3. Analytic functions

3.1. Differentiability and analycity.

Definition:Let the function f(z) be well defined in a neighborhood G of a point
zo. We say that f is differentiable at z,, if the limit

. flao+Az) = f(20)
Al A»

does exists whenever
Az — 0.

The expression lima._.q W, provided the limit exists, is called the

derivative at zo and is denoted by f’(z) : e.g.

f(ZO + AZ) — f(ZO) = f’(zo) = ZZZ—'}; (1)

N
As we see, the definition is just the same as for the real-valued functions
in real-analysis. Similarly to the real analysis, we have
Theorem 3.1. If f and g are differentiable at zy, then so are f + g and fg,
and

lim
Az—0 AZ

(f+9)(2) = f'(2) + d'(2), (f9)'(2) = ['(2)9(2) + f(2)g'(2).
The function 5 is differentiable if ¢'(z0) # 0 and
Sy fa—J9
(=) () e (Z0)-
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Definition: The complex valued function f is analytic in the open set D, if
it is differentiableat any point in D. We will use the notation f € A(D). N

2.2. Geometric interpretation of the derivative. Let f be differen-
tiableat zo and suppose that f’(z9) # 0. We set Az := z — 2. From (1) we

deduce that
|f(2) = f(20)]

|z — 20|

— [f'(20)]



and
Arg(f(z) — f(20) — Arg(z — z0) — Argf’'(20).

We rewrite as

Arg(f(2) — f(20) — Arg(z — z0) = Argf'(z0).

Setting w := f(z), we see thanks to the condition f'(zy) # 0 that in "the
closure of zy” the mapping f(z) is "similar” to the linear transformation

w = f(z0) + f'(20)(z — 20).

This mapping preserves the angles, and is, as it is easy to see, one-to-one
mapping. Such mappings are called conformal.
Definition: The function f is called to be entire, if it is analytic in the
entire complex plane C. We write f € £.
3.3. Cauchy-Reimann equations.

Let (D) be an open set in C and f € A(D).

We write down

f(2) =u(z,y) +w(r,y), 2=z +iy, (z,y) € G

and
Az = Az + iAy.
Let first Az — 0 horizontally, e.g. Ay = 0. The Az = Az and by (1),
Ou(zo, yo) | .Ov(To, Yo)
/ — Y ) ) 2
() = 2E020) O, )

On the pother hand, if the approach is vertical, e,g, if Az = iAy, then

Ou(wo, Z/o) n 01}(3:0, Yo)

f/(Zo) = —1 dy By . (3)

Since the limits are just the derivative f’(zy), we deduce that

u;(.ﬁlﬁo, yD) = ’U;(.CEO, y0)> u;(xoa yO) - _U;(ajm yO) (4)

Equations (4) are called Cauchy.Riemann equations.
Theorem 3.2 A necessary condition for a function f(z) = u(z,y) + iv(z,y)
to be differentiableat zy is that the Cauchy-Riemann equations hold at z.
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Consequently, if f € A(D) then the Cauchy-Riemann equations hold at every
point of D.

Definition: The functions u(x, y) and v(z, y) are called harmonic conjugate.N.

We now are going to establish the sufficient conditions for a function f
to be analytic at some point zy. The story is given by the following theorem
Theorem 3.3. Let f(z), f(z2) = u(z,y) +iv(z,y), be defined in an neighbor-
hood U of zy, suppose that the real and imaginary components u(z,y) and
v(x,y) satisfy the Cauchy-Riemann equations and are continuous in U. Then
f is differentiableat z.

Proof: Set as before Az := Ax + iAy and consider the quotient

f 482 - J()
Az

U({ﬂo + A*Ta Yo + Ay) - u<$07 yO) + ’i(U(JZ‘O + Ai[), Yo + Ay) _ U(.%‘O, yO))
Az + 1Ay

= LA.
We write the diference
u(ro + A, y, + Ay) — u(wo, Yo)
as
[u(zo + Az, y, + Ay) — u(zo, yo + Ay)] + [u(zo, yo + Ay) — u(xo, yo)] -

Because of the continuity of 'z, 'y we may apply the mean valued theorem
which yields

0
u(xo + Az, Yo + Ay) — u(xo, Yo + Ay) = Afva—z(l‘*, Yo + Ay),

where the point xz* € [x,z + Ax)] is appropriate. Again by continuity, we
may write

ou ou

—(z*x,y0 + Ay) = — (20, yo) + €1,

8x< Yo Y) 8x< 0, %0) 1

where ¢; — 0, x¥ — 79 and Ay — 0. Summarizing, we write

0
u(xo + Az, y, + Ay) — u(xo, yo + Ay) = Az {8—5(%, Yo) + 51} :
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Treating the expression L similarly, we get

Ax[%Jralﬂ%ﬂ'ag}+Ay[g—g+52+z’g—z+z’g4 5
Az +1iAy ’

ﬁA =
where the partial derivatives are taken at the point zy = (xg, yo). Now we use

the equations of Cauchy-Riemann:

Ag [24 4 §00] + 4[24 4 2Y] A
Ax +iAy Az +iAy’

La=

with A := Az(ey +ie3) + Ay(eq + ieq). Since

_ Ax[G+ig] i[5 iG] A

L
A Az +iAy Az +iAy’

with A := Ax(ey + ie3) + Ay(ea + ie4), we see that (5) approaches the zero
if Az — 0. Thus, f is differentiableat zy and

e =i LEEED D (BB )

Q.E.D.
As a further applications of these techniques, let us prove the following
theorem
Theorem 5.4 Let U be a domain and let f € A()(U). If f'(z) = for every
point of U, then f = Const.
Before proceeding with the proof, we observe that the connectedness of
the domain U of essential. We illustrate this by an example. Let

f(z):{ (1): o <!

|z| > 2

Here f'(z) = 0 at every point of the domain of definition (which is not a
domain), yet f is not constant.
Proof: From (2) and from (3) we get

ov  Ou B ov

Ov _0u_0v_0ou_,
or Odx 0Oy Oy
Thus, f is constant. Q.E.D.



Using previous theorems and the Cauchy-Riemann equations, one can
show that f € A()(U) is constant if

u(z,y) = Const,
v(x,y) = Const,
f(2)| = Const.

Definition:The function & is said to be harmonic in D, if h € C*(D) and

Ah = hgy 4+ hy, = 0in D. The operator A is called the Laplacian N.
Going back to our considerations, we see that se have established the

following theorem

Theorem 5.5. If f(z) € A(D),D— an open set, then both u and v are

harmonic and harmonic conjugate to each other.

Exercises:1. Show that the function

fe) =

is nowhere differentiable.

2. Do the same for f(z) = /|22 + z|. (or f(2) & A(C). &.)
3. Suppose that f € A(D) and f € A(D). Prove that f = Const.

4. Given
2A/By5/3 4 i75/34/3
f(=) = a0 270
0, z=0
show that Cauchy-Riemann equations are satisfied at z = 0, but is not
differentiablethere.

5. 5. f(2) € A(D), f(z) = u(z,y) + iv(x,y). Write the functions v and v in
polar coordinates (r,©). Show that
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