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Abstract

The operational calculus is an algorithmic approach for the solution
of initial-value problems for differential, integral, and integro-differential
equations. In this paper, an operational calculus of the Mikusiński type for
a generalized Riemann-Liouville fractional differential operator with types
introduced by one of the authors is developed. The traditional Riemann-
Liouville and Liouville-Caputo fractional derivatives correspond to particu-
lar types of the general one-parameter family of fractional derivatives with
the same order. The operational calculus constructed in this paper is used
to solve the corresponding initial value problem for the general n-term lin-
ear equation with these generalized fractional derivatives of arbitrary orders
and types with constant coefficients. Special cases of the obtained solutions
are presented.
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1. Introduction

In the 1950’s, Jan Mikusiński proposed a new approach to develop an
operational calculus for the operator of differentiation (see e.g. [35]). This
algebraic approach was based on the interpretation of the Laplace convo-
lution as a multiplication in the ring of the continuous functions on the
real half-axis. The Mikusiński operational calculus was successfully used in
ordinary differential equations, integral equations, partial differential equa-
tions and in the theory of special functions. It is worth mentioning that
the Mikusiński scheme was extended by several mathematicians to develop
operational calculi for differential operators with variable coefficients (see,
for example, [8], [9], [32]), too. These operators are all particular cases of
the so called hyper-Bessel differential operator

(B y)(x) = x−β
n∏

i=1

(
γi +

1
β

x
d

dx

)
y(x). (1)

An operational calculus for the operator (1) was constructed by Dimovski in
[7]. Details on his construction, and extended theory of the operator (1) as a
generalized fractional derivative can be found also in [25, Ch. 3]. New results
in the field of operational calculus have been presented in the publications by
Luchko and his co-authors (see e.g. [1], [11], [12], [15], [27]–[30], [43]), where
the operational calculi for the Riemann-Liouville fractional derivative, for
the Caputo fractional derivative and for the more general multiple Erdélyi-
Kober fractional derivative have been constructed and applied for solution
of the fractional differential equations and integral equations of the Abel
type.

The theory and applications of fractional differential equations received
in recent years considerable interest both in pure mathematics and in ap-
plications (see, for example, [2]–[6], [13]– [25], [28]–[34], [36]–[38], and [41]).
There exist several different definitions of fractional differentiation. Whereas
in mathematical treatises on fractional differential equations the Riemann-
Liouville approach to the notion of the fractional derivative of order α
(n−1 < α ≤ n ∈ N) is normally used, the Caputo fractional derivative
often appears in applications. The (right-sided) Riemann-Liouville frac-
tional derivative is defined by

(Dαy)(x) :=
dn

dxn
(Jn−αy)(x), x > 0. (2)

where

(Jαy)(x) :=
1

Γ(α)

∫ x

0
(x− t)α−1y(t) dt, α > 0, x > 0, (3)
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(J0y)(x) := y(x), x > 0
is the (right-sided) Riemann-Liouville fractional integral of order α with
lower limit 0.

The Riemann-Liouville fractional derivative is left-inverse (but not right-
inverse) of the Riemann-Liouville fractional integral, which is a natural gen-
eralization of the Cauchy formula for the n-fold primitive of a function y.
As to the initial value problems for fractional differential equations with
fractional derivatives in the Riemann-Liouville sense, they should be given
as (bounded) initial values of the fractional integral Jn−αy and of its integer
derivatives of order k = 1, 2, . . . , m− 1.

An alternative definition of fractional derivative was introduced by Liou-
ville [26, p.10] and rediscovered by Caputo, see e.g. [5],[6], in the framework
of the theory of linear viscoelasticity:

(Dα
∗ y)(x) := (Jn−αy(n))(t), n−1 < α ≤ n ∈ N, x > 0. (4)

This definition allows to consider the initial-value problems for fractional
differential equations with initial conditions that are expressed in terms of
a given number of bounded values assumed by the field variable and its
derivatives of integer order.

