FESTSTELLUNGSPRÜFUNG - HM3, Maschinenbau

SS 2013

Name

Immatrikulation:

Aufgabe 1: Sei $X \in \mathbb{R}^3$, $X = (x, y, z)^T$, $a = (a_1, a_2, a_3)^T$ und sei $S_a(\mathbb{R})$ die Sphaere mit Radius \mathbb{R} und Zentrum im Punkte a, d.h.

$$S_a(R) := \{ ||X - a||_2 \le R, R > 0 \}.$$

Berechne

- a) das Volumen des Körpers $K := \{X, X \notin S_2(2)\} \cap \{X, X \in S_4(4)\} \cap \{z, z \ge 0\}.$ 5 P
- b) den Flaechenumfang der Fläche $S := \partial K$. 5 P

Hinweis: Berechne das Volumen der Sphäre $S_a(R)$, sowie den Flächeninhalt der zugehörigen Kugel.

Aufgabe 2: Sei $X \in \mathbb{R}^3, X = (x, y, z)$ und f(X) := xyz. Gib ohne direkte Kalkulationen den Wert der Arbeit an, die das Kraftfeld f längst der Kurve $\mathfrak{E}: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, a, b, c > 0$ leistet. 5 P

Aufgabe 3: Gib den Wert foldenden INtegrals

$$I(z) := \frac{1}{2\pi} \int_0^{2\pi} \ln|z - re^{i\Theta}| d\Theta$$

an, wobei z fest ist und r > 0.

11 P

Aufgabe 4: Sei D ein Gebiet in \mathbb{R}^2 und sei die Funktion $u \in \mathbb{C}^2(D)$. Wie bekannt, sei

$$\Delta u := u_{xx} + u_{yy} = 0.$$

Schreibe den Laplacian Δu in Polarkoordinaten auf.

11 P

Hinweis: Schreibe die (x,y)-Koordinaten in Polarkoordinaten auf, d.h.

$$x = \rho \cos \Theta,$$

$$y = \rho \sin \Theta,$$

$$\rho > 0, \Theta \in [0, 2\pi].$$

 $\bf Aufgabe~5:~$ Löse folgendes Anfangswertproblem (hier eine Wellengleichung) 11 P

$$u_{tt} - 4u_{xx} = 0,$$
 $(x,t) \in (0,\pi) \times (0,\infty),$
 $u(x,0) = \sin(2x),$ $x \in (0,\pi),$
 $u_t(x,0) = 0,$ $x \in (0,\pi),$
 $u(0,t) = u(\pi,t),$ $t \in (0,\infty)$

 $\textbf{Berechnungsformel: Note} = 2 + \frac{\textbf{Punktenanzahl}}{12};$

die Formel ist gültig bei Vorlage mindesens einer vollständig gelösten Aufgabe.