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The Geography of Applied Systems of Logic

Many applied systems of logic are embeddable into Second Order Predicate Logic,

and are extensions of (Classical) Propositional Logic

Second Order Predicate Logic is computationally hard, unsolvable on the whole.

Wrt complexity, the images of applied logics vary.

For efficiency, applied logics have application-specific constructs in their languages.

Systems of applied logic are embeddable in each other too.

In case the target logic is tractable, the embedded logic is automatically supplied

some tractability, depending on the possibility of blowups upon the embedding.

This talk is on an example of that.
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Plan of Talk

Our application is strategic reasoning of finitely many players.

We discuss an extension of QCTL∗ (a target logic for embedding ATLs) for

reasoning about temporary coalitions as opposed to ATLs’ inherent permanent

ones.

Our scope is complete information concurrent games with LTL-definable objectives.

We include preference between finitely many objectives, for each player.

To this end, we extend strategy profiles to account of temporary coalitions and

augment the established embedding technique of ATL into QCTL∗ by adding

(1) A propositional vocabulary for naming both decisions and evolving coalition

structure.

(2) A temporal form of an established binary preference operator.

We give the part of axiomatisations for (1) and (2) that is specific to time.

We illustrate the vocabulary upon presenting some derived constructs it enables.
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Preliminaries: Concurrent Game Models (CGM)

Ag = {1, . . . , N} - players, AP 6= ∅ - atomic propositions

〈W,w0, 〈Act i : i ∈ Ag〉, o, V 〉 - CGM for Ag and AP

W 6= ∅ - the statespace; w0 - the initial state;

Act i 6= ∅ - the actions of player i ∈ Ag ; ActΓ =̂
∏
i∈Γ

Act i;

o : W ×ActAg → W - outcome function.

V ⊆ W ×AP - valuation.

w =̂w0w1 . . . ∈ W+ ∪Wω

The set of the infinite continuations of w ∈ W+:

Rinf
M (w) =̂ {v ∈ Wω : v0 . . .v|w|−1 = w, (∀k < ω)(∃a ∈ ActAg)(vk+1 = o(vk, a))}

Strategies s : W+ → Act i (for player i ∈ Ag)

s = 〈si : i ∈ Γ〉 - a strategy profile for Γ ⊆ Ag ; SΓ - the set of all SPs for Γ.
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Preliminaries: CTL∗ and ATL∗ with Past on CGMs

CTL : M = 〈W,w0, R, V 〉, ATL : M = 〈W,w0, 〈Act i : i ∈ Ag〉, o, V 〉
ϕ ::= ⊥ | p | ϕ ⇒ ϕ | ∃ψ︸︷︷︸

CTL

| 〈〈Γ〉〉ψ︸ ︷︷ ︸
ATL

ψ ::= ϕ | ψ ⇒ ψ | ©ψ | (ψUψ) | ªψ | (ψSψ)

The outcome of following s ∈ SΓ after finite play w:

out(w, s) =̂ {v ∈ Rinf
M (w) : (∀k ≥ |w|)(∃b ∈ ActAg\Γ)(vk = o(vk−1, s(v0 . . .vk−1) ∪ b))}

M,w |= p iff V (w|w|−1, p) for p ∈ AP

M,w |= ⊥, (ϕ ⇒ ψ) and >,¬,∨,∧,⇔ as in classical propositional logic

M,w |=CTL∗ ∃ϕ iff M,v, |w| − 1 |= ϕ for some v ∈ Rinf
M (w)

M,w |=ATL∗ 〈〈Γ〉〉ϕ iff there exists an s ∈ SΓ s. t. M,v, |w| − 1 |= ϕ for all v ∈ out(w, s)

M,w, k |= ©ϕ,ªϕ, (ϕUψ), (ϕSψ), and 3, 2, 3−, ¯ − as in LTL

∀ =̂¬∃¬, [[.]] =̂¬〈〈.〉〉¬.
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The (genetic) Relationship between ATL and CTL