In [16] another new definition of the fractional derivative was suggested.
The generalized Riemann-Liouville fractional derivative (GRLFD) of order
α and type β is defined as

(Dα,βy)(x) := (Jβ(n−α) dn

dxn
(J (1−β)(n−α)y))(x), x > 0. (5)

Here the order α ∈ R obeys n − 1 < α ≤ n ∈ N and the type β ∈ R
obeys 0 ≤ β ≤ 1. The type β allows to interpolate continuously from the
Riemann-Liouville case Dα,0 ≡ Dα to the Liouville-Caputo case Dα,1 ≡ Dα∗ .

Some properties and applications of the GRLFD are given in [17]. In
particular, fractional stationarity, fractional relaxation and fractional dif-
fusion equations with fractional time derivatives Dα,β of order α and type
β were investigated. For fixed order the type of the fractional derivative
was found to determine the type of initial conditions. Explicit solutions to
the corresponding fractional differential equations with general type were
given. As expected, they interpolate smoothly between the results for or-
dinary Riemann-Liouville (type β = 0) and Liouville-Caputo (type β = 1)
fractional derivatives. For fractional diffusion with fractional time deriva-
tives of order 0 < α ≤ 1 and type 0 ≤ β ≤ 1 it was shown that there does
not exist a probabilistic interpretation for the unknown function whenever
0 ≤ β < 1. These findings extended earlier results [19] on the absence of
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a probabilistic interpretation for Riemann-Liouville diffusion (type β = 0)
and disproved claims in the literature according to which the Liouville-
Caputo type β = 1 is the only type relevant for, or consistent with physical
applications. Later GRLFD’s appeared also in the theoretical modeling of
broadband dielectric relaxation spectroscopy for glasses [20]. More recently,
equations involving GRLFD’s with constant coefficients were investigated
in [42].

In this paper, some basic elements of the operational calculus of the
Mikusiński type for GRLFD’s are presented with special emphasis on an
operational method for solving linear differential equations of fractional or-
der with constant coefficients. The plan of the rest of the paper is as follows.
In Section 2, some important properties of the operators Dα,β needed for
the further discussions are given. Section 3 is devoted to the construction
of the operational calculus of the Mikusiński type for GRLFD’s. In Section
4, the operational calculus is applied to deduce the solution of the general
n-term linear equation with Dα,β derivatives of arbitrary α, β and constant
coefficients. Special cases of the obtained solutions are presented.

2. Some properties of the generalized fractional derivative
with types

The Riemann-Liouville, the Liouville-Caputo, and the generalized frac-
tional derivatives ((2), (4), and (5), respectively) are defined as certain
compositions of the Riemann-Liouville fractional integral (3) and ordinary
derivatives. It is clear that these operators play a decisive role in the devel-
opment of the corresponding operational calculi and there should be some
common elements in the operational calculi for all three fractional deriva-
tives. The operational calculus for the Riemann-Liouville fractional deriva-
tive was presented in [8], [11], [15] and the operational calculus for the
Liouville-Caputo fractional derivative in [27], [28]. In this section, some
theorems from there will be cited without proofs.

We begin by defining the function space Cγ , γ ∈ R, which was intro-
duced for the first time by Dimovski in his papers devoted to the operational
calculus for the hyper-Bessel differential operator (see e.g. [7]).

Definition 1. A real or complex-valued function y, is said to belong
to the space Cγ , γ ∈ R, if there exists a real number p, p > γ, such that

y(t) = tpy1(t), t > 0

with a function y1 ∈ C[0,∞).
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Clearly, Cγ is a vector space and the set of spaces Cγ is ordered by
inclusion according to

Cγ ⊂ Cδ ⇔ γ ≥ δ. (6)

Theorem 1. The Riemann-Liouville fractional integral Jα, α ≥ 0, is a
linear map of the space Cγ , γ ≥ −1, into itself, that is,

Jα : Cγ → Cα+γ ⊂ Cγ .

For the proof of the theorem see e.g. [29].
It is well known, that the operator Jα, α > 0 has a convolution repre-

sentation in the space Cγ , γ ≥ −1:

(Jαy)(x) = (hα ◦ y)(x), hα(x) := xα−1/Γ(α), y ∈ Cγ . (7)

Here
(g ◦ f)(x) =

∫ x

0
g(x− t)f(t) dt, x > 0

is the Laplace convolution. Moreover, the following properties of the Riemann-
Liouville fractional integral are well known:

(JδJηy)(x) = (JηJδy)(x), y ∈ Cγ , γ ≥ −1, δ ≥ 0, η ≥ 0.

