
part in their exposition, or whether that will remain for some more
profound expositor, will be seen in the future.

B.P.



With the agreement of Sylvester, editor of American Journal of
Mathematics, the book was reprinted posthumously in 1881 with
addenda of his son C.S. Peirce:
B. Peirce, Linear Associative Algebra, Reprinted: Am. J. Math. 4
(1881), 99-215, addenda: 215-229 (pp. 225-229 by C.S. Peirce).
It starts with the headnote
“This publication will, it is believed, supply a want which has been
long and widely felt, and bring within the reach of the general
mathematical public a work which may almost be entitled to take
rank as the Principia of the philosophical study of the laws of
algebraical operation.”



Benjamin Peirce deserves recognition, not only as a founding
father of American mathematics, but also as a founding father of
modern abstract algebra.
(Helena M. Pycior, Benjamin Peirce’s Linear Associative Algebra,
Isis 70 (254) (1979), 537-551.)



In his book Peirce invented the terms of idempotent and nilpotent
elements and used them to establish the foundations of a general
theory of linear associative algebra. In particular, he presented
multiplication tables for over 150 new algebras.



25. When an expression raised to the square or any higher power
vanishes, it may be called nilpotent; but when, raised to a square
or higher power, it gives itself as the result, it may be called
idempotent.
The defining equation of nilpotent and idempotent expressions are
respectively An = 0, and An = A; but with reference to idempotent
expressions, it will always be assumed that they are of the form

A2 = A,

unless it be otherwise distinctly stated.

Origin from classical Latin

Idempotence literally means “(the quality of having) the same
power”, from idem + potence (same + power).
Nilpotent: from nil (not any) + potent (having power) with literal
meaning “having zero power”.



Existence of idempotent and nilpotent elements





Translation in modern language

In every (nonzero) finite dimensional associative algebra, there is at
least one nonzero idempotent or one nonzero nilpotent element.
Proof. Let A be a finite dimensional associative algebra and let
a 6= 0 be an element of A. Since the algebra is finite dimensional,
there is an n such that the elements a, a2, . . . , an are linearly
dependent. Let n ≥ 2 be the minimal integer with the property

n∑
m=1

αma
m = 0

for some elements α1, α2, . . . , αn in the base field (αn 6= 0). Hence
for

b =
n∑

m=2

αma
m−1 we have (b + α1)a = 0 and b 6= 0.



From the equation (b + α1)a = 0 it is easy to deduce that

(b + α1)am = 0, (b + α1)b = 0.

If α1 6= 0, then (
− b

α1

)2

= − b

α1

and − b

α1
is an idempotent element. If α1 = 0, then

b2 = 0

and b is a nilpotent element.



Peirce decomposition





Translation

Every associative ring A with an idempotent i has the
decomposition as a direct sum

A = iAi ⊕ iA(1− i)⊕ (1− i)Ai ⊕ (1− i)A(1− i).

(If the ring is not unitary, then (1− i)a means a− ia.)
Proof. For a ∈ A we have a = ia + (a− ia) ∈ iA + (1− i)A. If
b ∈ iA ∩ (1− i)A, then b = ia1 = (1− i)a2,

ib = i(ia1) = i2a1 = ia1 = b, ib = i(1− i)a2 = (i − i2)a2 = 0.

Hence b = 0 and A = iA⊕ (1− i)A. Similarly for multiplication
from the right.



II. Idempotents of 2× 2 matrix rings
over rings of formal power series

(Following V. Drensky, Idempotents of 2× 2 matrix rings over
rings of formal power series, arXiv:2006.15070v1 [math.RA])



It is well known that the idempotents of the d × d matrix algebra
Md(F ) over a field F coincide with the diagonalizable matrices
with eigenvalues equal to 0 and 1.

In 1946 Foster described the commutative rings A with the
property that the idempotents in Md(A) are diagonalizable
for all d .
A.L. Foster, Maximal idempotent sets in a ring with unit, Duke
Math. J. 13 (1946), 247-258

In 1966 Steger showed that important classes of rings have this
property. Among them are polynomial rings in one variable over a
principal ideal ring (also with zero divisors) and polynomial rings in
two variables over a π-regular ring with finitely many idempotents.
(The ring A is π-regular if for any a ∈ A there exists an n such
that an ∈ anAan.)
A. Steger, Diagonability of idempotent matrices, Pac. J. Math. 19
(1966), 535-542.



