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A vector-based method is discussed for solving plane geometry problems. The method is
considered advantageous as an approach for presenting of, and educating in, the relevant
parts of plane geometry, as well as a practical vehicle for derivation and expression of
programs in computational geometry and computer graphics.

Introduction
The way geometry is taught in schools today has not changed significantly for quite a
long time: almost all results are obtained using century- or millenia-old techniques. This
venerable tradition serves remarkably well for exposing a vast amount of the subject of
geometry, but not all of it. A number of geometrical problems consist of finding or com-
paring point locations, distances, angles, and areas and are solved most efficatiously –
and aesthetically satisfying – by making use of vector calculus. These kinds of problems
appear to be practically important, as witnessed e. g. by their immense presence in com-
putational (algorithmic) geometry and computer graphics programming, but geometry
textbooks tend to avoid them, because the classical derivation tools do not handle many
of these problems easily, if at all.

The vector apparatus, introduced in different forms in the 19th century by Hamilton,
Grassmann, Gibbs, and others, is apparently still a new tool in geometry, and this is
reflected by both teaching it and applying it. Exposition to vectors in school is done
diffidently, scantly, and almost as an end in itself. In fact, it is usually confined to vector
addition and subtraction and multiplication by a scalar.

In our opinion, the limited presence of vectors in school geometry is partly due to
not considering, from the outset, a useful enough set of operations on vectors, as well as
techniques and methods that would have made use of these operations. The availability of
such operations, techniques, and methods in geometry would provide simple solutions to
many problems and thus justify a wider recognition of the place vector calculus deserves
in the discipline.

In this paper, we are going to show that very modest additions to the way vectors are
taught in plane geometry can lead to significantly widening the scope of application of
vector calculus for solving planar geometric problems.

Due to lack of space and for the sake of keeping the flow of presentation straight, proofs
and derivations are mentioned or sketched rather than given in full. None of them is hard
to reconstruct anyway.

Vector operations and equalities
We rely on the notion of a planar vector as usually introduced: a quantity that is de-
termined by its magnitude and direction and also satisfies certain rules of combination,
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such as admitting addition and subtraction with another vector, and multiplication by a
scalar, where addition is commutative and associative and multiplication is distributive
over addition as well as associative.

A scalar product of two vectors a and b is defined to be the product of the length of a
and the oriented projection of b onto a’s attitude. The scalar product is 0 when any of a
and b is of length 0, or when a and b are perpendicular. It is positive when b’s projection
has the same orientation as a and negative when the two orientations are opposite to each
other. The well known properties of the scalar product – commutativity, distrubutivity
etc. – follow easily from the definition.

We then define a “perp” operation on a vector a, denoted by a⊥, to mean the vector of
the same length as a, rotated at a right angle counterclockwise with respect to a. Thus for
any vector a 6= 0 the ordered pair (a,a⊥) can be used to represent the positive orientation
in the plane. Even more importantly, given a point O, such a vector provides a right
Cartesian coordinate system with origin O and axes a, a⊥.

Finally, we define the area product a× b of two vectors a and b as

a× b = a⊥ · b .

(The cross sign is also used to denote the vector (cross) product of spatial vectors. The
two kinds of products are definitely not unrelated, but of course the area product of planar
vectors is just a scalar, a special instance of the scalar product.)

It is easy to show that ⊥ and × satisfy the following relations for arbitrary vectors a,
b, and c and scalars k and k′.

(a⊥)⊥ = − a

(k a+ k′ b)⊥ = k a⊥+ k′ b⊥

a⊥ · b = − a · b⊥

a⊥ · b⊥ = a · b

a× b = −(b× a)

(k a+ k′ b)× c = k (a× c) + k′(b× c)

a× b⊥ = −(a⊥× b) = a · b
a⊥× b⊥ = a× b

|a× b| ≤ |a||b|

As a × b = 0 for any two collinear vectors, the area product is as useful test for
collinearity as the scalar product is for perpendicularity. Moreover, while the arithmetic
sign of a ·b indicates an acute or obtuse angle between a and b, that of a×b determines
orientation: a is left or right of b for a × b correspondingly negative or positive. The
“symmetricity” of the two kinds of products is further suggested by (a · b)2 + (a× b)2 =
a2b2 (which can be deduced by observing that the area product could have been defined
equivalently as the product of the length of a⊥ (or a) and the oriented projection of b
onto a⊥’s attitude).

