The commutator-degree of a polynomial and images of multilinear polynomials

Joint work with Ivan Gonzales Gargate (arXiv:2106.12726)

Thiago Castilho de Mello

International Conference "Trends in Combinatorial Ring Theory" Dedicated to the 70th anniversary of Vesselin Drensky

If $f(x_1, \ldots, x_m) \in F\langle X \rangle$, then f defines a map (which will also be denoted by f)

$$\begin{array}{rccc} f: & M_k(F)^m & \longrightarrow & M_k(F) \\ & (A_1,\ldots,A_m) & \longmapsto & f(A_1,\ldots,A_m) \end{array}$$

Question (Kaplansky):

Which subsets of $M_k(F)$ are image of some polynomial $f \in F\langle X \rangle$?

Examples

- If $f(x_1,...,x_m) = x_1$, then $Im(f) = M_k(F)$.
- (Amitsur-Levitzki) If $St_{2k}(x_1, \ldots, x_{2k}) = \sum_{\sigma \in S_{2k}} (-1)^{\sigma} x_{\sigma(1)} \cdots x_{\sigma(2k)}$, then $Im(St_{2k}) = \{0\}$ in $M_{\epsilon}(E)$

then $Im(St_{2k}) = \{0\}$ in $M_k(F)$.

- If f(x₁, x₂) = [x₁, x₂], then Im(f) = sl_k(F), the set of trace zero matrices (Shoda, Albert and Muckenhoupt).
- If h(x₁, x₂, x₃, x₄) = [x₁, x₂] ∘ [x₃, x₄], then the image of h em M₂(F) is F (the set of scalar matrices).

Proposition

If $f \in F\langle X \rangle$, then Im(f) is invariant under conjugation by invertible matrices.

Proposition

If $f \in F\langle X \rangle$ is multilinear, then Im(f) is invariant under scalar multiplication.

Question (Lvov)

Let f be a multilinear polynomial over a field F. Is the image of f on the matrix algebra $M_k(F)$ a vector space?

The linear span of the image of a polynomial

Proposition Let $f \in F\langle X \rangle$. Then the linear span of Im(f) is a Lie Ideal in $M_k(F)$.

Theorem (Herstein) If *F* is an infinite field, any Lie ideal of $M_k(F)$ is one of the following:

 $M_k(F), sl_k(F), F \text{ or } \{0\}.$

Corollary Let $f \in F\langle X \rangle$. Then the linear span of Im(f) is one of the following:

 $M_k(F), sl_k(F), F \text{ or } \{0\}.$

Conjecture (Lvov-Kaplansky) Let $f(x_1, ..., x_m) \in F\langle X \rangle$ be a multilinear polynomial. Then Im(f) in $M_k(F)$ is one of the following:

 $M_k(F), sl_k(F), F \text{ or } \{0\}.$

Example

Example

Let $f(x) = x^k$. What is the image of f on $M_k(F), k \ge 2$?

- $f(E_{ii}) = E_{ii}$.
- $f(E_{ii}+E_{ij})=E_{ii}+E_{ij}$, if $i\neq j$.
- As a consequence, span $(Im(f)) = M_k(F)$.
- If $E_{ij} \in \text{Im}(f)$, $i \neq j$, then $E_{ij} = A^k$, for some $A \in M_k(F)$.
- Since E_{ij} is nilpotent, so is A.
- Then $A^k = 0$, and $E_{ij} = 0$.
- In particular, Im(f) is not a vector subspace of $M_k(F)$.

Theorem (Kanel-Belov, Malev and Rowen, 2012 and Malev, 2014) If f is a multilinear polynomial evaluated on the matrix ring $M_2(F)$, where F is a quadratically closed field, or $F = \mathbb{R}$, then Im(f) is one of the following:

 $M_2(F), sl_2(F), F \text{ or } \{0\}.$

Theorem (Malev, 2014)

If f is a multilinear polynomial evaluated on the matrix ring $M_2(F)$ (where F is an arbitrary field), then Im(f) is either 0, F, or $sl_2 \subseteq Im(f)$.

Theorem (Kanel-Belov, Malev and Rowen, 2016) Let *F* be an algebraically closed field. Then the image of a multilinear polynomial $f \in F\langle X \rangle$ evaluated on $M_3(F)$ is one of the following:

- {0},
- F;
- a dense subset of sl₃(F);
- a dense subset of M₃(F);
- the set of 3-scalar matrices, or
- the set of scalars plus 3-scalar matrices.

The non-subspace ones have not been showed to be the image of any polynomial.

Problem

Let A be an associative algebra (or Lie, Jordan, or some algebra in your favorite variety) and let $f(x_1, \ldots, x_m)$ be a multilinear polynomial (multilinear in the free algebra in your favorite variety). Is the image of f is a vector subspace of A?

Theorem (Kanel-Belov, Malev, Rowen, 2017) For any algebraically closed field F of characteristic $\neq 2$, the image of any Lie polynomial f (not necessarily homogeneous) evaluated on $sl_2(F)$ is either $sl_2(F)$, or 0, or the set of trace zero non-nilpotent matrices.

Theorem (Špenko, 2012, Anzis, Emrich and Valiveti, 2015) The image of multilinear Lie polynomials of degree ≤ 4 on sl_k , su(k) and so(k) are vector subspaces.

Theorem (Ma and Oliva, 2016)

The image of any degree-three multilinear Jordan polynomial over the Jordan subalgebra of symmetric elements in $M_k(F)$ is a vector space.