The results of Foster and Steger were generalized also for matrices
over noncommutative rings.
G. Song, X. Guo, Diagonability of idempotent matrices over
noncommutative rings, Linear Algebra Appl. 297 (1999), Nos 1-3,
1-7.

Gómez-Torrecillas, Kutas, Lobillo and Navarro presented an
algorithm for computing a primitive idempotent of a central simple
algebra over the field Fq(x) of rational functions over the finite
field Fq with applications to coding theory.
J. Gómez-Torrecillas, P. Kutas, F.J. Lobillo, G. Navarro, Primitive
idempotents in central simple algebras over Fq(t) with an
application to coding theory, arXiv:2006.12116v1 [math.RA].



In 1967 J.A. Erdos proved that every singular matrix over a field is
a product of idempotent matrices.
J.A. Erdos, On products of idempotent matrices, Glasg. Math. J.
8 (1967), 118-122.

See also the recent preprint of Nguyen and the references there for
further developments in this direction.
D.Q.N. Nguyen, Effectively bounded idempotent generation of
certain 2× 2 singular matrices by idempotent matrices over real
quadratic number rings, arXiv:2006.00733v1 [math.NT].



We give also references to two papers by Ánh, Birkenmeier and
van Wyk:
P.N. Ánh, G.F. Birkenmeier, L. van Wyk, Idempotents and
structures of rings, Linear Multilinear Algebra 64 (2016), No. 10,
2002-2029.
P.N. Ánh, G.F. Birkenmeier, L. van Wyk, Peirce decompositions,
idempotents and rings, J. Algebra 564 (2020), 247-275.
In the first one the authors mimic the behavior of idempotents in
matrix rings in a more general setup. The second paper considers
different aspects of the study of idempotents in the classical spirit.



The following three papers which are related to the present talk:
For relations between the idempotents of A, A[X ] and A[[X ]]
where X is a finite set of variables:
G.F. Birkenmeier, J.Y. Kim, J.K. Park, On polynomial extensions
of principally quasi-Baer rings, Kyungpook Math. J. 40 (2000),
No. 2, 247-253.
and
P. Kanwar, A. Leroy, J. Matczuk, Idempotents in ring extensions, J
Algebra 389 (2013), 128-136.
For the properties of the idempotents in Zn:
K. Isham, L. Monroe, Arithmetic of idempotents in Z/mZ,
arXiv:2005.05248v1 [math.RA].



Problem

Describe explicitly the idempotents of the matrix rings Md(A) and
Md(A[x ]), respectively, over a commutative ring A and over the
polynomial ring A[x ] if the idempotents of A are known.



Partial results for 2× 2 matrix ring M2(Zn[x ])
for positive integers n with a small number of prime factors.

I Desctiption of the idempotents of M2(Zp[x ]), M2(Z2p[x ])
(p odd) and M2(Z3p[x ]) (for p prime, p > 3):
P. Kanwar, M. Khatkar, R.K. Sharma, Idempotents and units
of matrix rings over polynomial rings, Int. Electron. J.
Algebra 22 (2017), 147-169.

I Desctiption of the idempotents in M2(Zpq[x ]) and
M2(Zp2 [x ]), where p and q are any primes:
J.M.P. Balmaceda, J.P. Datu, Idempotents in certain matrix
rings over polynomial rings, Int. Electron. J. Algebra 27
(2020), 1-12.

I Description of the idempotents in M2(Zpqr [x ]) for three
pairwise different primes greater than 3:
G. Mittal, Non-trivial idempotents of the matrix rings over
polynomial ring Zpqr [x ], Serdica Math. J. 46 (2020), No. 1,
89-100.



The main step in the three papers in the previous slide is the
description of the idempotents in M2(A[x ]) where A is a
commutative ring without non-trivial (i.e. different from 0 and 1)
idempotents. Since this holds for A = Zn for n = p, p2 for p prime,
the authors apply the Chinese remainder theorem and the
Euler-Fermat theorem to handle the cases
n = p, 2p, 3p, p2, pq, pqr for p, q, r prime.

Question of Mittal

Find the idempotents in M2(Zn[x ]) for any square-free integer
n > 1.