CTL : M = 〈W,w0, R, V 〉, ATL : M = 〈W,w0, 〈Act i : i ∈ Ag〉, o, V 〉

M,w |= ∃ϕ iff M,v, |w| − 1 |= ϕ for some v ∈ Rinf
M (w)

M,w |= 〈〈Γ〉〉ϕ iff there exists an s ∈ SΓ s. t. M,v, |w| − 1 |= ϕ for all v ∈ out(w, s)

For R(w, v) ↔ (∃a ∈ ActAg)(v = oT (w, a)), the path quantifier is a special case

of 〈〈.〉〉: ∀ = 〈〈∅〉〉, ∃ = [[∅]] = ¬∀¬

CTL∗ (with past) can be viewed as the sublanguage of ATL∗ with state formulas

of the form

ϕ ::= ⊥ | p | ϕ ⇒ ϕ | ∀ψ where ∀ =̂ 〈〈∅〉〉, ∃ =̂ [[∅]] = ¬∀¬
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Unwindings CGMs and the Tree Semantics of CTL∗

The unwinding MT =̂ 〈WT , wT
I , 〈Act i : i ∈ Ag〉, oT , V T 〉 of M is defined as

follows:

WT =̂ W (ActAg W )∗ oT (w0a1 · · ·anwn,b) =̂ w0a1 · · ·anwnbo(wn,b)

wT
I =̂ wI V T (w0a1 · · ·anwn, p) =̂ V (wn, p)

MT and M are bisimilar and Rinf
M (wI) and Rinf

MT (wT
I ) are isomorphic. Importantly,

oT is invertible.
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Propositional Quantification (on CGMs)

Propositional Quantification wrt the state semantics:

MX
p =̂ 〈W,wI , 〈Act i : i ∈ Ag〉, o, V X

p 〉 where

V X
p (w, p) ↔ w ∈ X and V X

q (w, q) ↔ V (w, q) for q ∈ AP \ {p}.
M,w |=s ∃pϕ iff there exists an X ⊆ W s. t. MX

p |= ϕ

The tree semantics allows quantified variables to have different values in the

various occurrences of the same state along paths. Equivalently

M,w |=t ∃pϕ iff MT ,wT |=s ∃pϕ

The Kripke model 〈WT , RT , V T 〉 where

RT (w, v) ↔ (∃a ∈ ActAg)(v = oT (w,a))

is a tree one. Crucially, propositionally quantified CTL∗ is decidable wrt the tree

semantics (Tim French, 2001).
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Some Limitations of ATL’s Game-theoretic Construct

The straightforward use of 〈〈.〉〉 refers to permanent coalitions.

〈〈Γ〉〉 . . ., is about Γ playing against Ag \ Γ.

The Setting in This Talk

Objectives are individual to each player.

Players’ objectives are ordered by preference.

These orderings are known to all.

Players revise their alliances at every move.
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Naming Strategies in Propositionally Quantified CTL∗ as

Known

Given a strategy profile s : W+ → ActΓ, in MT , let

finitePlay(s) =̂ {oT (w|w|−1, s(w|w|−1)∪b) : w ∈ Rfin
MT (wT

I ),b ∈ Act−Γ}. (1)

Then, because of the invertibility of oT , given a v ∈ Rfin
M (wI) ⊆ WT ,

w ∈ finitePlay(s) iff w ≥ 2 and w|w|−1 = o(w0 · · ·w|w|−2, s(w|v|−2) ∪ b)

for some b ∈ Act−Γ. For s ∈ AP such that

JsKMT = {w|w|−1 : w ∈ finitePlay(s)}, s can be recovered from JsKMT and

s ∈ AP can be used to name s.

Assuming that δΓ(s) restricts s to range over X ⊆ WT which have the form (1),

(MT )finitePlay(s)
s ,w |= 〈〈Γ〉〉ϕ ⇔ ∃s(δΓ(s) ∧ ∀(2©s ⇒ ϕ)

This is how strategies are named using a propositional vocabulary in CTL∗ in tree

models. If only some finite set of objectives is relevant, then this works in

corresponding finite quotients of the tree model too.