(JδJηy)(x) = (Jδ+ηy)(x), y ∈ Cγ , γ ≥ −1, δ ≥ 0, η ≥ 0. (8)

In particular, it follows from (8) that

(Jα . . . Jα︸ ︷︷ ︸
n

y)(x) = (Jnαy)(x), y ∈ Cγ , γ ≥ −1, α ≥ 0, n ∈ N. (9)

The GRLFD (5) is not defined on the whole space Cγ . Let us introduce a
subspace of Cγ , which is suitable for dealing with GRLFD’s.

Definition 2. A function y ∈ C−1 is said to be in the space Ωµ
−1, µ ≥

0, if Dα,βy ∈ C−1 for all 0 ≤ α ≤ µ, 0 ≤ β ≤ 1.

Remark 1. For β = 0, i.e. for the Riemann-Liouville fractional deriva-
tive, the space Ωµ

−1 from Definition 2 coincides with the function space
introduced in [29], [43].

Obviously, Ωµ
−1 is a vector space and Ω0

−1 ≡ C−1. The space Ωµ
−1

contains in particular all functions z that can be represented in the form
z(x) = xγy(x) with γ ≥ µ and y being an analytical function on the real
half-axis.
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The following result plays a very important role for the applications of
the operational calculus for Dα,β to solution of differential equations with
these generalized derivatives.

Theorem 2. Let y ∈ Ωα
−1, n−1 < α ≤ n ∈ N. Then the Riemann-

Liouville fractional integral (3) and the generalized fractional derivative (5)
are connected by the relation

(JαDα,βy)(x) = y(x)− yα,β(x), x > 0, (10)
where

yα,β(x) :=
n−1∑

k=0

xk−n+α−βα+βn

Γ(k−n+α−βα+βn+1)
lim

x→0+

dk

dxk
(J (1−β)(n−α)y)(x), x > 0.

(11)

P r o o f. For n−1 < α ≤ n ∈ N and 0 ≤ β ≤ 1, the generalized
derivative (5) can be represented as a composition of the Riemann-Liouville
fractional integral (3) and the Riemann-Liouville fractional derivative (2)
as follows:

(Dα,βy)(x) = (Jβ(n−α) dn

dxn
(J (1−β)(n−α)y))(x) = (Jβ(n−α)Dα+βn−αβy)(x).

(12)
Using the formula (8) we get now

(JαDα,βy)(x) = (JαJβ(n−α)Dα+βn−αβy)(x) = (Jα+βn−αβDα+βn−αβy)(x).

The formula (10) follows now from the known formula for the composi-
tion of the Riemann-Liouville fractional integral and the Riemann-Liouville
fractional derivative (see e.g. [29], [43]).

3. Operational calculus for fractional derivatives with types

The formula (10) shows that the generalized derivative of order α and
type β always corresponds to the Riemann-Liouville fractional integral of
order α. The type β influences the form of the initial conditions that should
appear while formulating the initial-value problems for the differential equa-
tions. That is why the main part of the operational calculus for Dα,β follows
the lines of the construction of the operational calculus for the Riemann-
Liouville or for the Liouville-Caputo fractional derivatives presented in [11],
[27]–[30], [43].

As in the case of Mikusiński’s type operational calculus for the Riemann-
Liouville or for the Liouville-Caputo fractional derivatives, we have the fol-
lowing theorem:
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Theorem 3. The space C−1 with the operations of the Laplace con-
volution ◦ and ordinary addition becomes a commutative ring (C−1, ◦,+)
without divisors of zero.

This ring can be extended to the field M−1 of convolution quotients by
following the lines of the classical Mikusiński operational calculus [35]:

M−1 := C−1 × (C−1 \ {0})/ ∼,

where the equivalence relation (∼) is defined, as usual, by

(f, g) ∼ (f1, g1) ⇔ (f ◦ g1)(t) = (g ◦ f1)(t).

For the sake of convenience, the elements of the field M−1 can be formally
considered as convolution quotients f/g. The operations of addition and
multiplication are then defined in M−1 as usual:

f

g
+

f1

g1
:=

f ◦ g1 + g ◦ f1

g ◦ g1
(13)

and
f

g
· f1

g1
:=

f ◦ f1

g ◦ g1
. (14)

Theorem 4. The space M−1 with the operations of addition (13) and
multiplication (14) becomes a commutative field (M−1, ·, +).

