
5. Möbius Transformations
5.1. The linear transformation and the inversion.

In this section we investigate the Möbius transformation which provides
very convenient methods of finding a one-to-one mapping of one domain into
another. Let us start with the a linear transformation

w = φ(z) := Az +B, (1)

where A and B are fixed complex numbers, A 6= 0.
We write (1) as

w = φ(z) := |A|eiÅ(a)z +B.

As we see this transformation is a composition of a rotation about the
origin through the angle Arg (a)

w1 := eiArg (a)z,

a magnification
w2 = |A|w1

and a translation
w = w3 = w2 +B.

Each of these transformations are one-to-one mappings of the complex plane
onto itself and gap geometric objects onto congruent objects. In particular,
the the ranges of lines and of circles are line and circles, respectively.

Now we consider the inversion defined by

w :=
1

z
. (2)

It is easy to see that the inversion is a one-to-one mapping of the extended
complex plane C onto itself (0 −→∞ and vice versa ∞ −→ 0.)

We are going to show that the image of a line is either a line or a circle.
Indeed, let first l passes through the origin. The image of a point ρeiθ is
1
ρ
e−iθ. Letting ρ to tend from the negative infinity to the positive one, we see

that the image is another line through the origin with an angle of inclination
−Θ.

Let now L be given by the equation

L : Ax+By = C, with C 6= 0, and |A|+ |B| > 0. (3)
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On writing w = u+ iv, we find

z =
w̄

|w|2
=

u− iv
u2 + v2

and so

x =
u

u2 + v2
, y =

−u
u2 + v2

. (4)

Making these substitutions into (3), we get

A
u

u2 + v2
+B

−v
u2 + v2

= C,

or, equivalently,

u2 + v2 − A

C
u+

B

C
v = 0. (5)

This is apparently a equation of a circle.

5.2 We are prepared to go define a Möbius transformation in the general
sense.

Definition: The transformation

w :=
az + b

cz + d
, |a|+ |c| > 0, ad− bc 6= 0

is called a Möbius transformation. ℵ
If c = 0, then the Möbius transformation is linear. If c 6= 0, a = 0 then

the transformation is a inversion. Consider the case ac 6= 0. Then w can be
written as

w(z) =
a

c

(
1 +

bc− ad
a(cz + d)

)
(6)

which is as a matter of fact a decomposition of a linear transformation and
and inverse function. We also notice that

w′(z) =
ad− bc

(cz + d)2
6= 0

Hence, w is conformal at every point z 6= −d/c.
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Having in mind this observation and the previous deliberations, we can
summarize
Theorem 5.1. Let f be a Möbius transformation. Then
f can be expressed as a composition of magnifications, rotations, translations
and inversions.
f maps the extended complex plane onto itself.
f maps the class of circled and lines to itself.
f is conformal at every point except its pole.

5.3. The group of Möbius transformations. Let

w = f(z) =
az + b

cz + d
(7)

be a möbius transformation. The inverse function z = f−1(w) (that is:
f ◦ f−1 ≡ I, I− the identity) can be computed directly:

f−1(w) =
dw − b
−cw + a

.

We see that the inverse is again a Möbius transformation. Furthermore, we
easily check that the composition of two transformations f1 ◦ f2(z) (e.g. if

fi(z) =
aiz + bi
ciz + di

, i = 1, 2

then

f1 ◦ f2(z) := f1(f2(z)) =
a1f2(z) + b1

c1f2(z) + d2

)

is again a transformation of Möbius. On the other hand, f ◦I(z) = I ◦f(z) =
f(z). So, the set of all Möbius transformations is a group with respect to the
composition.

Now we shall prove
Theorem 5.2. A Möbius transformation is uniquely determined by three
points zi, i = 1, 2, 3, zi 6= zj, i, j = 1, 2, 3.
Proof: We first introduce the term of a double point. We say that z0 is
double point of f(z), if

f(z) = z. (8)
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It It is obvious that a Möbius transformation has not more that two double
points unless it coincides with the identity. Indeed, if (8) is fulfilled for three
distinct points, then the quadratic equation

az + b = cz2 + dz

will have three distinct zeros, which implies a = d, b = c = 0. Notice that a
linear transformation has only one double point.

Let now zi, i = 1, 2, 3 and wi, i = 1, 2, 3 be given, zi 6= zj, wi 6= wj, i.j. =
1, 2, 3. We are looking for a transformation w = f(z) such that

f(zi) = wi. (9)

Consider the cross-ratio (z, z1, z2, z3) of the points z, zi, i = 1, 2, 3, that is

T (z) = (z, z1, z2, z3) :=
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
.

The function T (z), z ∈ C, zi−fixed maps C in a one-to-one way onto itself1.
Notice that the order in which the points are listed is crucial in this notation.
Then the desired transformation (9) is given by the composition

(z, z1, z2, z3) = (w,w1, w2, w3).

It remains only to equate w.
The next step is to show that w = f(z) is the only transformation with

property (9).
Indeed, suppose to the contrary that there is another Möbius transfor-

mation v = g(z), f 6≡ g which satisfies (9). Then the Möbius transformation
f ◦ g−1 has three distinct double points which is impossible. Q.E.D.

