On the Lvov-Kaplansky conjecture

Pedro Fagundes

INSTITUTE OF MATHEMATICS, STATISTICS AND SCIENTIFIC COMPUTING STATE UNIVERSITY OF CAMPINAS

International Conference *Trends in Combinatorial Ring Theory* Dedicated to the 70th anniversary of Vesselin Drensky

September 20-24, 2021 - Sofia, Bulgaria

Introduction

Otherwise stated, all algebras considered in this talk are associative.

æ

-> -< ≣ >

Introduction

Otherwise stated, all algebras considered in this talk are associative.

Let $X = \{x_1, x_2, ...\}$ be a set a noncommuting variables and let $F\langle X \rangle$ be the free associative algebra generated by X.

Introduction

Otherwise stated, all algebras considered in this talk are associative.

Let $X = \{x_1, x_2, ...\}$ be a set a noncommuting variables and let $F\langle X \rangle$ be the free associative algebra generated by X.

Definition

Given a polynomial $f(x_1, \ldots, x_m) \in F\langle X \rangle$ and an *F*-algebra *A*, we define the image of *f* on *A* as

$$\mathit{Im}(f) = \{f(a_1, \ldots, a_m); a_1, \ldots, a_m \in A\}$$

1. f is a polynomial identity for A iff $Im(f) = \{0\}$;

æ

▶ < Ξ >

- 1. f is a polynomial identity for A iff $Im(f) = \{0\}$;
- 2. a polynomial f with zero constant term is a central polynomial for A iff $\{0\} \neq Im(f) \subset Z(A)$;

- 1. f is a polynomial identity for A iff $Im(f) = \{0\}$;
- 2. a polynomial f with zero constant term is a central polynomial for A iff $\{0\} \neq Im(f) \subset Z(A)$;
- 3. the image of f(x, y) = xy yx on $M_n(F)$ is equal to $sI_n(F)$ [K. Shoda(1936)/A. Albert, B. Muckenhoupt(1957)];

- 1. f is a polynomial identity for A iff $Im(f) = \{0\}$;
- 2. a polynomial f with zero constant term is a central polynomial for A iff $\{0\} \neq Im(f) \subset Z(A)$;
- 3. the image of f(x, y) = xy yx on $M_n(F)$ is equal to $sl_n(F)$ [K. Shoda(1936)/A. Albert, B. Muckenhoupt(1957)];
- 4. the image of f(x, y, z) = xyz zyx on $M_n(F)$ is equal to $M_n(F)$ [**D. Khurana**, **T. Lam** (2012)]

Basic properties for images of multilinear polynomials

1. Im(f) is closed under scalar product;

Basic properties for images of multilinear polynomials

- 1. Im(f) is closed under scalar product;
- 2. Im(f) is closed under conjugation by invertible elements of A;

Basic properties for images of multilinear polynomials

- 1. Im(f) is closed under scalar product;
- 2. Im(f) is closed under conjugation by invertible elements of A;
- 3. the linear span of Im(f) is a Lie ideal of A (an ideal of the Lie algebra $A^{(-)}$).

Taking $A = M_n(F)$ where $char(F) \neq 2$ or $n \neq 2$, we have the following

I. Herstein (1955)

The Lie ideals of $M_n(F)$ are $\{0\}, F, sl_n(F)$ and $M_n(F)$.

글 🖌 🔺 글 🛌

Taking $A = M_n(F)$ where $char(F) \neq 2$ or $n \neq 2$, we have the following

I. Herstein (1955)

The Lie ideals of $M_n(F)$ are $\{0\}, F, sI_n(F)$ and $M_n(F)$.

Corolary

If f is multilinear, then span(Im(f)) on $M_n(F)$ is $\{0\}, F, sI_n(F)$ or $M_n(F)$.

M. Bresar, I. Klep, Values of noncommutative polynomials, Lie skew-ideals and tracial Nullstellensätze, Math. Res. Lett. **16** (2009), 605-626

What to say about Im(f) on $M_n(F)$ in case f is a multilinear polynomial over F?