The ring C−1 can be embedded into the field M−1 by the map (α > 0):

f 7→ hα ◦ f

hα
,

with, by (7), hα(x) = xα−1/Γ(α).
In the field M−1, the operation of multiplication with a scalar λ from

the field R (or C) can be defined by the relation

λ
f

g
:=

λf

g
,

f

g
∈M−1.

Because the space C−1 is a vector space, the space M−1 can be shown to be
a vector space, too. Since the constant function f(x) ≡ λ, x > 0 belongs to
the space C−1, we have to distinguish the operation of multiplication with
a scalar in the vector space M−1 and the operation of multiplication with
a constant function in the field M−1. In this last case we get

{λ} · f

g
=

λhα+1

hα
· f

g
= {1} · λf

g
. (15)

Whereas the space C−1 consists of the conventional functions, the ma-
jority of the elements of the field M−1 are not reduced to the functions
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from the ring C−1 and, consequently, can be considered to be the general-
ized functions or the so called hyperfunctions. In particular, let us consider
the element I = hα

hα
of the field M−1 that is the identity of this field with

respect to the operation of multiplication:

I · f

g
=

hα ◦ f

hα ◦ g
=

f

g
.

The last formula shows that the identity element I of the field M−1 plays
the role of the Dirac δ-function in the conventional theory of the generalized
functions.

Another hyperfunction, i.e. an element of the field M−1 that cannot
be represented as a conventional function from the space C−1 that will play
an important role in the applications of the operational calculus for the
generalized fractional derivative is given by

Definition 3. The algebraic inverse of the Riemann-Liouville frac-
tional integral operator Jα is said to be the element Sα of the field M−1,
which is reciprocal to the element hα in the field M−1, that is,

Sα =
I

hα
≡ hα

hα ◦ hα
≡ hα

h2α
, (16)

where (and in what follows) I = hα
hα

denotes the identity element of the field
M−1 with respect to the operation of multiplication.

The Riemann-Liouville fractional integral Jα can be represented as a
multiplication (convolution) in the ring C−1 (with the function hα, see (7)).
Since the ring C−1 is embedded into the field M−1 of convolution quotients,
this fact can be rewritten as follows:

(Jαy)(x) =
I

Sα
· y . (17)

As to the generalized fractional derivative Dα,β, there exists no convo-
lution representation in the ring C−1 for it, but it is reduced to the operator
of multiplication in the field M−1.

Theorem 5. Let a function y be from the space Ωα
−1, n−1 < α ≤ n,

n ∈ N. Then the generalized fractional derivative Dα,βy can be represented
as multiplication in the field M−1 of convolution quotients:

(Dα,βy)(x) = Sα · y − Sα · yα,β , (18)

yα,β(x) :=
n−1∑

k=0

xk−n+α−βα+βn

Γ(k−n+α−βα+βn+1)
lim

x→0+

dk

dxk
(J (1−β)(n−α)y)(x), x > 0.

(19)
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P r o o f. To prove the formula (18), we just use the embedding of the
ring C−1 into the field M−1 and then multiply the relation (10) with the
algebraic inverse of the Riemann-Liouville fractional integral operator - the
element Sα. The obtained relation is exactly the formula (18).

Using Theorem 5, the differential equations with GRLFD’s can be re-
duced to algebraic equations in the field M−1 of convolution quotients.
These equations can be solved by following the standard techniques. The
obtained solutions belong then to the field M−1, i.e. are the hyperfunctions
and not the conventional functions. The application of other methods to so-
lution of the same equations (say, the Laplace transform method) teaches us
that in many cases the solutions of the differential equations with GRLFD’s
are still conventional functions, i.e. we have to look for mechanisms to rep-
resent some suitable hyperfunctions in terms of conventional functions. To
do so, let us first define some power functions in the field M−1.

Formula (9) means that for α > 0, n ∈ N
hn

α(x) := hα ◦ . . . ◦ hα︸ ︷︷ ︸
n

= hnα(x).