Our main result

We simplify the ideas in the three papers cited two slide ago and
give an explicit presentation of the idempotents of M2(A[[X ]])
where A is a direct sum of a finite number of commutative rings
without non-trivial idempotents and A[[X ]] is the ring of formal
power series in an arbitrary (also infinite) set of commuting
variables.

Consequence

We describe the idempotents of M2(Zn[[X ]]) when n is an
arbitrary positive integer greater than 1.

Our proofs are very transparent and use well known elementary
arguments only. They are based on the Cayley-Hamilton theorem
(for 2× 2 matrices only), the Chinese remainder theorem and the
Euler-Fermat theorem.



We assume that X is an arbitrary set of commuting variables and
for a commutative ring A we consider the ring A[[X ]] of formal
power series in X .
First we present elementary straightforward proofs of some well
known facts on idempotents.



Lemma

(Partial case of a result of Birkenmeier, Kim, Park and Kanwar,
Leroy, Matczuk)
Let A be a commutative ring without non-trivial idempotents.
Then the ring A[[X ]] also has only trivial idempotents.

Proof. Let a(X ) = a0 + a1 + a2 + · · · ∈ A[[X ]] be an idempotent,
where ai is the homogeneous component of degree i of a(X ). Let
a(X ) /∈ A and a1 = · · · = ak−1 = 0, ak 6= 0. Since a2(X ) = a(X ),
comparing the homogeneous components of a(X ) and a2(X ) we
obtain that a20 = a0 in A and 2a0ak = ak . Since A has trivial
idempotents only, we have that either a0 = 1 or a0 = 0. Both
cases are impossible: If a0 = 1, then 2ak = ak and ak = 0; if
a0 = 0, then again ak = 0 which is a contradiction. Therefore the
idempotent a(X ) belongs to A and hence is trivial.



Proposition

(Partial case of a result of Kanwar, Khatkar, Sharma)
Let A be a commutative ring without non-trivial idempotents.
Then all idempotents in M2(A) are

a =

(
α β
γ 1− α

)
, I2 =

(
1 0
0 1

)
, 02 =

(
0 0
0 0

)
,

where α, β, γ ∈ A and α(1− α) = βγ.



Proof. Let

a =

(
α β
γ δ

)
∈ M2(A), α, β, γ, δ ∈ A,

be an idempotent. By the Cayley-Hamilton theorem we have

a2 − tr(a)a + det(a)I2 = 02.

Subtracting the equality a2 − a = 02 we obtain that

(tr(a)− 1)a = det(a)I2.

The determinant det(a) of a is an idempotent of A because the
equality a2 = a implies det(a) = det(a2) = det2(a). Hence
det(a) = 1 or det(a) = 0.



First, let det(a) = 1. Comparing the entries of the matrices in the
equality (tr(a)− 1)a = 02 we obtain that

(tr(a)− 1)α = (tr(a)− 1)δ = 1, (tr(a)− 1)β = (tr(a)− 1)γ = 0.

Hence (tr(a)− 1) is invertible in A. This implies that β = γ = 0
and α = δ 6= 0. Hence αI2 = a = a2 = α2I2 and α is an
idempotent. Therefore α = 1 and a = I2.



Now, let det(a) = 0. Hence (tr(a)− 1)a = 02 and

(tr(a)− 1)α = (tr(a)− 1)δ, (α + δ − 1)α = (α + δ − 1)δ = 0,

(−(α+δ−1))2 = (α+δ−1)α+(α+δ−1)δ−(α+δ−1) = −(α+δ−1).

We obtain that −(α+ δ − 1) is an idempotent and is equal to 1 or
0. The former case implies that −a = 02 and a = 02. In the latter
case δ = 1− α and a has the desired form (??). Since
det(a) = αδ − βγ = 0 we obtain the restriction α(1− α) = βγ. A
direct verification shows that all matrices of this form are
idempotents.



Corollary

Let A1, . . . ,As be commutative rings without non-trivial
idempotents and A = A1 ⊕ · · · ⊕ As be their direct sum. Then all
idempotents a(X ) ∈ M2(A[[X ]]) in the 2× 2 matrix ring with
entries from A[[X ]] are obtained by the following procedure. We
split the set of indices {1, . . . , s} in three parts

P = {p1, . . . , pk},Q = {q1, . . . , ql},R = {r1, . . . , rm}

and present A in the form A = AP ⊕ AQ ⊕ AR , where

AP =
⊕
p∈P

Ap,AQ =
⊕
q∈Q

Aq,AR =
⊕
r∈R

Ar .



