On the Lvov-Kaplansky conjecture

Pedro Fagundes

INSTITUTE OF MATHEMATICS, STATISTICS AND SCIENTIFIC COMPUTING STATE UNIVERSITY OF CAMPINAS

International Conference Trends in Combinatorial Ring Theory Dedicated to the 70th anniversary of Vesselin Drensky

September 20-24, 2021 - Sofia, Bulgaria

Introduction

Otherwise stated, all algebras considered in this talk are associative.

Introduction

Otherwise stated, all algebras considered in this talk are associative.

Let $X=\left\{x_{1}, x_{2}, \ldots\right\}$ be a set a noncommuting variables and let $F\langle X\rangle$ be the free associative algebra generated by X.

Introduction

Otherwise stated, all algebras considered in this talk are associative.

Let $X=\left\{x_{1}, x_{2}, \ldots\right\}$ be a set a noncommuting variables and let $F\langle X\rangle$ be the free associative algebra generated by X.

Definition

Given a polynomial $f\left(x_{1}, \ldots, x_{m}\right) \in F\langle X\rangle$ and an F-algebra A, we define the image of f on A as

$$
\operatorname{Im}(f)=\left\{f\left(a_{1}, \ldots, a_{m}\right) ; a_{1}, \ldots, a_{m} \in A\right\}
$$

Some examples

1. f is a polynomial identity for A iff $\operatorname{Im}(f)=\{0\}$;

Some examples

1. f is a polynomial identity for A iff $\operatorname{Im}(f)=\{0\}$;
2. a polynomial f with zero constant term is a central polynomial for A iff $\{0\} \neq \operatorname{Im}(f) \subset Z(A)$;

Some examples

1. f is a polynomial identity for A iff $\operatorname{Im}(f)=\{0\}$;
2. a polynomial f with zero constant term is a central polynomial for A iff $\{0\} \neq \operatorname{Im}(f) \subset Z(A)$;
3. the image of $f(x, y)=x y-y x$ on $M_{n}(F)$ is equal to $s l_{n}(F)$ [K. Shoda(1936)/A. Albert, B. Muckenhoupt(1957)];

Some examples

1. f is a polynomial identity for A iff $\operatorname{Im}(f)=\{0\}$;
2. a polynomial f with zero constant term is a central polynomial for A iff $\{0\} \neq \operatorname{Im}(f) \subset Z(A)$;
3. the image of $f(x, y)=x y-y x$ on $M_{n}(F)$ is equal to $s l_{n}(F)$ [K. Shoda(1936)/A. Albert, B. Muckenhoupt(1957)];
4. the image of $f(x, y, z)=x y z-z y x$ on $M_{n}(F)$ is equal to $M_{n}(F)$ [D. Khurana, T. Lam (2012)]

Basic properties for images of multilinear polynomials 1. $\operatorname{Im}(f)$ is closed under scalar product;

Basic properties for images of multilinear polynomials

1. $\operatorname{Im}(f)$ is closed under scalar product;
2. $\operatorname{Im}(f)$ is closed under conjugation by invertible elements of A;

Basic properties for images of multilinear polynomials

1. $\operatorname{Im}(f)$ is closed under scalar product;
2. $\operatorname{Im}(f)$ is closed under conjugation by invertible elements of A;
3. the linear span of $\operatorname{Im}(f)$ is a Lie ideal of A (an ideal of the Lie algebra $\left.A^{(-)}\right)$.

Taking $A=M_{n}(F)$ where $\operatorname{char}(F) \neq 2$ or $n \neq 2$, we have the following
I. Herstein (1955)

The Lie ideals of $M_{n}(F)$ are $\{0\}, F, s I_{n}(F)$ and $M_{n}(F)$.

Taking $A=M_{n}(F)$ where $\operatorname{char}(F) \neq 2$ or $n \neq 2$, we have the following
I. Herstein (1955)

The Lie ideals of $M_{n}(F)$ are $\{0\}, F, s I_{n}(F)$ and $M_{n}(F)$.
Corolary
If f is multilinear, then $\operatorname{span}(\operatorname{Im}(f))$ on $M_{n}(F)$ is $\{0\}, F, s I_{n}(F)$ or $M_{n}(F)$.
M. Bresar, I. Klep, Values of noncommutative polynomials, Lie skew-ideals and tracial Nullstellensätze, Math. Res. Lett. 16 (2009), 605-626

What to say about $\operatorname{Im}(f)$ on $M_{n}(F)$ in case f is a multilinear polynomial over F ?

What to say about $\operatorname{Im}(f)$ on $M_{n}(F)$ in case f is a multilinear polynomial over F ?