This relation can be extended to an arbitrary positive real power exponent:

hλ
α(x) := hλα(x), λ > 0. (20)

For any λ > 0, the inclusion hλ
α ∈ C−1 holds true and the following relations

can be easily proved (β > 0, γ > 0):

hβ
α ◦ hγ

α = hαβ ◦ hαγ = h(β+γ)α = hβ+γ
α , (21)

hβ
α1

= hγ
α2

⇔ α1β = α2γ. (22)

The above relations motivate the following definition of a power function
of the element Sα with an arbitrary real power exponent λ:

Sλ
α =





h−λ
α , λ < 0,

I, λ = 0,
I

hλ
α
, λ > 0.

(23)

For any α, β ∈ R, it follows from this definition and the relations (21) and
(22) that

Sβ
α · Sγ

α = Sβ+γ
α , (24)

Sβ
α1

= Sγ
α2

⇔ α1β = α2γ. (25)

For the application of the operational calculus to solution of differential
equations with GRLFD’s it is important to identify those hyperfunctions
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from the field M−1, which can be represented by conventional functions,
i.e. as the elements of the ring C−1. One useful class of such representations
is given by the following theorem (see e.g. [15], [27], [28]):

Theorem 6. Let the multiple power series
∞∑

i1,...,in=0

ai1,...,inzi1
1 × · · · × zin

n , z1, . . . , zn ∈ C, ai1,...,in ∈ C

be convergent at a point z0 = (z10, . . . , zn0) with all zk0 6= 0, k = 1, . . . , n.
Then the hyperfunction

z(Sα) := S−β
α

∞∑

i1,...,in=0

ai1,...,in(S−α1
α )i1 × · · · × (S−αn

α )in

with β > 0, αi > 0, i = 1, . . . , n can be represented as an element of the
ring C−1:

z(Sα) =
∞∑

i1,...,in=0

ai1,...,inh(β+α1i1+···+αnin)α(x),

where hα(x) is given by (7).

The proof of the theorem can be found in [15]. Theorem 6 is a source of
a number of important operational relations (for more operational relations
we refer to [11], [15], and [29]). In the discussions below the relation

I

Sα − ρ
= xα−1Eα,α(ρxα), (26)

with ρ ∈ R (or ρ ∈ C) plays an important role. Here Eα,β is the generalized
Mittag-Leffler function defined by (see [10, Vol.3])

Eα,β(z) :=
∞∑

k=0

zk

Γ(αk + β)
, α > 0, |z| < ∞.

Equation (26) can formally be obtained from the geometric series as

I

Sα−ρ
=

I
I

hα
− ρ

=
hα

I − ρhα
=

∞∑

k=0

ρkhk+1
α =

∞∑

k=0

ρkx(k+1)α−1

Γ(αk + α)
=xα−1Eα,α(ρxα).

The m-fold convolution of the right-hand side of the relation (26) gives the
following operational relation:

I

(Sα − ρ)m
= xαm−1Em

α,mα(ρxα), m ∈ N, (27)

where

Em
α,β(z) :=

∞∑

k=0

(m)kz
k

k!Γ(αk + β)
, α > 0, |z| < ∞, (m)k =

k−1∏

i=0

(m + i),
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is a function introduced in [40] (see also [23]).

Let β > 0, αi > 0, i = 1, . . . , n. Then

S−β
α

I −∑n
i=1 λiS

−αi
α

= xβα−1E(α1α,...,αnα),βα(λ1x
α1α, . . . , λnxαnα) (28)

with the Mittag-Leffler function

E(a1,...,an),b(z1, . . . , zn) :=
∞∑

k=0

∑
l1+···+ln=k
l1≥0,...,ln≥0

(k; l1, . . . , ln)
∏n

i=1 zli
i

Γ(b +
∑n

i=1 aili)
(29)

and the multinomial coefficients

(k; l1, . . . , ln) :=
k!

l1!× · · · × ln!
.

Remark 2. In [27], the function (29) was called the ”multivariate
Mittag-Leffler function”. Because of the close relation of this function to
the multinomial expansion and the multinomial coefficients, we find it more
appropriate to call it the ”multinomial Mittag-Leffler function”.

4. Fractional differential equations with types

In this section, the constructed operational calculus is applied to solve
linear fractional differential equations with generalized derivatives and con-
stant coefficients.

