EXAM in CA - 2009, June

Problem 1 Map conformally and univalently the upper half-plane $D:=$ $\{z, \Im z>0\}$ onto the "cut" unit disk $G:=\{w,|w|<1\} \backslash\{z, w=x+i y, 0 \leq$ $x \leq 1, y=0\}$.

Solution:

$$
\begin{gathered}
z_{1}=z^{2}, \mathrm{D} \longleftrightarrow \mathcal{C}-\{0,+\infty\} \\
z_{2}=z_{1}-1, \mathcal{C}-\{0,+\infty\} \longleftrightarrow \mathcal{C}-\{-1,+\infty\}, \\
z_{3}=z_{2}+\sqrt{z_{2}^{2}-1} \text { where } z_{3}(\infty):=0
\end{gathered}
$$

Remark 1: Analogously, if $D:=\{z, 2 \pi>\Im z>0\}$, we start at

$$
z_{1}=e^{z}
$$

Problem 2. Evaluate

$$
I:=\int_{\Gamma} f(z) d z
$$

where

$$
f(z):=\frac{e^{1 / z}}{(-z+2) \cos 2 z}
$$

and Γ is the unit circle positively oriented.
Solution: Apply residue theorem, namely

$$
I=2 \pi i \operatorname{Res}(f, \cdots)
$$

where the sum is taken over all residue inside the unit disk. In our case, these are the points $z=0$ (an essential singularity) and $z=\pi / 4$, respectively (a simple pole.) How to calculate the residue in question?

$$
\operatorname{Res}(f, 0)=\frac{1}{2 \pi i} \oint_{C_{0}(\varepsilon)} \frac{e^{1 / z}}{\cos 2 z(-z+2)}
$$

with ε - sufficiently small such that the other singularities do not lie inside. FUrther,

$$
\begin{gathered}
\frac{1}{2 \pi i} \oint_{C_{0}(\varepsilon)} \frac{e^{1 / z}}{\cos 2 z(-z+2)}=\sum_{=1}^{\infty} \frac{1}{n!} \frac{1}{2 \pi i} \oint_{C_{0}(\varepsilon)} \oint \frac{1}{z^{n}(-z+2) \cos 2 z}= \\
\sum_{=1}^{\infty} \frac{1}{n!^{2}}\left(\frac{1}{(-z+2) \cos 2 z}\right)^{(n)}(0)
\end{gathered}
$$

In the last formula, we used the classical Cauchy's formula for the derivatives of analytic functions. As for $\operatorname{Res}(f, \pi / 4)$, we notice that $\pi / 4$ is a pole so that we may apply the known formula

$$
\operatorname{Res}(f, \pi / 4)=\lim z \rightarrow 0 \frac{2 z e^{1 / z}}{(2-z) \cos (2 z)}=0 .
$$

Problem 3 Evaluate

$$
I:=\int_{\Gamma} \frac{f^{\prime}(z)}{f(z)} d z
$$

where

$$
f(z)=\frac{e^{1 / z}}{z}
$$

and Γ is the unit circle positively oriented.
Solution: We may not apply argument principle with respect to f and the unit disk, since f has an essential singularity inside, that is the point of zero. That's why we first calculate the derivative of $\frac{e^{1 / z}}{z}$, this is

$$
\left(\frac{e^{1 / z}}{z}\right)^{\prime}=-\frac{e^{1 / z}}{z^{3}}--\frac{e^{1 / z}}{z^{2}} .
$$

Then we may express f^{\prime} / f in the form

$$
\frac{f^{\prime}(z)}{f(z)}=-\frac{1}{z^{2}}-\frac{1}{z}
$$

and

$$
I=-2 \pi i .
$$

Problem 4 Let D be a domain in in the complex plane \mathbf{C} and f be analytic in D. Assume that

$$
\Re f(z)=\text { Const, } z \in D .
$$

Show that $f(z) \equiv$ Const in D.
Solution: Set $\Re f(z):=u(z)=u(x, y)$ and $f(z)=u(x, y 0+i v(x, y)$. By the conditions,

$$
u_{x}^{\prime}=u_{y}^{\prime}=0
$$

everywhere in D. Hence, by the equations of Cauchy-Riemann,

$$
v_{x}^{\prime}=v_{y}^{\prime}=0 .
$$

Then, f is a constant in D

Problem 5 Let f be an entire function. Assume that

$$
\Re f(z)=\mathbf{C}, z \in \mathbf{C}, C-\text { a constant. }
$$

Show that $f(z) \equiv$ Const.
Solution: Set $F(z):=e^{f(z)}$. Obviously, the function F is also entire. On the ether hand, by the conditions,

$$
|F(z)|=e^{\Re f(z)} \equiv e^{C}
$$

Set $e^{C}=C_{1}$. Remark that C_{1} is a finite number. Then, by Liouville's theorem, $F(z) \equiv C_{1}$. Then, $f(z)$ is also a constant.