The last observation also explains why we call × “area product”: in this form, it is
indeed the area of the parallelogram (or twice that of the triangle) spanned by the two
vectors involved. Taking into account the sign, it is in fact an oriented area. Thus, unlike
the scalar product, the area product has an immediate geometric interpretation!

For any three vectors p, u and v, where u × v 6= 0 we can resolve p with respect to
u and v by finding α and β in p = αu+ β v. Applying ×v and u× to this equation we
obtain α = (p× v)/(u× v) and β = (u× p)/(u× v), thus:

p =
1

u× v
((p× v)u+ (u× p)v) (1)

Substituting u⊥ for v we get:

p =
1

u2
((u · p)u+ (u× p)u⊥) (2)



The above general relations make expressing others possible. For example, given points
P and M and non-collinear vectors u and v the point P ′, obtained by reflecting P in the
direction of v off the line through M along u (affine reflection) is given by

P′ = M+
1

u× v
((
−−→
MP × v)u+ (

−−→
MP × u)v)

– P ′ has, along u and v, the same as P and the opposite components, respectively. For
the usual orthogonal reflection, v = u⊥:

P′ = M+
1

u2 ((
−−→
MP · u)u+ (

−−→
MP × u)u⊥) .

Changing the names and doing obvious rearrangements, (1) can be written in the more
symmetric form:

(p× q) r+ (q× r)p+ (r× p)q = 0 (3)

This equality holds true for any three vectors p, q and r, even collinear ones.
Note that, in (1) or (2), if we know u and v, as well as the products of p with these

two vectors, then p can be computed. It is often the case that the said products can be
found indirectly, as areas or projections. This constitutes a method for solving certain
problems: choose a vector u (or two vectors u and v), find the corresponding products,
then use (1) or (2) to obtain p. The method is illustrated by some of the examples in the
following section.

Indirectly computing an area product or a scalar product can bring other benefits, too.
Scalar-multiplying (3) by q and then substituting −p⊥ for p in the result yields:

(p · q) (q× r) + (p× q) (q · r) = (p× r)q2

(p · q) (q · r)− (p× q) (q× r) = (p · r)q2

which we identify as vector counterparts of the trigonometric equalities for the sine and
cosine of a sum of two angles.

If p and q are known, then any one of q×r, q ·r, and p×r can be obtained by knowing
the other two and using the former equality. Similarly, any one of q × r, q · r, and p · r
can be obtained by knowing the other two and using the latter equality.

That one can do calculations with vectors instead of trigonometric functions, as sug-
gested by the above and other equalities, can be seen as a methodological and practical
advantage. Methodological, because introducing angles and angle-specific calculations is
avoided until it is really needed; and practical, because purely algebraic expressions are
usually simpler to deal width than those involving trigonometry.

On the other hand, defining cosine and sine as horizontal and vertical projections of a
unit-length vector enables a smooth passage between vectors and angular functions due
to the obvious relation of sine and cosine to the area and scalar products. In particular,
the equalities a × b = |a||b| sin(a,b) and a · b = |a||b| cos(a,b) immediately become
available.

Rotation is an obvious example of using angle-related functions and vectors together.
Indeed, rotating a vector p to an angle ϕ about its initial point yields a result p′ whose
projections along p and p⊥ are proportional to cosϕ and sinϕ, correspondingly:

p′ = cosϕp+ sinϕp⊥ .

Finally, wherever needed, we can represent vectors by coordinates in a Cartesian coor-
dinate system and, accordingly, express all vector operations in terms of numeric calcula-
tions. Using the fact that if a vector has coordinates (x, y) (as a position vector of a point



with the same coordinates) then it equals x + y where x and y have coordinates (x, 0)
and (0, y), respectively, and the properties of the vector arithmetic, it is straightforward
to prove that vector addition, negation, subtraction and multiplication by a scalar are
coordinate-wise operations, and that if u = (x, y) and v = (x′, y′), then |u| =

√
x2 + y2,

u · v = xx′ + yy′, u⊥ = (−y, x), and u× v = xy′ − x′y.
Introducing vectors and operations on them without immediate reference to represen-

tation is methodologically right, not only because separation of concerns is a good idea in
itself, but also because a great many calculations can be carried out using only vectors;
the next section is dedicated entirely to illustrating precisely this. However, switching to
coordinate representation at some point, thus reducing all calculations to numeric ones,
is necessary in order to make problem solving a really practical activity. Without it,
problems are at best only solvable symbolically but not in terms of concrete numbers.
Unfortunately, to the extent vectors are present in the high-school curricula, in Bulgaria
at least, they are not only lacking essential operations but remain totally unrelated to
coordinates. Both of these hinder their use for problem solving.