First, some simple fractional differential equations are considered. We
begin with the initial value problem (n−1 < α ≤ n, n ∈ N, 0 ≤ β ≤ 1, λ ∈ R)

{
(Dα,βy)(x)− λy(x) = g(x),

limx→0+
dk

dxk (J (1−β)(n−α)y)(x) = ck ∈ R, k = 0, . . . , n− 1.
(30)

The function g is assumed to lie in C−1 and the unknown function y is to
be determined in the space Ωα

−1.
Making use of the relation (18), the initial value problem (30) can be

reduced to the following algebraic equation in the field M−1 of convolution
quotients:

Sα · y − λy = Sα · yα,β + g,

yα,β(x) =
n−1∑

k=0

ck
xk−n+α−βα+βn

Γ(k − n + α− βα + βn + 1)
.



310 R. Hilfer, Y. Luchko, Ž. Tomovski

This linear equation can be easily solved in the field M−1:

y = yg + yh =
I

Sα − λ
· g +

Sα

Sα − λ
· yα,β . (31)

The right-hand side of this relation can be interpreted as a function from
the space Ωα

−1, i.e., as a classical solution of the initial value problem (30).
It follows from the operational relation (26) and the embedding of the

ring C−1 into the field M−1, that the first term in the formula (31), yg

(solution of the inhomogeneous fractional differential equation (30) with
zero initial conditions), can be represented in the form

yg(x) =
∫ x

0
(x− t)α−1Eα,α(λ(x− t)α)g(t) dt. (32)

As to the second term, yh, in (31) it is a solution of the homogeneous
fractional differential equation (30) with the given initial conditions and we
have

yh(x) =
n−1∑

k=0

ckuk(x), uk(x) =
Sα

Sα − λ
· { xk−n+α−βα+βn

Γ(k − n + α− βα + βn + 1)
} .

(33)
Making use of the relation

xk−n+α−βα+βn

Γ(k − n + α− βα + βn + 1)
= hk−n+α−βα+βn+1(x)

= hα
(k−n+α−βα+βn+1)/α(x) =

I

S
(k−n+α−βα+βn+1)/α
α

, (34)

the formula (24), and the operational relation (28), we get the representation
of the functions uk(x), k = 0, . . . , n− 1 in terms of the generalized Mittag-
Leffler function:

uk(x) =
Sα

Sα − λ
· { xk−n+α−βα+βn

Γ(k − n + α− βα + βn + 1)
}

=
S
−(k−n+α−βα+βn+1)/α
α

I − λS−1
α

= xk−(1−β)(n−α)Eα,k+1−(1−β)(n−α)(λxα).

For n = 1 this solution was first given in [17]. Putting now the two parts of
the solution together, we get the final form of the solution of the initial-value
problem (30):

y(x) = yg(x) + yh(x) =
∫ x

0
(x− t)α−1Eα,α(λ(x− t)α)g(t) dt (35)

+
n−1∑

k=0

ckx
k−(1−β)(n−α)Eα,k+1−(1−β)(n−α)(λxα).
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The proof of the fact, that the solution y belongs to the space Ωα
−1 is straight-

forward (see [28]), and we omit it here.
Whereas the solution of the inhomogeneous fractional differential equa-

tion (30) with zero initial conditions - the function yg - only depends on the
order α of the derivative, the solution of the homogeneous equation - the
function yh - differs for different values of the type β of the derivative. In
particular, the part yh of the solution takes the form

yh(x) =
n−1∑

k=0

ckuk(x), uk(x) = xk Eα,k+1(λxα)

and

yh(x) =
n−1∑

k=0

ckuk(x), uk(x) = xk−n+α Eα,k+1−n+α(λxα)

for the Liouville-Caputo fractional derivative (β = 1) and for the Riemann-
Liouville fractional derivative (β = 0), respectively.

