Algorithmic problems in the geometry of polynomials

Blagovest Sendov and Hristo Sendov

The Geometry of polynomials study the geometric relations, on the complex plane C, between the zeros of a complex polynomial p(z) and the zeros (called also critical points) of its derivative p'(z). The fundamental fact in this feeld, see [1, p. 69 - 78], is:

Theorem 1 (Gauss-Lucas) The convex hull K(p) of a polynomial p(z) contain the the zeros of its derivative p'(z).

To every polynomial

$$p(z) = \sum_{k=0}^{n} a_k z^k; \quad a_n \neq 0$$

correspond a multiaffine, symmetric polynomial in n complex variables:

$$P(z_1,\ldots,z_n) := \sum_{k=0}^n \frac{a_k}{\binom{n}{k}} S_k(z_1,\ldots,z_n)$$

where

$$S_k(z_1, \dots, z_n) = \sum_{1 \le i_1 < \dots < i_k \le n} z_{i_1} \cdots z_{i_k}, \quad k = 1, 2, \dots, n$$

are the elementary symmetric polynomials of degree k, with $S_0(z_1,\ldots,z_n):=1$. Obviously, $p(z)=P(z,\ldots,z)$. One say that $P(z_1,\ldots,z_n)$ is the symmetrization of p(z). The n-tuple $\{z_1,\ldots,z_n\}$ is called a solution of p(z) if $P(z_1,\ldots,z_n)=0$.

To study extreme problems in the Geometry of polynomials, we introduce, the following notion, see [2], [3], [4], [5].

Definition 1 A closed subset Ω of $C^* = C \bigcup \infty$ is called a **locus holder** of p(z) if Ω contains at least one point from every solution of p(z). A minimal by inclusion locus holder Ω is called a **locus** of p(z).

It was shown in [2] that every locus holder contains a locus. If α is a zero of p(z) and Ω is a locus of p(z), then $\alpha \in \Omega$, since $\{\alpha, \alpha, \ldots, \alpha\}$ is a solution of p(z). It is also shown, see [2], that every locus holder of p(z) contains all zeros of all its derivatives $p^{(s)}(z)$; $s=1,2,\ldots,n-1$. A restatement of the classical theorem of Grace, see [1, p. 107], says that every circular domain containing the zeros of p(z) is a locus holder of p(z). In fact, every locus of p(z) allows one to formulate an extreme version of Grace's theorem, see [3]. A corollary of the Grace theorem, see [1, p. 126], is:

Theorem 2 (Grace-Heawood) Let p(z) be a polynomial of degree $n \ge 2$. If $z_1 \ne z_2$ and $p(z_1) = p(z_2)$, then the disk $D_n(z_1, z_2)$ with center $c = \frac{z_1 + z_2}{2}$ and radius $r = \frac{|z_1 - z_2|}{2} \cot \frac{\pi}{n}$ contains at least one zero of p'(z).

In fact $D_n(z_1,z_2)$ is a locus holder of a polynomial $\kappa_{n-1}(z)$ of degree n-1, depending only on the points z_1 and z_2 , but not from the polinomial p(z). To sharpen the theorem of Grace-Heawood, we have to find a locus holder of $\kappa_{n-1}(z)$ with smaller area then this of the disk $D_n(z_1,z_2)$, see [5]. The disk $D_n(z_1,z_2)$ is only a locus holder of $\kappa_{n-1}(z)$, but not a locus. The problem to find the sharpest analogue of the Grace-Heawood theorem was formulated by Lubomir Tchakaloff, see [6], more than 80 years ago.

There are many extreme problems in the Geometry of polynomials, which may be solved by finding a locus of a polynomial.

It is possible to find a locus holder of a given polynomial by analytical methods. But until now, we do not know an analitical method to find the locus with the smallest area of a polynomial of degree $n \geq 4$.

The lecture is devoted to some ideas for constructing numerical algorithms for calculating the locus of a polynomial with smallest area. Observe that every polynomial has a such locus, but the problem of its uniqueness is steel open.

References

- [1] RAHMAN, Q. I. AND SCHMEISSER, G., *Analytic Theory of Polynomials*, Oxford Univ. Press Inc., New York, (2002).
- [2] SENDOV, BL. AND SENDOV, H.S., Loci of complex polynomials, part I, *Trans. Amer. Math. Soc.*, 10(366) 5155–5184 (2014).
- [3] SENDOV, BL. AND SENDOV, H.S., Loci of complex polynomials, part II: polar derivatives, *Math. Proc. Camb. Phil. Soc.*, 159, 253–273 (2015).
- [4] SENDOV, BL. AND SENDOV, H.S., Two Walsh-type theorems for the solutions of multi-affine symmetric polynomials, *Progress in Approximation Theory and Applicable Complex Analysis In the Memory of Q.I. Rahman*, Springer-Verlag series in "Optimization and Its Applications", accepted (2016).
- [5] SENDOV, BL. AND SENDOV, H.S., Stronger Rolle's theorem for complex polynomials *Proc. Amer. Math. Soc.*, v. 148, n. 8, 3367–3380 (2018).
- [6] TCHAKALOFF, L.: Sur une généralisation du théoreme de Rolle pour polynomiales, C. R. Acad. Sci. Paris, 202 (1936), 1635 - 1637.