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Introduction

Otherwise stated, all algebras considered in this talk are
associative.

Let X = {x1, x2, . . . } be a set a noncommuting variables and let
F 〈X 〉 be the free associative algebra generated by X .

Definition
Given a polynomial f (x1, . . . , xm) ∈ F 〈X 〉 and an F -algebra A, we
define the image of f on A as

Im(f ) = {f (a1, . . . , am); a1, . . . , am ∈ A}
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Some examples

1. f is a polynomial identity for A iff Im(f ) = {0};

2. a polynomial f with zero constant term is a central
polynomial for A iff {0} 6= Im(f ) ⊂ Z (A);

3. the image of f (x , y) = xy − yx on Mn(F ) is equal to sln(F )
[K. Shoda(1936)/A. Albert, B. Muckenhoupt(1957)];

4. the image of f (x , y , z) = xyz − zyx on Mn(F ) is equal to
Mn(F ) [D. Khurana, T. Lam (2012)]

Pedro Fagundes On the Lvov-Kaplansky conjecture 3 / 21



Some examples

1. f is a polynomial identity for A iff Im(f ) = {0};
2. a polynomial f with zero constant term is a central

polynomial for A iff {0} 6= Im(f ) ⊂ Z (A);

3. the image of f (x , y) = xy − yx on Mn(F ) is equal to sln(F )
[K. Shoda(1936)/A. Albert, B. Muckenhoupt(1957)];

4. the image of f (x , y , z) = xyz − zyx on Mn(F ) is equal to
Mn(F ) [D. Khurana, T. Lam (2012)]

Pedro Fagundes On the Lvov-Kaplansky conjecture 3 / 21



Some examples

1. f is a polynomial identity for A iff Im(f ) = {0};
2. a polynomial f with zero constant term is a central

polynomial for A iff {0} 6= Im(f ) ⊂ Z (A);

3. the image of f (x , y) = xy − yx on Mn(F ) is equal to sln(F )
[K. Shoda(1936)/A. Albert, B. Muckenhoupt(1957)];

4. the image of f (x , y , z) = xyz − zyx on Mn(F ) is equal to
Mn(F ) [D. Khurana, T. Lam (2012)]

Pedro Fagundes On the Lvov-Kaplansky conjecture 3 / 21



Some examples

1. f is a polynomial identity for A iff Im(f ) = {0};
2. a polynomial f with zero constant term is a central

polynomial for A iff {0} 6= Im(f ) ⊂ Z (A);

3. the image of f (x , y) = xy − yx on Mn(F ) is equal to sln(F )
[K. Shoda(1936)/A. Albert, B. Muckenhoupt(1957)];

4. the image of f (x , y , z) = xyz − zyx on Mn(F ) is equal to
Mn(F ) [D. Khurana, T. Lam (2012)]

Pedro Fagundes On the Lvov-Kaplansky conjecture 3 / 21



Basic properties for images of multilinear polynomials

1. Im(f ) is closed under scalar product;

2. Im(f ) is closed under conjugation by invertible elements of A;

3. the linear span of Im(f ) is a Lie ideal of A (an ideal of the Lie
algebra A(−)).
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Taking A = Mn(F ) where char(F ) 6= 2 or n 6= 2, we have the
following

I. Herstein (1955)

The Lie ideals of Mn(F ) are {0},F , sln(F ) and Mn(F ).

Corolary

If f is multilinear, then span(Im(f )) on Mn(F ) is {0},F , sln(F ) or
Mn(F ).

M. Bresar, I. Klep, Values of noncommutative polynomials, Lie
skew-ideals and tracial Nullstellensätze, Math. Res. Lett. 16
(2009), 605-626
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What to say about Im(f ) on Mn(F ) in case f is a multilinear
polynomial over F?

Lvov-Kaplansky conjecture

The image of a multilinear polynomial over F on Mn(F ) is a vector
space.

Equivalently,

Lvov-Kaplanky conjecture

The image of a multilinear polynomial over F on Mn(F ) is
{0},F , sln(F ) or Mn(F ).
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Some positive solutions

Theorem
The image of a multilinear polynomial of degree 2 on Mn(F ) is
{0}, sln(F ) or Mn(F ).

Let f (x , y) = αxy + βyx .
If λ = α + β 6= 0, then A = f (λ−1A, In). Hence Im(f ) = Mn(F ).
If λ = 0, then f (x , y) = α[x , y ]. Hence Im(f ) ∈ {{0}, sln(F )}.
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K. Dykema, I. Klep (2016)

If n is even or n < 17, then the image of a degree three multilinear
polynomial on Mn(C) is {0}, sln(C) or Mn(C).