э

What to say about Im(f) on $M_n(F)$ in case f is a multilinear polynomial over F?

Lvov-Kaplansky conjecture

The image of a multilinear polynomial over F on $M_n(F)$ is a vector space.

What to say about Im(f) on $M_n(F)$ in case f is a multilinear polynomial over F?

Lvov-Kaplansky conjecture

The image of a multilinear polynomial over F on $M_n(F)$ is a vector space.

Equivalently,

Lvov-Kaplanky conjecture

The image of a multilinear polynomial over F on $M_n(F)$ is $\{0\}, F, sl_n(F)$ or $M_n(F)$.

Some positive solutions

Theorem

The image of a multilinear polynomial of degree 2 on $M_n(F)$ is $\{0\}, sl_n(F)$ or $M_n(F)$.

→ < ∃→

Some positive solutions

Theorem

The image of a multilinear polynomial of degree 2 on $M_n(F)$ is $\{0\}, sl_n(F)$ or $M_n(F)$.

Let $f(x, y) = \alpha xy + \beta yx$. If $\lambda = \alpha + \beta \neq 0$, then $A = f(\lambda^{-1}A, I_n)$. Hence $Im(f) = M_n(F)$. If $\lambda = 0$, then $f(x, y) = \alpha[x, y]$. Hence $Im(f) \in \{\{0\}, sI_n(F)\}$.

K. Dykema, I. Klep (2016)

If *n* is even or n < 17, then the image of a degree three multilinear polynomial on $M_n(\mathbb{C})$ is $\{0\}, sl_n(\mathbb{C})$ or $M_n(\mathbb{C})$.

K. Dykema, I. Klep (2016)

If *n* is even or n < 17, then the image of a degree three multilinear polynomial on $M_n(\mathbb{C})$ is $\{0\}, sl_n(\mathbb{C})$ or $M_n(\mathbb{C})$.

A. Kanel-Belov, S. Malev, L. Rowen (2012)

Let *F* be a quadratically closed field and let $f \in F\langle X \rangle$ be a multilinear polynomial. Then Im(f) on $M_2(F)$ is $\{0\}, F, sl_2(F)$ or $M_2(F)$.

The strictly upper triangular matrices case

Denote by $J = J(UT_n)$ the algebra of $n \times n$ strictly upper triangular matrices.

Denote by J^m the m-th power of J.

The strictly upper triangular matrices case

Denote by $J = J(UT_n)$ the algebra of $n \times n$ strictly upper triangular matrices.

Denote by J^m the m-th power of J.

Given a multilinear polynomial $f(x_1, \ldots, x_m) \in F\langle X \rangle$ we want to study Im(f) on J.

The strictly upper triangular matrices case

Denote by $J = J(UT_n)$ the algebra of $n \times n$ strictly upper triangular matrices.

Denote by J^m the m-th power of J.

Given a multilinear polynomial $f(x_1, \ldots, x_m) \in F\langle X \rangle$ we want to study Im(f) on J.

Note that $Im(f) \subset J^m$.

Moreover J satisfies the identity $x_1 \cdots x_n = 0$ and therefore we may assume m < n modulo Id(J).

Our main goal is to prove that modulo Id(J) we also have $Im(f) \supset J^m$.

Moreover J satisfies the identity $x_1 \cdots x_n = 0$ and therefore we may assume m < n modulo Id(J).

Our main goal is to prove that modulo Id(J) we also have $Im(f) \supset J^m$. That is, we want to prove the following theorem

P. Fagundes (2019)

Let $f(x_1, ..., x_m) \in F\langle X \rangle$ be a multilinear polynomial where F is any field. Then Im(f) on J is equal to J^m iff $f \notin Id(J)$.

Sketch of the proof:

Given a matrix $A \in J^m$, write $A = \sum_{i=m+1}^{n} A_i$, where A_i is the *i*-th diagonal of A. We will show that there exist $B_i, B_2, \ldots, B_m \in J$ such that $A_i = f(B_i, B_2, \ldots, B_m)$.