Lvov-Kaplansky conjecture
The image of a multilinear polynomial over F on $M_{n}(F)$ is a vector space.

What to say about $\operatorname{Im}(f)$ on $M_{n}(F)$ in case f is a multilinear polynomial over F ?

Lvov-Kaplansky conjecture

The image of a multilinear polynomial over F on $M_{n}(F)$ is a vector space.
Equivalently,
Lvov-Kaplanky conjecture
The image of a multilinear polynomial over F on $M_{n}(F)$ is $\{0\}, F, s l_{n}(F)$ or $M_{n}(F)$.

Some positive solutions

Theorem
The image of a multilinear polynomial of degree 2 on $M_{n}(F)$ is $\{0\}, s I_{n}(F)$ or $M_{n}(F)$.

Some positive solutions

Theorem
The image of a multilinear polynomial of degree 2 on $M_{n}(F)$ is $\{0\}, s I_{n}(F)$ or $M_{n}(F)$.

Let $f(x, y)=\alpha x y+\beta y x$. If $\lambda=\alpha+\beta \neq 0$, then $A=f\left(\lambda^{-1} A, I_{n}\right)$. Hence $\operatorname{Im}(f)=M_{n}(F)$.
If $\lambda=0$, then $f(x, y)=\alpha[x, y]$. Hence $\operatorname{Im}(f) \in\left\{\{0\}, \operatorname{sln}_{n}(F)\right\}$.

K. Dykema, I. Klep (2016)

If n is even or $n<17$, then the image of a degree three multilinear polynomial on $M_{n}(\mathbb{C})$ is $\{0\}, s I_{n}(\mathbb{C})$ or $M_{n}(\mathbb{C})$.
K. Dykema, I. Klep (2016)

If n is even or $n<17$, then the image of a degree three multilinear polynomial on $M_{n}(\mathbb{C})$ is $\{0\}, s I_{n}(\mathbb{C})$ or $M_{n}(\mathbb{C})$.
A. Kanel-Belov, S. Malev, L. Rowen (2012)

Let F be a quadratically closed field and let $f \in F\langle X\rangle$ be a multilinear polynomial. Then $\operatorname{Im}(f)$ on $M_{2}(F)$ is $\{0\}, F, s l_{2}(F)$ or $M_{2}(F)$.

The strictly upper triangular matrices case

Denote by $J=J\left(U T_{n}\right)$ the algebra of $n \times n$ strictly upper triangular matrices.

Denote by J^{m} the m-th power of J.

The strictly upper triangular matrices case

Denote by $J=J\left(U T_{n}\right)$ the algebra of $n \times n$ strictly upper triangular matrices.

Denote by J^{m} the m-th power of J.

Given a multilinear polynomial $f\left(x_{1}, \ldots, x_{m}\right) \in F\langle X\rangle$ we want to study $\operatorname{Im}(f)$ on J.

The strictly upper triangular matrices case

Denote by $J=J\left(U T_{n}\right)$ the algebra of $n \times n$ strictly upper triangular matrices.

Denote by J^{m} the m-th power of J.

Given a multilinear polynomial $f\left(x_{1}, \ldots, x_{m}\right) \in F\langle X\rangle$ we want to study $\operatorname{Im}(f)$ on J.

Note that $\operatorname{Im}(f) \subset J^{m}$.

Moreover J satisfies the identity $x_{1} \cdots x_{n}=0$ and therefore we may assume $m<n$ modulo $\operatorname{ld}(J)$.

Our main goal is to prove that modulo $I d(J)$ we also have $\operatorname{lm}(f) \supset J^{m}$.

Moreover J satisfies the identity $x_{1} \cdots x_{n}=0$ and therefore we may assume $m<n$ modulo $\operatorname{ld}(J)$.

Our main goal is to prove that modulo $I d(J)$ we also have $\operatorname{Im}(f) \supset J^{m}$. That is, we want to prove the following theorem
P. Fagundes (2019)

Let $f\left(x_{1}, \ldots, x_{m}\right) \in F\langle X\rangle$ be a multilinear polynomial where F is any field. Then $\operatorname{Im}(f)$ on J is equal to J^{m} iff $f \notin \operatorname{Id}(J)$.

Sketch of the proof:

Given a matrix $A \in J^{m}$, write $A=\sum^{n} A_{i}$, where A_{i} is the i-th $i=m+1$ diagonal of A. We will show that there exist $B_{i}, B_{2}, \ldots, B_{m} \in J$ such that $A_{i}=f\left(B_{i}, B_{2}, \ldots, B_{m}\right)$.