10



Strategy Profiles for Temporary Coalitions

A Strategy Profile with Temporary Coalitions (SPTC) s is a mapping of type

Rinf(wI) → ActAg × part(Ag).

SPTCs are prescriptions both strategies and coalition structure.

Upon w, s(w) = 〈a, C〉 prescribes coalition structure C and a|Γ as the local

decision of Γ, Γ ∈ C.
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Strategy Profiles for Temporary Coalitions

Naming an SPTC s takes a system of propositions s =̂ 〈sΓ : Γ ⊆ Ag〉. Let

finitePlayΓ(s) =̂ {oT (w|w|−1,a|Γ ∪ b) : w ∈ Rfin
MT (wT

I ), 〈a, C〉 = s(w), Γ ∈ C,b ∈ Act−Γ}.
Then

(MT )〈finitePlayΓ(s):Γ⊆Ag〉
〈sΓ:Γ⊆Ag〉 ,v |= sΓ indicates that

v|v|−1 can be reached from v|v|−2 by Γ’s part of the C-partitioned decision for

v0 · · ·v|v|−2 with the express condition that Γ acts as a coalition.

Assuming that δΓ(z) constrains z to denote any decision by Γ,

∃z(δΓ(z) ∧ ∀©(z ∧ s−Γ ⇒ ϕ))

means that Γ can enforce ϕ (in one step) provided that −Γ go for an s−Γ-move as

a coalition.

s =̂ 〈sΓ : Γ ⊆ Ag〉 can be axiomatically constrained to express SPTC.
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Preference and LTL-definable Ordered Objectives

Ag , AP , 〈W,w0, 〈Act i : i ∈ Ag〉, o, V, 〈<i: i ∈ Ag〉〉
<i - partial orders on Rinf

M (wI) ⊆ Wω, expressing i’s preference, i ∈ Ag

[w]i =̂ {v ∈ Rinf
M (wI) : (∀x ∈ Rinf

M (wI))(v <i x ↔ w <i x ∧ x <i v ↔ x <i v)}
We require Oi =̂ {[w]i : w ∈ Wω} to be finite partitions of Rinf

M (wI) into

LTL-definable classes, i.e., for every o ∈ Oi there exists a LTL formula θ s. t.

o = JθKM =̂ {w : M,w, 0 |= θ} are i’s objectives.

Coalitions have finer systems of objectives:

OΓ =̂ {∧
i∈Γ

oi : oi ∈ Oi}, o′ <Γ o′′ =̂
∧

i∈Γ

o′ <i o′′, Γ ⊆ Ag .
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Preference in the Temporal Language

Given path formulas ϕ1, ϕ2,

M,v |= ϕ1 <i ϕ2 iff w1 <i w2 for all wk ∈ Rinf
M (v) s. t. M,wk, |v| |= ϕk, k = 1, 2.

M,v |= ϕ1 6≮ iϕ2 iff w1 6<i w2 for all wk ∈ Rinf
M (v) s. t. M,wk, |v| |= ϕk, k = 1, 2.

Reference to Objectives as Stated wrt the Beginning of Time

[θ] =̂3−(I ∧ θ), then, e.g.,

M,w |= [θ] iff w ∈ Rfin
M (wI) can be extended to a play from JθKM .
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Example: Comparing Strategy Profiles with Temporary

Coalitions

s = 〈sΓ : Γ ⊆ Ag〉, t = 〈tΓ : Γ ⊆ Ag〉 - vocabularies for strategy profiles

Forming alliances as in s is no worse for i than as in t:

6<i (s, t) =̂
∧

θ′∈Θi

(
∀(2©t̃Ag ⇒ θ′) ⇒ ∨

θ′′∈Θi

∀(2©s̃Ag ⇒ θ′′) ∧ θ′′ 6<i θ′
)

s ∼i t =̂∀2©
( ∧

i∈Γ⊆Ag

sΓ ⇔ tΓ

)
- s and t agree on i’s alliances and agendas

{Γ0, . . . , Γ2|Ag|−1} =̂P(Ag), ∀s =̂∀tΓ0 . . . ∀tΓ
2|Ag|−1

n

δAg(s) ∧ ∀t(δAg(t) ∧ s ∼i t ⇒6<i (s, t)) - teaming as in s is optimal for i

s w−i t =̂∀2©
( ∧

Γ⊆Ag\{i}
sΓ ⇒ tΓ

)
- s and t agree, except on i’s alliances and

agendas

δAg(s) ∧ ∀t(δAg(t) ∧ s w−i t ⇒6<i (s, t)) - teaming as in s is optimal for i, if

everyone else acts as in s.
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Axioms for Preference

The non-temporal archetype of this preference operator: Von Wright, 1963. Let

σ ∈ {< . 6≮ }. Then:

ϕ1σΓψ1 ∧ ∀©(ϕ2 ⇒ ϕ1) ∧ ∀©(ψ2 ⇒ ψ1) ⇒ ϕ2σΓψ2 (P1)

ϕ1σΓψ ∧ ϕ2σΓψ ⇔ (ϕ1 ∨ ϕ2)σΓψ (P2)

ϕσΓψ1 ∧ ϕσΓψ2 ⇔ ϕσΓ(ψ1 ∨ ψ2)

ϕ <Γ ψ ⇒ ∀©¬(ϕ ∧ ψ) (P3)

ϕ <Γ ψ ⇒ ψ 6≮ Γϕ

ϕ 6≮ Γψ ⇒ ¬(ϕ <Γ ψ)

ϕ <Γ ψ ∧ ψ <Γ χ ∧ ∃©ψ ⇒ ϕ <Γ χ (P4)

⊥σΓϕ, ϕσΓ⊥ (P5)

[ϕ]σΓ[ψ] ⇔ ∀2([ϕ]σΓ[ψ]) (P6)
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Axioms for a Given System of Objectives 〈ΘI,i, <i〉, i ∈ Ag

∃©(ϕ ∧ [θ]) ⇒ (ϕσΓψ ⇔ (ϕ ∨ [θ])σΓψ) (O1)

∃©(ψ ∧ [θ]) ⇒ (ϕσΓψ ⇔ ϕσΓ(ψ ∨ [θ]))
∨

θ∈ΘI,Γ

[θ],
∧

θ1,θ2∈ΘI,Γ

∀2([θ1] ⇔ [θ2]) ∨ ∀2¬([θ1] ∧ [θ2]) (O2)

[θ1] <Γ [θ2], resp. [θ1] 6≮ Γ[θ2], if θ1 <Γ θ2, resp. θ1 6<Γ θ2, is given. (O3)

σ ∈ {<, 6≮ }.
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Axioms with No Prespecified Objectives

Two axioms about the interaction of σi, σ ∈ {<, 6≮ }, with the separated normal

form [?] of PLTL formulas and the guarded normal form in (future) LTL.

{g0, . . . , g2|AP |−1} =̂

{
∧

p∈AP

εpp : εpis either ¬ or nothing, p ∈ AP

}
.

( ∧

k′
ªπ′k′ ⇒ ϕ′k′

)
σΓ

( ∧

k′′
ªπ′′k′′ ⇒ ϕ′′k′′

)
⇔

∧

k′,k′′
(π′k′ ∧ π′′k′′ ⇒ ϕ′k′σΓϕ′′k′′)

(P7)
( ∨

k<2|AP |

gk ∧©ϕt
k

)
σΓ

( ∨

k<2|AP |

gk ∧©ψt
k

)
⇔ ∀©

( ∨

k<2|AP |

gk ∧ ϕt
kσΓψt

k

)

(P8)
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The End
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