Sketch of the proof:

Given a matrix $A \in J^m$, write $A = \sum_{i=m+1}^{n} A_i$, where A_i is the *i*-th diagonal of A. We will show that there exist $B_i, B_2, \ldots, B_m \in J$ such that $A_i = f(B_i, B_2, \ldots, B_m)$.

It will follow that

$$A = \sum_{i=m+1}^{n} A_{i} = \sum_{i=m+1}^{n} f(B_{i}, B_{2}, \dots, B_{m}) = f(\sum_{i=m+1}^{n} B_{i}, B_{2}, \dots, B_{m})$$

Rewrite f as $\sum_{j=1}^{m} f_j$ where f_j is the sum of all monomials of f which j-th variable is equal to x_1 .

Taking
$$x_1^{(m+1)} = \sum_{k=1}^{n-1} y_k^{(m+1)} e_{k,k+1}, x_j = \sum_{k=1}^{n-1} y_k^{(j)} e_{k,k+1}$$
 where the
y's are commutative variables, we compute $f(x_1^{(m+1)}, x_2, ..., x_m)$

$$f(x_1^{(m+1)}, x_2, \dots, x_m) = \sum_{k=1}^{n-m} \left(y_k^{(m+1)} \sum_{\sigma \in S_m^{(1)}} \alpha_\sigma y_{k+1}^{(\sigma(2))} \cdots y_{k+m-1}^{(\sigma(m))} \right)$$
$$+ y_{k+1}^{(m+1)} \delta_2^{(m+1)}(x_2, \dots, x_m) + \dots + y_{k+m-1}^{(m+1)} \delta_m^{(m+1)}(x_2, \dots, x_m) e_{k,k+m}$$

n - m

where $y_{k+j-1}^{(m+1)} \delta_j^{(m+1)}(x_2, ..., x_m)$ stands for the (k, k+m) entry of the matrix $f_j(x_1^{(m+1)}, x_2, ..., x_m)$ and $S_m^{(1)} = \{\sigma \in S_m; \sigma(1) = 1\}$.

▲御▶ ▲屋▶ ▲屋▶

In order to find $B_{m+1}, B_2, \ldots, B_m$, we are looking for a solution of the following system

$$y_{k}^{(m+1)} \sum_{\sigma \in S_{m}^{(1)}} \alpha_{\sigma} y_{k+1}^{(\sigma(2))} \cdots y_{k+m-1}^{(\sigma(m))} + y_{k+1}^{(m+1)} \delta_{2}^{(m+1)}(x_{2}, \dots, x_{m})$$

$$+\cdots+y_{k+m-1}^{(m+1)}\delta_m^{(m+1)}(x_2,\ldots,x_m)=a_k^{(m+1)}, \text{ for } k=1,\ldots,n-m,$$

where
$$A_{m+1} = \sum_{k=1}^{n-m} a_k^{(m+1)} \boldsymbol{e}_{\boldsymbol{k},\boldsymbol{k}+\boldsymbol{m}}$$

æ

(* (B)) * (B))

Claim: there exist evaluations of the variables $y^{(2)}, \ldots, y^{(m)}$ by elements of F such that

$$\sum_{\sigma \in S_m^{(1)}} \alpha_\sigma y_{k+1}^{(\sigma(2))} \cdots y_{k+m-1}^{(\sigma(m))}$$

is nonzero for all k.

Then one can find a solution of the previous system recursively.

Claim: there exist evaluations of the variables $y^{(2)}, \ldots, y^{(m)}$ by elements of F such that

$$\sum_{\sigma \in S_m^{(1)}} \alpha_\sigma y_{k+1}^{(\sigma(2))} \cdots y_{k+m-1}^{(\sigma(m))}$$

is nonzero for all k.