Sketch of the proof:

Given a matrix $A \in J^{m}$, write $A=\sum^{n} A_{i}$, where A_{i} is the i-th $i=m+1$ diagonal of A. We will show that there exist $B_{i}, B_{2}, \ldots, B_{m} \in J$ such that $A_{i}=f\left(B_{i}, B_{2}, \ldots, B_{m}\right)$.

It will follow that

$$
A=\sum_{i=m+1}^{n} A_{i}=\sum_{i=m+1}^{n} f\left(B_{i}, B_{2}, \ldots, B_{m}\right)=f\left(\sum_{i=m+1}^{n} B_{i}, B_{2}, \ldots, B_{m}\right)
$$

Rewrite f as $\sum_{j=1}^{m} f_{j}$ where f_{j} is the sum of all monomials of f which
j-th variable is equal to x_{1}.

Taking $x_{1}^{(m+1)}=\sum_{k=1}^{n-1} y_{k}^{(m+1)} \boldsymbol{e}_{\boldsymbol{k}, \boldsymbol{k}+1}, x_{j}=\sum_{k=1}^{n-1} y_{k}^{(j)} \boldsymbol{e}_{\boldsymbol{k}, \boldsymbol{k}+1}$ where the
y 's are commutative variables, we compute $f\left(x_{1}^{(m+1)}, x_{2}, \ldots, x_{m}\right)$

$$
\begin{aligned}
& f\left(x_{1}^{(m+1)}, x_{2}, \ldots, x_{m}\right)=\sum_{k=1}^{n-m}\left(y_{k}^{(m+1)} \sum_{\sigma \in S_{m}^{(1)}} \alpha_{\sigma} y_{k+1}^{(\sigma(2))} \cdots y_{k+m-1}^{(\sigma(m))}\right. \\
& + \\
& \left.y_{k+1}^{(m+1)} \delta_{2}^{(m+1)}\left(x_{2}, \ldots, x_{m}\right)+\cdots+y_{k+m-1}^{(m+1)} \delta_{m}^{(m+1)}\left(x_{2}, \ldots, x_{m}\right)\right) \boldsymbol{e}_{\boldsymbol{k}, \boldsymbol{k}+\boldsymbol{m}}
\end{aligned}
$$

where $y_{k+j-1}^{(m+1)} \delta_{j}^{(m+1)}\left(x_{2}, \ldots, x_{m}\right)$ stands for the $(k, k+m)$ entry of the matrix $f_{j}\left(x_{1}^{(m+1)}, x_{2}, \ldots, x_{m}\right)$ and $S_{m}^{(1)}=\left\{\sigma \in S_{m} ; \sigma(1)=1\right\}$.

In order to find $B_{m+1}, B_{2}, \ldots, B_{m}$, we are looking for a solution of the following system

$$
\begin{aligned}
& \qquad y_{k}^{(m+1)} \sum_{\sigma \in S_{m}^{(1)}} \alpha_{\sigma} y_{k+1}^{(\sigma(2))} \cdots y_{k+m-1}^{(\sigma(m))}+y_{k+1}^{(m+1)} \delta_{2}^{(m+1)}\left(x_{2}, \ldots, x_{m}\right) \\
& +\cdots+y_{k+m-1}^{(m+1)} \delta_{m}^{(m+1)}\left(x_{2}, \ldots, x_{m}\right)=a_{k}^{(m+1)}, \text { for } k=1, \ldots, n-m, \\
& \text { where } A_{m+1}=\sum_{k=1}^{n-m} a_{k}^{(m+1)} \boldsymbol{e}_{\boldsymbol{k}, \boldsymbol{k}+\boldsymbol{m}}
\end{aligned}
$$

Claim: there exist evaluations of the variables $y^{(2)}, \ldots, y^{(m)}$ by elements of F such that

$$
\sum_{\sigma \in S_{m}^{(1)}} \alpha_{\sigma} y_{k+1}^{(\sigma(2))} \cdots y_{k+m-1}^{(\sigma(m))}
$$

is nonzero for all k.

Then one can find a solution of the previous system recursively.

Claim: there exist evaluations of the variables $y^{(2)}, \ldots, y^{(m)}$ by elements of F such that

$$
\sum_{\sigma \in S_{m}^{(1)}} \alpha_{\sigma} y_{k+1}^{(\sigma(2))} \cdots y_{k+m-1}^{(\sigma(m))}
$$

is nonzero for all k.

Then one can find a solution of the previous system recursively. In others words, we are able to realize the first nonzero diagonal of J^{m} as an evaluation of f on some matrices in J.