We choose power series α(X ), β(X ), γ(X ) ∈ AP [[X ]] such that
α(X )(1− α(X )) = β(X )γ(X ). Then a(X ) = (aP(X ), I2, 02),
where I2 ∈ M2(AQ [[X ]]), 02 ∈ M2(AR [[X ]]) and

aP(X ) =

(
α(X ) β(X )
γ(X ) 1− α(X )

)
∈ M2(AP [[X ]]).



Proof. Since each Ai , i = 1, . . . , s, does not have non-trivial
idempotents, by the lemma the same holds for the rings of power
series Ai [[X ]]. Applying the proposition we obtain that the
idempotents in M2(Ai [[X ]]) are of the form

ai (X ) =

(
αi (X ) βi (X )
γi (X ) 1− αi (X )

)
, αi (X )(1−αi (X )) = βi (X )γi (X ),

where αi (X ), βi (X ), γi (X ) ∈ Ai [[X ]], or ai (X ) = I2, or ai (X ) = 02.
We present the set {1, . . . , s} as a disjoint union of three subsets
P,Q and R, where p ∈ P if ap(X ) is of the form

ai (X ) =

(
αi (X ) βi (X )
γi (X ) 1− αi (X )

)
, αi (X )(1−αi (X )) = βi (X )γi (X ),

q ∈ Q if aq(X ) = I
(q)
2 (the identity matrix in M2(Aq[[X ]])) and

r ∈ R if ar (t) = 0
(r)
2 (the zero matrix in M2(Ar [[X ]])).



Let

a(X ) = (ap1(X ), . . . , apk (X )) ∈ Ap1 [[X ]]⊕ · · · ⊕ Apk [[X ]].

Since AP [[X ]] = Ap1 [[X ]]⊕ · · · ⊕ Apk [[X ]], we obtain that a(X )
has the form

aP(X ) =

(
α(X ) β(X )
γ(X ) 1− α(X )

)
∈ M2(AP [[X ]])

and
α(X ) = (αp1(X ), . . . , αpk (X )),
β(X ) = (βp1(X ), . . . , βpk (X )),
γ(X ) = (γp1(X ), . . . , γpk (X ))

satisfy the relation α(X )(1− α(X )) = β(X )γ(X ) because the
coordinate power series αp(X ), βp(X ), γp(X ) satisfy
αp(X )(1− αp(X )) = βp(X )γp(X ) for all p = p1, . . . , pk .



Obviously (I
(q1)
2 , . . . , I

(ql )
2 ) equals the identity matrix in

M2(AQ [[X ]]) and (0
(r1)
2 , . . . , 0

(rl )
2 ) is the zero matrix in

M2(AR [[X ]]) which completes the proof.



We shall apply the latter corollary for A = Zn, n > 1. We need the
following well known fact.

Lemma

Let p be a prime and d > 0. Then all the idempotents of the ring
Zpd are trivial.

Proof. Let α ∈ Z be such that its image α in Zpd is an

idempotent. Hence α2 − α ≡ 0 (mod pd) and pd divides α(α− 1).
Since α and α− 1 are coprime, we have that either pd divides α
and α = 0 in Zpd , or pd divides α− 1 and α = 1 in Zpd .



The following theorem was the main motivation to start the
present project.

Main theorem

Let n > 1 be a positive integer. Then all idempotents a(X ) in
M2(Zn[[X ]]) are obtained in the following way. We present n as a
product n = PQR of three pairwise coprime positive integers
P,Q,R. If P > 1 we choose three power series
α(X ), β(X ), γ(X ) ∈ Z[[X ]] such that
α(X )(1− α(X )) ≡ β(X )γ(X ) (mod P). Then modulo n

a(X ) ≡
(
α(X ) β(X )
γ(X ) 1− α(X )

)
,



where:
(i) If P,Q,R > 1, then

α(X ) ≡ (α(X ) + (1− α(X ))Pϕ(Q))(1− (PQ)ϕ(R)),

β(X ) ≡ β(X )(1− Pϕ(Q)ϕ(R)), γ(X ) ≡ γ(X )(1− Pϕ(Q)ϕ(R));

(ii) If P,Q > 1, R = 1, then

α(X ) ≡ α(X ) + (1− α(X ))Pϕ(Q), β(X ) ≡ β(X )(1− Pϕ(Q)),

γ(X ) ≡ γ(X )(1− Pϕ(Q));