Then one can find a solution of the previous system recursively. In others words, we are able to realize the first nonzero diagonal of J^m as an evaluation of f on some matrices in J. In order to define B_i we take x_2, \ldots, x_m as before and

$$x_1^{(i)} = \sum_{k=1}^{n-i+m} y_k^{(i)} \boldsymbol{e_{k,k+i-m}}, i = m+2, \dots, n$$

・ロト ・回 ト ・ ヨト ・ ヨト …

In order to define B_i we take x_2, \ldots, x_m as before and

$$x_1^{(i)} = \sum_{k=1}^{n-i+m} y_k^{(i)} \boldsymbol{e_{k,k+i-m}}, i = m+2, \dots, n$$

and then

$$f(x_1^{(i)}, x_2, \dots, x_m) = \sum_{k=1}^{n-i+1} \left(y_k^{(i)} \sum_{\sigma \in S_m^{(1)}} \alpha_\sigma y_{k+i-m}^{(\sigma(2))} \cdots y_{k+i-2}^{(\sigma(m))} \right. \\ \left. + y_{k+1}^{(i)} \delta_2^{(i)}(x_2, \dots, x_m) + \dots + y_{k+m-1}^{(i)} \delta_m^{(i)}(x_2, \dots, x_m) \right) \mathbf{e}_{k,k+i-1}.$$

æ

《曰》《聞》《臣》《臣》。

In order to define B_i we take x_2, \ldots, x_m as before and

$$x_1^{(i)} = \sum_{k=1}^{n-i+m} y_k^{(i)} \boldsymbol{e_{k,k+i-m}}, i = m+2, \dots, n$$

and then

$$f(x_1^{(i)}, x_2, \dots, x_m) = \sum_{k=1}^{n-i+1} \left(y_k^{(i)} \sum_{\sigma \in S_m^{(1)}} \alpha_\sigma y_{k+i-m}^{(\sigma(2))} \cdots y_{k+i-2}^{(\sigma(m))} \right. \\ \left. + y_{k+1}^{(i)} \delta_2^{(i)}(x_2, \dots, x_m) + \dots + y_{k+m-1}^{(i)} \delta_m^{(i)}(x_2, \dots, x_m) \right) e_{k,k+i-1}.$$

æ

《口》《聞》《臣》《臣》

Therefore each $A_i = f(B_i, B_2, ..., B_m)$ as we would like to prove.

We conclude $f(J) = J^m$.

э

< ロ > < 同 > < 三 > < 三 > 、

Therefore each $A_i = f(B_i, B_2, ..., B_m)$ as we would like to prove.

We conclude $f(J) = J^m$.

P. Fagundes (2019)

Let $f(x_1, \ldots, x_m) \in F\langle X \rangle$ where F is any field. Then Im(f) on J^k is equal to J^{mk} iff $f \notin Id(J^k)$.

References

- A. Albert, B. Muckenhoupt, On matrices of trace zero, Michigan Math. J. 4 (1957), 1–3.
- K. Dykema, I. Klep, Instances of the Kaplansky-Lvov multilinear conjecture for polynomials of degree three, Linear Algebra Appl. 508 (2016), 272–288.
- P. Fagundes, The images of multilinear polynomials on strictly upper triangular matrices, Linear Algebra Appl. 563 (2019), 287–301.
- I. Herstein, On Lie and Jordan rings of a simple associative ring, Amer. J. of Math. 77 (1955), 279–285.

- A. Kanel-Belov, S. Malev, L. Rowen, *The images* non-commutative polynomials evaluated on 2 × 2 matrices, Proc. Amer. Math. Soc. **140** (2012), 465–478.
- D. Khurana, T. Lam, Generalized commutators in matrix rings, Linear Multilin. Alg. 60 (2012), 797–827.
- K. Shoda, *Einige sätze über matrizen*, Jap. J. Math. 13 (1936), 361–365.

Thank you for your attention

FAPESP grant # 2019/16994-1

Pedro Fagundes On the Lvov-Kaplansky conjecture