Next, we consider the linear differential equation
n∑

i=1

λi

(
Dαi,βiy

)
(x)− λy (x) = g (x) (36)

with the initial conditions

lim
x→0+

dk

dxk
(J (1−βi)(n−αi)y)(x) = ck ∈ R, (37)

where i=1, 2, ..., n; k=0, ..., n−1, n−1 < αi ≤ n, n ∈ N; 0 ≤ βi ≤ 1; λ, λi ∈
R and the ordering α1 > α2 > ... > αn > 0 is assumed without loss
of generality. Then the following algebraic equation in the field M−1 of
convolution quotients is obtained

n∑

i=1

λi (Sαiy − Sαiyαi,βi)− λy = g. (38)

This linear equation can be easy solved in the field M−1:

y = yg + yh =
I

n∑
i=1

λiSαi − λ

· g +
n∑

j=1

λjS
αj

n∑
i=1

λiSαi − λ

· yαj ,βj
, (39)

where

yαj ,βj =
n−1∑

k=0

ck
xk−n+αj−βjαj+βjn

Γ(k − n + αj − βjαj + βjn + 1)
. (40)

From (28) we get
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I
n∑

i=1
λiSαi−λ

=
S−α1

λ1+
n∑

i=2
λiSαi−α1−λS−α1

=
1
λ1

S−α1

I−
n∑

i=2

(
− λi

λ1

)
Sαi−α1− λ

λ1
S−α1

=

1
λ1

xα1−1E(α1,(α1−α2),(α1−α3),...,(α1−αn)),α1

(
− λ

λ1
xα1 ,−λ2

λ1
x(α1−α2), ...,−λn

λ1
x(α1−αn)

)
.

Hence, by (32) we obtain

yg =
1
λ1

x∫

0

(x− t)α1−1E(a1,...,an),α1
(c1(x− t)a1 , . . . , cn(x− t)an) g(t) dt

with

a1 = α1, c1 = − λ

λ1
, ai = α1 − αi, ci = −λi

λ1
, i = 2, . . . , n. (41)

Applying the relations (34) and (28) we get

yh =
n∑

j=1

λj
Sαj

n∑
i=1

λiSαi − λ

[
n−1∑

k=0

ck
xk−n+αj−βjαj+βjn

Γ(k−n+αj−βjαj+βjn + 1)

]
(42)

=
n∑

j=1

λj
Sαj

n∑
i=1

λiSαi − λ

(
n−1∑

k=0

ckS
−(k−n+αj−βjαj+βjn+1)

)

=
n∑

j=1

n−1∑

k=0

λjck
S−(k−n−βjαj+βjn+1)

n∑
i=1

λiSαi − λ

=
1
λ1

n∑

j=1

n−1∑

k=0

λjck
S−(k−n−βjαj+α1+βjn+1)

I −
n∑

i=2

(
− λi

λ1

)
Sαi−α1 − λ

λ1
S−α1

=
1
λ1

n∑

j=1

n−1∑

k=0

λjckx
k−n−βjαj+α1+βjnE(a1,...,an),b (c1x

a1 , . . . , cnxan)

with b = k − n − βjαj + α1 + βjn + 1 and the coefficients a1, . . . , an, and
c1, . . . , cn given by (41).

If βj = 0, j = 1, 2, .., n, the solution coincides with the solution of the
linear n-term differential equation with Riemann-Liouville fractional deriva-
tives (see e.g. [27]):
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y = yg + yh,

where
yh =

1
λ1

n∑

j=1

n−1∑

k=0

λjckx
k−n+α1E(a1,...,an),b (c1x

a1 , . . . , cnxan)

with b = k − n + α1 + 1 and the coefficients a1, . . . , an, and c1, . . . , cn given
by (41).

If βj = 1, j = 1, 2, .., n, the solution coincides with the solution of the
linear n-term differential equation with the Caputo fractional derivatives
(see e.g. [27]):

y = yg + yh,

where
yh =

1
λ1

n∑

j=1

n−1∑

k=0

λjckx
k+α1−αjE(a1,...,an),b (c1x

a1 , . . . , cnxan)

with b = k +α1−αj +1 and the coefficients a1, . . . , an, and c1, . . . , cn given
by (41).

For n = 2 and n = 3, the initial value problem (37) for the equation
(36) was solved in [42] using the Laplace transform method.

If αi = α, i = 1, 2, .., n, the equation (36) is reduced to the equation
n∑

i=1

λi

(
Dα,βiy

)
(x)− λy (x) = g (x)

with the initial conditions

lim
x→0+

dk

dxk
(J (1−βi)(n−α)y)(x) = ck ∈ R, i = 1, 2, . . . , n, k = 0, . . . , n− 1,

0 < α < 1, 0 ≤ βi ≤ 1, λ, λi ∈ R, i = 1, 2, .., n, Λ =
n∑

i=1

λi 6= 0.