A. Kanel-Belov, S. Malev, L. Rowen (2012)

Let F be a quadratically closed field and let f ∈ F 〈X 〉 be a
multilinear polynomial. Then Im(f ) on M2(F ) is {0},F , sl2(F ) or
M2(F ).
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The strictly upper triangular matrices case

Denote by J = J(UTn) the algebra of n × n strictly upper
triangular matrices.

Denote by Jm the m−th power of J.

Given a multilinear polynomial f (x1, . . . , xm) ∈ F 〈X 〉 we want to
study Im(f ) on J.

Note that Im(f ) ⊂ Jm.
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Moreover J satisfies the identity x1 · · · xn = 0 and therefore we may
assume m < n modulo Id(J).

Our main goal is to prove that modulo Id(J) we also have
Im(f ) ⊃ Jm.

That is, we want to prove the following theorem

P. Fagundes (2019)

Let f (x1, . . . , xm) ∈ F 〈X 〉 be a multilinear polynomial where F is
any field. Then Im(f ) on J is equal to Jm iff f /∈ Id(J).
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Sketch of the proof:

Given a matrix A ∈ Jm, write A =
n∑

i=m+1

Ai , where Ai is the i-th

diagonal of A. We will show that there exist Bi ,B2, . . . ,Bm ∈ J
such that Ai = f (Bi ,B2, . . . ,Bm).

It will follow that

A =
n∑

i=m+1

Ai =
n∑

i=m+1

f (Bi ,B2, . . . ,Bm) = f (
n∑

i=m+1

Bi ,B2, . . . ,Bm)
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Rewrite f as
m∑
j=1

fj where fj is the sum of all monomials of f which

j−th variable is equal to x1.

Taking x
(m+1)
1 =

n−1∑
k=1

y
(m+1)
k ek,k+1, xj =

n−1∑
k=1

y
(j)
k ek,k+1 where the

y ’s are commutative variables, we compute f (x
(m+1)
1 , x2, . . . , xm)
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f (x
(m+1)
1 , x2, . . . , xm) =

n−m∑
k=1

(
y
(m+1)
k

∑
σ∈S(1)

m

ασy
(σ(2))
k+1 · · · y (σ(m))

k+m−1

+y
(m+1)
k+1 δ

(m+1)
2 (x2, . . . , xm)+· · ·+y

(m+1)
k+m−1δ

(m+1)
m (x2, . . . , xm)

)
ek,k+m,

where y
(m+1)
k+j−1δ

(m+1)
j (x2, . . . , xm) stands for the (k , k + m) entry of

the matrix fj(x
(m+1)
1 , x2, . . . , xm) and S

(1)
m = {σ ∈ Sm;σ(1) = 1}.
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In order to find Bm+1,B2, . . . ,Bm, we are looking for a solution of
the following system

y
(m+1)
k

∑
σ∈S(1)

m

ασy
(σ(2))
k+1 · · · y (σ(m))

k+m−1 + y
(m+1)
k+1 δ

(m+1)
2 (x2, . . . , xm)

+ · · ·+ y
(m+1)
k+m−1δ

(m+1)
m (x2, . . . , xm) = a

(m+1)
k , for k = 1, . . . , n −m,

where Am+1 =
n−m∑
k=1

a
(m+1)
k ek,k+m
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Claim: there exist evaluations of the variables y (2), . . . , y (m) by
elements of F such that∑

σ∈S(1)
m

ασy
(σ(2))
k+1 · · · y (σ(m))

k+m−1

is nonzero for all k .

Then one can find a solution of the previous system recursively.

In others words, we are able to realize the first nonzero diagonal of
Jm as an evaluation of f on some matrices in J.
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In order to define Bi we take x2, . . . , xm as before and

x
(i)
1 =

n−i+m∑
k=1

y
(i)
k ek,k+i−m, i = m + 2, . . . , n

and then

f (x
(i)
1 , x2, . . . , xm) =

n−i+1∑
k=1

(
y
(i)
k

∑
σ∈S(1)

m

ασy
(σ(2))
k+i−m · · · y

(σ(m))
k+i−2

+y
(i)
k+1δ

(i)
2 (x2, . . . , xm) + · · ·+ y

(i)
k+m−1δ

(i)
m (x2, . . . , xm)

)
ek,k+i−1.
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Therefore each Ai = f (Bi ,B2, . . . ,Bm) as we would like to prove.

We conclude f (J) = Jm.

P. Fagundes (2019)

Let f (x1, . . . , xm) ∈ F 〈X 〉 where F is any field. Then Im(f ) on Jk

is equal to Jmk iff f /∈ Id(Jk).
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