Theorem (Malev, Pines, 2020)

The image of a (nonassociative) multilinear polynomial evaluated on the rock-paper-scissors algebra is a vector subspace.

Theorem (Malev, 2021)

If p is a multilinear polynomial evaluated on the quaternion algebra \mathbb{H} , then *Imp* is either 0, or $\mathbb{R} \subseteq \mathbb{H}$ (the space of scalar quaternions), or V (the space of vector quaternions), or \mathbb{H} . **Theorem (Fagundes, de Mello, 2018)** Let f be a multilinear polynomial of degree ≤ 4 . Then the image of f on $UT_k(F)$ is UT_k , J or J^2 .

Theorem (Fagundes, de Mello, 2018) If f is a multilinear polynomial, then the linear span of Im(f) on $UT_k(F)$ is $UT_k(F)$ or J^r , for some $r \ge 0$.

Theorem (Fagundes, 2018) Let $k \ge 2$ and $m \ge 1$ be integers. Let $f(x_1, \ldots, x_m) \in F\langle X \rangle$ be a nonzero multilinear polynomial. Then the image of f on strictly upper triangular matrices is either 0 or J^m .

Image of multilinear polynomials on UT_n - the solution

We have a strictly descending chain of T-ideals of $F\langle X \rangle$:

 $F\langle X\rangle \stackrel{\frown}{\Rightarrow} \langle [x_1, x_2] \rangle^T \stackrel{\frown}{\Rightarrow} \langle [x_1, x_2] [x_3, x_4] \rangle^T \stackrel{\frown}{\Rightarrow} \langle [x_1, x_2] [x_3, x_4] [x_5, x_6] \rangle^T \stackrel{\frown}{\Rightarrow} \cdots$

We say that f has commutator-degree r if $f \in \langle [x_1, x_2][x_3, x_4] \cdots [x_{2r-1}, x_{2r}] \rangle^T$ and $f \notin \langle [x_1, x_2][x_3, x_4] \cdots [x_{2r+1}, x_{2r+2}] \rangle^T$.

Proposition Let $f \in F\langle X \rangle$. Then f has commutator-degree r if and only if $f \in Id(UT_r)$ and $f \notin Id(UT_{r+1})$.

Lemma

Let A be a unitary algebra over F and let

$$f(x_1,\ldots,x_m)=\sum_{\sigma\in S_n}\alpha_{\sigma}x_{\sigma(1)}\cdots x_{\sigma(m)}.$$

be a multilinear polynomial in $F\langle X \rangle$.

1. If
$$\sum_{\sigma \in S_n} \alpha_{\sigma} \neq 0$$
, then $Im(f) = A$.
2. $f \in \langle [x_1, x_2] \rangle^T$ if and only if $\sum_{\sigma \in S_n} \alpha_{\sigma} = 0$.

Remark

The above characterizes the multilinear polynomials with commutator degree 0.

If $k \ge 1$, let $T_1, \ldots, T_k \subseteq \{1, \ldots, m\}$ and $1 \le t_1 < \cdots < t_k$ such that $\{1, \ldots, m\} = T_1 \bigcup \cdots \bigcup T_k \bigcup \{t_1, \ldots, t_k\}$

and let us denote by S(k, T, t) the subset of S_m consisting of all permutations σ satisfying:

•
$$\sigma(\{1, 2, \cdots, h_1 - 1\}) = T_1$$

• $\sigma(h_1) = t_1$

• if $i \in \{2, ..., k\}$, $\sigma(\{h_1 + \dots + h_{i-1} + 1, \dots, h_1 + \dots + h_i - 1\}) = T_i$

• if $i \in \{2, ..., k\}$, $\sigma(h_1 + \cdots + h_i) = t_i$

where $h_i = |T_i| + 1$.

And now consider the following sum of coefficients of f:

$$\beta^{(k,T,t)} = \sum_{\sigma \in S(k,T,t)} \alpha_{\sigma}$$

Theorem

Let $f(x_1, \ldots, x_m) = \sum_{\sigma \in S_n} \alpha_{\sigma} x_{\sigma(1)} \cdots x_{\sigma(m)}$ be a multilinear polynomial in $F\langle X \rangle$. Then the following assertions are equivalent.

- 1. The polynomial f has commutator-degree $r \ge 1$
- 2. For all k < r, and for any T, and t, we have $\beta^{(k,T,t)} = 0$ and there exist T, and t such that $\beta^{(r,T,t)} \neq 0$

Theorem (I. Gonzales, T. C. de Mello) Let $f \in F\langle X \rangle$ be a multilinear polynomial. Then the image of f on $UT_n(F)$ is J^r if and only if f has commutator-degree r. Let us consider the following descending chain of T-ideals in $F\langle X
angle$

$$F\langle X \rangle \stackrel{\sim}{\Rightarrow} \langle St_2 \rangle^T \stackrel{\sim}{\Rightarrow} \langle St_3 \rangle^T \stackrel{\sim}{\Rightarrow} \langle St_4 \rangle^T \stackrel{\sim}{\Rightarrow} \cdots$$

Define a polynomial f to be of *St-degree* k if

$$f \in \langle St_k \rangle^T$$
 and $f \notin \langle St_{k+1} \rangle^T$.

Problem

Characterize multilinear polynomials of St-degree k by means of its coefficients.

Thank you!