Applying the operational method, we get the following algebraic equation
in the field M−1 of convolution quotients:

n∑

i=1

λi (Sαy − Sαyα,βi
)− λy = g.

This linear equation can be easy solved in the field M−1:

y = yg + yh

=
I

ΛSα − λ
g +

Sα

ΛSα − λ

n∑

j=1

λjyα,βj .
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By using the operational relation
I

ΛSα − λ
=

1
Λ

xα−1Eα,α

(
λ

Λ
xα

)
,

we get

yg =
1
Λ

x∫

0

(x− t)α−1Eα,α

(
λ

Λ
(x− t)α

)
g (t) dt.

On the other hand, the operational relations (34) and (28) lead to the
representations

yh =
Sα

ΛSα − λ

n∑

i=1

n−1∑

k=0

λick
xk−n+α−βiα+βin

Γ(k − n + α− βiα + βin + 1)

=
n∑

i=1

n−1∑

k=0

λick
S−(k−n−βiα+βin+1)

ΛSα − λ
=

n∑

i=1

n−1∑

k=0

λi

Λ
ck

S−(k−n−βiα+βin+α+1)

I − λ
ΛS−α

=
1
Λ

n∑

i=1

n−1∑

k=0

λickx
k−n−βiα+βin+αEα,k−n−βiα+βin+α+1

(
λ

Λ
xα

)
.

Let now αi = (n− i + 1)α, i = 1, 2, .., n, where 0 < α < 1. Then the
solution of the above problem can be represented in terms of the Prabhakar
type Mittag-Leffler function Em

α,β (t):

yg =
I

n∑
i=1

λiS
n−i+1
α − λ

g =




p∑

j=1

nj∑

m=1

cjm

(Sα − γj)
m


 g ,

n1 + n2 + ... + np = n.

The operational relation (27) leads to the expression

yg =

t∫

0

uδ (τ) g (t− τ) dτ,

where

uδ (t) =
p∑

j=1

nj∑

m=1

cjmtαm−1Em
α,αm (γjt

α) .

Acknowledgement

The third author was supported by 3 months postdoctoral fellowship of
DAAD during 2008/09 and ICP-University of Stuttgart.



OPERATIONAL METHOD FOR THE SOLUTION . . . 315

References

[1] M.A. Al-Bassam, Yu.F. Luchko, On generalized fractional calculus and
its application to the solution of integro-differential equations. Journal
of Fractional Calculus 7 (1995), 69-88.

[2] Yu.I. Babenko, Heat and Mass Transfer . Chemia, Leningrad (1986),
In Russian.

[3] R.L. Bagley, On the fractional order initial value problem and its en-
gineering applications. In: Fractional Calculus and Its Applications
(Ed. K. Nishimoto), Tokyo, College of Engineering, Nihon University
(1990), 12-20.

[4] H. Beyer, S. Kempfle, Definition of physically consistent damping laws
with fractional derivatives. ZAMM 75 (1995), 623-635.

[5] M. Caputo, Linear models of dissipation whose Q is almost frequency
independent. Geophys. J. R. Astr. Soc. 13 (1967), 529-539 (Reprinted
recently in: Fract. Calc. Appl. Anal. 11, No 1 (2008), 3-14).

[6] M. Caputo, F. Mainardi, A new dissipation model based on mem-
ory mechanism. Pure and Appl. Geoph. 91, No 1 (1971), 134-147
(Reprinted recently in: Fract. Calc. Appl. Anal. 10, No 3 (2007), 309-
324).

[7] I.H. Dimovski, On an operational calculus for a class of differential
operators. C. R. Acad. Bulg. Sci. 19 (1966), 1111-1114.

[8] V.A. Ditkin, The theory of operator calculus. Dokl. AN SSSR 116
(1957), 15-17 (In Russian).

[9] V.A. Ditkin, A.P. Prudnikov, The theory of operational calculus, which
is generated by the Bessel equation. J. Vichisl. Mat. i Mat. Fiz. 3
(1963), 223-238 (In Russian).
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