In order to define B_{i} we take x_{2}, \ldots, x_{m} as before and

$$
x_{1}^{(i)}=\sum_{k=1}^{n-i+m} y_{k}^{(i)} \boldsymbol{e}_{\boldsymbol{k}, \boldsymbol{k}+\boldsymbol{i}-\boldsymbol{m}}, i=m+2, \ldots, n
$$

In order to define B_{i} we take x_{2}, \ldots, x_{m} as before and

$$
x_{1}^{(i)}=\sum_{k=1}^{n-i+m} y_{k}^{(i)} \boldsymbol{e}_{\boldsymbol{k}, \boldsymbol{k}+\boldsymbol{i}-\boldsymbol{m}}, i=m+2, \ldots, n
$$

and then

$$
\begin{gathered}
f\left(x_{1}^{(i)}, x_{2}, \ldots, x_{m}\right)=\sum_{k=1}^{n-i+1}\left(y_{k}^{(i)} \sum_{\sigma \in S_{m}^{(1)}} \alpha_{\sigma} y_{k+i-m}^{(\sigma(2))} \cdots y_{k+i-2}^{(\sigma(m))}\right. \\
\left.+y_{k+1}^{(i)} \delta_{2}^{(i)}\left(x_{2}, \ldots, x_{m}\right)+\cdots+y_{k+m-1}^{(i)} \delta_{m}^{(i)}\left(x_{2}, \ldots, x_{m}\right)\right) \boldsymbol{e}_{\boldsymbol{k}, \boldsymbol{k}+\boldsymbol{i}-1}
\end{gathered}
$$

In order to define B_{i} we take x_{2}, \ldots, x_{m} as before and

$$
x_{1}^{(i)}=\sum_{k=1}^{n-i+m} y_{k}^{(i)} \boldsymbol{e}_{\boldsymbol{k}, \boldsymbol{k}+\boldsymbol{i}-\boldsymbol{m}}, i=m+2, \ldots, n
$$

and then

$$
\begin{gathered}
f\left(x_{1}^{(i)}, x_{2}, \ldots, x_{m}\right)=\sum_{k=1}^{n-i+1}\left(y_{k}^{(i)} \sum_{\sigma \in S_{m}^{(1)}} \alpha_{\sigma} y_{k+i-m}^{(\sigma(2))} \cdots y_{k+i-2}^{(\sigma(m))}\right. \\
\left.+y_{k+1}^{(i)} \delta_{2}^{(i)}\left(x_{2}, \ldots, x_{m}\right)+\cdots+y_{k+m-1}^{(i)} \delta_{m}^{(i)}\left(x_{2}, \ldots, x_{m}\right)\right) \boldsymbol{e}_{\boldsymbol{k}, \boldsymbol{k}+\boldsymbol{i}-1}
\end{gathered}
$$

Therefore each $A_{i}=f\left(B_{i}, B_{2}, \ldots, B_{m}\right)$ as we would like to prove.

We conclude $f(J)=J^{m}$.

Therefore each $A_{i}=f\left(B_{i}, B_{2}, \ldots, B_{m}\right)$ as we would like to prove.

We conclude $f(J)=J^{m}$.
P. Fagundes (2019)

Let $f\left(x_{1}, \ldots, x_{m}\right) \in F\langle X\rangle$ where F is any field. Then $\operatorname{Im}(f)$ on J^{k} is equal to $J^{m k}$ iff $f \notin \operatorname{Id}\left(J^{k}\right)$.

References

- A. Albert, B. Muckenhoupt, On matrices of trace zero, Michigan Math. J. 4 (1957), 1-3.
- K. Dykema, I. Klep, Instances of the Kaplansky-Lvov multilinear conjecture for polynomials of degree three, Linear Algebra Appl. 508 (2016), 272-288.
- P. Fagundes, The images of multilinear polynomials on strictly upper triangular matrices, Linear Algebra Appl. 563 (2019), 287-301.
- I. Herstein, On Lie and Jordan rings of a simple associative ring, Amer. J. of Math. 77 (1955), 279-285.
- A. Kanel-Belov, S. Malev, L. Rowen, The images non-commutative polynomials evaluated on 2×2 matrices, Proc. Amer. Math. Soc. 140 (2012), 465-478.
- D. Khurana, T. Lam, Generalized commutators in matrix rings, Linear Multilin. Alg. 60 (2012), 797-827.
- K. Shoda, Einige sätze über matrizen, Jap. J. Math. 13 (1936), 361-365.

Thank you for your attention

FAPESP grant \# 2019/16994-1