The next section is a collection of examples of solving problems using the notation
and some of the techniques suggested above. The problems are simple but, amazingly,
the adequately simple expression of the results and of the derivations that lead to them
are not commonly seen in the many relevant books – whether high-school textbooks or
application-related texts for computer science students and programming practitioners
– or written software known to the author. In one case, a book discussing computer
programming of geometrical problems listed a program of at least 60 lines where there
should have been only several. Such is the power of the right choice of concepts and
notation – or the lack of them!

Examples

Example 1. Find the oriented distance d from a point P to a line through B1 and B2

– positive when P is to the left of −−−→B1B2 . Find the orthogonal projection P ′ of P on the
line.
Answer: d =

−−−→
B1B2 ×

−−−→
B1P

|−−−→B1B2 |
, P′ = B1 +

−−−→
B1B2 ·

−−−→
B1P

B1B
2
2

−−−→
B1B2 .

The oriented distance is the projection of −−−→B1P along −−−→B1B2

⊥
.
−−−→
B1P

′ is the projection
of the same vector along −−−→B1B2 .
Example 2. Find an equation for the line through given points B1 and B2.
Answer: −−−→PB1 ×

−−−→
B1B2 = 0 .

Follows immediately from collinearity.
Example 3. Find an equation for the line bisector of given points B1 and B2.
Answer: (P− (B1 +B2)/2) ·

−−−→
B1B2 = 0 .

Follows immediately from perpendicularity.
Parametric equations for the two examples above: P = B1 + s

−−−→
B1B2 and P = (B1 +

B2)/2 + s
−−−→
B1B2

⊥
.

Example 4. Given points B1, B2, S1, S2, and T find the oriented area a of the rectangle
with B1 and B2 on one of its sides, S1 and S2 on the adjacent sides, and T on the opposite
side. The area is positive when T is to the left of −−−→B1B2 .

Answer: a =
|−−−→B1B2 ·

−−−→
S1S2 |

−−−→
B1B2 ×

−−−→
B1T

B1B
2
2

.

The area is the product of the lengths of the sides of the rectangle, one of which can
be found through −−−→B1B2 ·

−−−→
S1S2 and the other – through −−−→B1B2 ×

−−−→
B1T .



Example 5. Given three non-collinear points A, B, and C, find the circumcentre S of
4ABC.

Answer: S = 1
2(A+B) + 1

2

−−→
CA ·
−−→
CB−−→

CA ×
−−→
CB

−−→
AB

⊥
.

S is the crosspoint of the line bisectors of AB and AC. Equating the parametric
equations of these lines, and multiplying e. g. by ·−−→AC yields an expression for one of the
parameters, which can be substituted back in the corresponding equation to obtain the
answer.
Example 6. Given three non-collinear points A, B, and C, find the incentre I of 4ABC.
Answer: I = A+ 1

2 p(AC ·
−−→
AB + AB · −−→AC ), where p is the semiperimeter of 4ABC.

Using (1), −→AI can be expressed as a linear combination of −−→AB and −−→AC , then expres-
sions for the doubled oriented areas of 4ABI, 4AIC, and 4ABC can be substituted for−−→
AB ×−→AI , −→AI ×−−→AC , and −−→AB ×−−→AC in the result. Those expressions make use of AB,
AC, p, and the inradius.
Example 7. Given a point P , non-collinear vectors u and v, and r > 0 find the centre
C of a circle with a radius r, inscribed between the rays with a common initial point P
and oriented towards u and v. Find the points of tangency A and B of the circle with
the rays.
Answer: If u×v > 0, thenC = P+ r

u× v (|v|u+|u|v), A = C−r u
⊥

|u| , and B = C+r v
⊥

|v| .
If u× v < 0, then u and v change places.

Using (1), −−→PC can be expressed as a linear combination of u and v, in which expressions
for the doubled areas of 4PAC and 4PCB can be substituted for u×−−→PC and −−→PC ×v.
The expressions make use of |u|, |v| and r. Then we find −−→CA and −−→CB as collinear to u⊥

and v⊥, respectively, and being of length r.
Example 8. Find the point of tangency of the tangent line through given point P to a
circle with centre C and radius r.
Answer: T = C+ r

d2 (r d+ s
√
d2 − r2 d⊥), where d =

−−→
CP . If s = 1, T is a point on the

line that is right-hand side tangent to the circle, and if s = −1 it is on the left-hand side
tangent.