(iii) If P,R > 1, Q = 1, then

α(X ) ≡ α(X )(1− Pϕ(R)), β(X ) ≡ β(X )(1− Pϕ(R)),

γ(X ) ≡ γ(X )(1− Pϕ(R));



(iv) If P = 1, Q,R > 1, then α(X ) ≡ 1− Qϕ(R),
β(X ) ≡ γ(X ) ≡ 0;
(v) If P > 1, Q = R = 1, then α(X ) ≡ α(X ), β(X ) ≡ β(X ),
γ(X ) ≡ γ(X );
(vi) If P = R = 1, Q > 1, then a(X ) ≡ I2;
(vii) If P = Q = 1, R > 1, then a(X ) ≡ 02,
and ϕ is the Euler totient function.



Proof. As in the paper by Kanwar, Khatkar and Sharma, if
n =

∏
pd , where p are the prime divisors of n, we present the ring

Zn as the direct sum of the rings Zpd . If a(X ) ∈ M2(Zn[[X ]]) is an
idempotent, using the lemma for the triviality of the idempotents
modulo powers of prime we can apply the latter corollary. We
divide the prime divisors of n in three groups {p1, . . . , pk},
{q1, . . . , ql} and {r1, . . . , rm} depending on the form of the
projection of a(X ) in M2(Zpd [[X ]]):
p ∈ {p1, . . . , pk} if ai (X ) ∈ M2(Z

p
di
i

[[X ]]) is of the form

ai (X ) =

(
αi (X ) βi (X )
γi (X ) 1− αi (X )

)
, αi (X )(1−αi (X )) = βi (X )γi (X ).

p ∈ {q1, . . . , ql} or p ∈ {r1, . . . , rm} if the projection is,
respectively, the identity matrix and the zero matrix.



Let P = pd11 · · · p
dk
k , Q = qe11 · · · q

el
l , R = r f11 · · · r fmm . The image of

a(X ) in M2(ZP [[X ]]) ∼= M2(Z
p
d1
1

[[X ]])⊕ · · · ⊕M2(Z
p
dk
k

[[X ]]) is of

the form

ai (X ) =

(
αi (X ) βi (X )
γi (X ) 1− αi (X )

)
, αi (X )(1−αi (X )) = βi (X )γi (X ).

If we choose the images of α(X ), β(X ), γ(X ) modulo pdii , we can
find their images modulo P using the Chinese reminder theorem.
The images of a(X ) in
M2(ZQ [[X ]]) ∼= M2(Zq1 [[X ]])⊕ · · · ⊕M2(Zql [[X ]]) and
M2(ZR [[X ]]) ∼= M2(Zr1 [[X ]])⊕ · · · ⊕M2(Zrm [[X ]]) are,
respectively, equal to the identity matrix and the zero matrix.
Since P,Q and R are pairwise coprime, it is sufficient to check
whether the form of a(X ) given in the cases (i) – (vii) in the
theorem satisfy the required conditions modulo P,Q and R.



We shall check this for α(X ) in the case (i) only. The other cases
are handled similarly. Since ϕ(Q), ϕ(R) ≥ 1, obviously

α(X ) ≡ (α(X )+(1−α(X ))Pϕ(Q))(1−(PQ)ϕ(R)) ≡ α(X ) (mod P).

By the Euler-Fermat theorem Pϕ(Q) ≡ 1 (mod Q). Hence

α(X ) ≡ (α(X ) + (1− α(X )) ≡ 1 (mod Q),

and in a similar way we establish that α(X ) ≡ 0 (mod R).



Appendix

During the talk Claudio Procesi made the remark that the
Quillen-Suslin theorem implies that if F is a field and X is a finite
set of commuting variables, then the idempotents in Md(F [X ]) are
diagonalizable. We present elementary arguments to confirm this
fact.



Recall that the A-module M, where A is a ring, is projective if M is
a direct summand of a free A-module, i.e. there exists another
A-module N such that the module M ⊕ N is isomorphic to the
direct sum of several (maybe an infinite number of) copies of the
ring A considered as an A-module.