Example 5.1: Find a Möbius transformation T (z) that maps the real line
R onto the unit circle C0(1).

Solution: We select three arbitrary real points, say −1, 0, 1 and three arbi-
trary points on C0(1), say −i, 1, i. The transformation w = T (z), determined
by the cross products, namely

(z,−1, 0, 1) = (w,−i, 1, i)
1if some number zi equals infinity, then the factors containing it are replaced by the

unity
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maps the real line R onto the circle C passing through the points −i, 1, i. As
we know from the elementary geometry, C ≡ C0(1). ℵ
Example 5.2: Let

w(z) :=
z + 1

z − 1
.

Find the image of R, I and C0(1) under the mapping w = T (z).

Solution: We first observe that

R −→ R.

Further, we see that
T (−1) = 0,
T (1) =∞
T (0) = −1,
T (∞) = 1,
T (i) = −i.

The image of I is a line or a circle passing through the points −1, 1,−i,
that is the unit circle. The image of C0(1) is a line or a circle that passes
through 0,∞ and is orthogonal to the images of R and of I, in our case
orthogonal to R and to C0(1). This turns to be the imaginary axis.

5.4. The left-hand-rule. Consider the unit circle C0(1). The points
−1,−i, 1 determine the direction −1 −→ −i −→ 1 −→ −1 in traversing
C0(1). The interior of the circle, the unit disk D0(1) lies to the left of this
orientation. We use to say that the disk is the left region with respect to
the orientation −1 −→ −i −→ 1. Analogously, the upper half plane is the
left region with respect to the direction −1, 0,∞. Since Möbius transforma-
tions transformations are conformal mappings, it can be shown that a Möbius
transformation that takes the distinct points z1, z2, z3 to the respective points
w1, w2, w3 must map the left region of the circle (or line) oriented by z1, z2, z3

onto the left region of the circle (or line) oriented by w1, w2, w3. Using the
conformality, we summarize
Theorem 5.3. Let G be a domain in C, ∂G := Γ and assume that G is
left oriented with respect to the direction given by the points z1 −→ z2 −→
z3, zi ∈ Γ, i = 1, 2, 3 ∈ Γ. Let w = T (z) be a Möbius transformationthat maps
Γ onto γ and T (zi) = wi, i = 1, 2, 3. Then T maps G onto that domain which
is left oriented to γ with respect to the direction w1 −→ w2 −→ w3.
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Example 5.3: Let w = T (z) be the Möbius transformationfrom Example
2. Find the images of the upper half plane, of the left half plane and of the
unit disk.

Solution: As we have seen,

T : R −→ R,
I −→ C0(1),
C0(1) −→ I.

The upper plane the left domain with respect to the direction −1 −→ 0 −→
∞, hence the range domain will be left oriented with respect to 0,−1, 1 (the
images of −1, 0,∞), e.g., the half plane below the real axis. Similarly, we
find that the left half plane is mapped in the unit disk, whereas the unit disk
- in the left half plane.

5.5. The symmetry and the Möbius transformation.

Definition: Given the circle Ca(r) of radius r and centered at z = a, we say
that the points z, z∗ 6∈ Ca(r) are symmetric with respect to Ca(r) if

z∗ =

{
R2

z̄−ā + a, z 6= a,

∞, z = a.

One can easily prove that in this definition each straight line or circle passing
through z and z∗ intersects tCa(r) orthogonally. In the case of a line we have
the usual symmetry with respect to it.
Theorem 5.3. Given a circle C and a Möbius transformationw = T (z), as-
sume that z, z∗ are symmetric with respect to C. Then their images T (z), T (z∗)
are again symmetric with respect to the image T (C) of C.
Example 5.4: Find all Möbius transformationtransformations that map the
disk C0(r) onto itself.

Solution; We fix in an arbitrary way a point a ∈ D0(r). Its symmetric point
with respect to the unit circle is

a∗ =
r2

ā
. (10)

Any transformation of the form

S(z) := K
z − a

z − r2a∗
(11)
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with K being some constant maps the points a and a∗ at 0 and infinity, respec-
tively. Because of the symmetry, the image of C0(r) will be a circle C centered
at the zero. Now we are going to choose the constant K in such a way that C
coincides with C0(r). Take a point z0 := reiφ and calculate S(z0). We have, by
(10),

|S(z0)| = K
reiφ − a

a ∗ reiφ − r2
,

or

|S(z0)| = |K|
r

|reiφ − a|
|a ∗ −reiφ|

.

Putting
|S(z0)| = r,

we arrive at

T (z) = r2eiΘ
z − a

z − r2a∗
for some real Θ. →

Exercises:

1. Let
w = 1/z.

Find the image of the lines y = kx, y = ax + b, and of the circle x2 + y2 =
ax, x2 + y2.

2. Let

w =
z − i
z + i

.

Find the image of {x, y ≥ 0}.
3. Let w = z

z−1
. Find the image of the angle 0 ≤ φ ≤ π
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4. Find all Möbius transformations that maps the upper half plane onto itself.

5. Given T (z) := z−1
z+1

, find the image of the domain G := {z, |z| < 1}
⋂
{z, |z−

1| < 1}.
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