If R is the right-hand side tangent point, resolving −−→CR with respect to d and d⊥ (using
(2)) we take into account d · −−→CR = r2 and d × −−→CR = r

√
d2 − r2, and similarly for the

left-hand side tangent point.
Example 9. Find the points of tangency of the common tangent lines of two circles.
Answer: Let the two circles have centres C1 and C2 and radii r1 and r2, correspondingly,
and let d =

−−−→
C1C2 and r = r1 + s1r2. The points in search are given by the formula

Ti = Ci + (−1)[i+s1=3] ri
d2 (r d + s2

√
d2 − r2 d⊥), where the subscript i = 1, 2 denotes a

point on the first and the second circle, respectively. s1 and s2 each take values 1 or
−1. For s1 = 1 we consider the two inner tangents, and for s1 = −1 – the outer ones.
For s2 = 1 the two lines tangent from the right to the first circle are considered, and for
s2 = −1 – the ones from the left.

Similar to the above problem, we resolve with respect to d and d⊥ and substitute for
the thus emerging scalar and area products, although there are more cases to consider
here which sum up in the result.
Example 10. Find a circle of radius r, tangent to a given line and passing through a
point P .
Answer: Let the line is defined by a point M on it and a direction vector u. There are
at most two circles of the wanted kind, and their centres are given by C1,2 =

−−−→
MP ′ +

1
|u|(±d

′ u+ s r u⊥), where d′ =
√
d(2r − d), d is the distance from P to the line, P ′ is the



projection of P on the line, and s = ±1 for P on the left/right of u.
We use (2) for resolving

−−−−→
P ′C1,2 with respect to u and u⊥ and substitute for the area

and scalar products. P ′ and d are found as in example 1.

Concluding remarks
Adding ⊥ and the area product to the scalar product, and using the resolution of a vector
into a linear combination of two vectors helps to solve a number of problems in plane
geometry that cannot be approached using the scalar product alone. Fortunately, this
addition is “for free”, essentially not requiring any new knowledge and not calling for a
paradigm shift of any scale. In fact, it does the opposite: the amount of trigonometry
that might be otherwise needed to solve certain problems can be significantly reduced
using the proposed method, thus leading to a purer form of geometry. Moreover, with
this method it is easier to stay in the coordinate-free, vector-only language of expressing
locations and lengths.

Of course, the area product is not a new concept. It is essentially Grassmann’s exterior
product. Russian mathematics has been making use of it for at least half a century [4],
under a name that can be translated as “skew product”. Much later, the product was
reinvented independently in [2], thereby becoming popular in the English speaking world
as “perp product”. The [2] article actually went further by also recognizing the utility of
⊥ as an operation in its own right, apart from the perp/area product. The three-vector
equality (3) was also derived there.

We see the contribution of the present article in the following directions:
• providing, by means of examples, further evidence of the utility of the scalar and

area products and the ⊥ operation;
• extending the applicability of calculation with products by showing how the equality

expressing a vector decomposition with respect to two vectors can be used “back-
wards”;
• showing that some widely used trigonometric equalities have natural analogues in

vector calculus, and more generally, that geometric calculations involving trigono-
metric functions often can be replaced by calculating with vectors;
• similarly, showing that coordinate transformations, such as rotations and reflections,

whose algebraic representation traditionally involves matrices and determinants and
coordinate-wise formulae, or alternatively complex numbers, do have natural enough
expression in a pure vectoral form.

In view of the above, we hope to have shown that vector calculus can be more usefully
employed both in teaching and in applying geometry.

Clifford algebra [3, 1], or as it is more specifically called recently – geometric algebra
– is a powerful algebraic and calculational tool which can handle spaces of arbitrary
dimension by dealing with multi-dimensional directed volumes generalizing the concept
of vector. The geometric algebra approach subsumes the one presented here by offering a
more general calculational framework. However, perhaps due to that same generality, it
seems somewhat less practical for solving planar geometry problems – both conceptually
and as an actual computational vehicle, including the implications of implementing a tool
of this sort programmatically. Therefore, for the teaching and practical uses of plane
geometry, we consider the approach started by [4, 2] and further developed here more
directly applicable than geometric algebra. The more so that it does not require the
conceptual and notational shift needed in the case of geometric algebra.

The approach presented here is used on a regular basis by the author in his teaching
computational geometry to university students, as well as in teaching algorithm design to



high-school students training in programming competitions.
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