The Serre conjecture

In 1955 Serre made the following remark known as the Serre
conjecture:
It is not known whether there exist projective A-modules of finite
type which are not free. (On ignore s’il existe des A-modules
projectifs de type fini qui ne soient pas libre.) Here A = F [X ]
where F is a field and X is a finite set of variables.
J.-P. Serre, Faisceaux algébriques cohérents, Ann. Math. (2) 61
(1955), 197-278.



In 1976 Quillen and Suslin confirmed into affirmative the Serre
conjecture.
D. Quillen, Projective modules over polynomial rings, Invent.
Math. 36 (1976), 167-171.
A.A. Suslin, Projective modules over a polynomial ring are free
(Russian), Dokl. Akad. Nauk SSSR 229 (1976), 1063-1066.
Translation: Sov. Math., Dokl. 17 (1976), 1160-1164.

The Quillen-Suslin theorem

If A is a principal ideal domain and |X | <∞, then every finitely
generated projective A[X ]-module is free.



Lemma

Let ε be an idempotent in the ring End(Ad) of endomorphisms of
the free d-generated A-module Ad . Then

Ad = Ker(ε)⊕ Im(ε)

and ε acts on Im(ε) as the identity map.

Proof. Every v ∈ Ad can be written in the form
v = (1− ε)v + εv . Since ε2 = ε we obtain that ε((1− ε)v) = 0
and ε(εv) = εv . Hence ε acts as the identity map on Im(ε) and
Ad = Ker(ε) + Im(ε). It is easy to see that Ker(ε) ∩ Im(ε) = 0
which implies that Ad = Ker(ε)⊕ Im(ε).



Theorem

Let A be a principal ideal domain and let |X | <∞. Then for all d
every idempotent matrix in Md(A[X ]) is diagonalizable with
eigenvalues equal to 0 and 1.

Proof. Let us consider the idempotent a ∈ Md(A[X ]) as the
matrix of a linear operator ε in the d-generated free A[X ]-module
A[X ]d with basis {v1, . . . , vd}. By the lemma
A[X ]d = Ker(ε)⊕ Im(ε) and ε acts on Im(ε) as the identity map.
By the Quillen-Suslin theorem both Ker(ε) and Im(ε) are free
A[X ]-modules. We fix bases {w1, . . . ,wm} and {wm+1, . . . ,wd} of
Ker(ε) and Im(ε), respectively. Then the matrix b of ε with
respect to the basis {w1, . . . ,wd} is diagonal with eigenvalues 0
and 1 only. Clearly the matrices a and b are similar and hence a is
diagonalizable.



Corollary

Let A = A1 ⊕ · · · ⊕ As be a direct sum of a finite number of
principal ideal domains A1, . . . ,As and let |X | <∞. Then every
idempotent matrix in Md(A[X ]) is diagonalizable.

The proof follows immediately from the theorem because a matrix
in Md(A[X ]) is diagonalizable if and only if its projections on
Md(Ai [X ]) are diagonalizable for all i = 1, . . . , s.



Corollary

Let n > 1 be a square-free integer and let |X | <∞. Then every
idempotent matrix in Md(Zn[X ]) is diagonalizable.

Again, the proof is straightforward because if n = p1 · · · ps is
square-free, where pi are the prime factors of n, then Zn is a direct
sum of the prime fields Zpi , i = 1, . . . , s.



Remark

If A is a direct sum of principal ideal domains then the eigenvalues
of the idempotent matrices in Md(A[X ]) may be different from 0
and 1 and the diagonal form may be not unique.

Example (eigenvalues different from 0 and 1)

Let A = Z6
∼= Z2 ⊕ Z3 and

a =

(
3(1 + x) 3(1 + x)

3x 3x

)
∈ M2(Z6[x ]), a2 = a,

c =

(
1 + 3x 3

3x 1

)
∈ GL2(Z6[x ]), b = c−1ac =

(
3 0
0 0

)
.



Example (the diagonal form is not unique)

Let A = Z6
∼= Z2 ⊕ Z3 and

a =

(
1 + x 1 + x

5x 5x

)
∈ M2(Z6[x ]), a2 = a,

c1 =

(
1 + x 5

5x 1

)
∈ GL2(Z6[x ]), b1 = c−11 ac1 =

(
1 0
0 0

)
,

c2 =

(
1 + 3x 1 + 4x
2 + 3x 3 + 2x

)
∈ GL2(Z6[x ]), b2 = c−12 ac2 =

(
3 0
0 4

)
.


