3. Analytic functions

3.1. Differentiability and analycity.

Definition:Let the function $f(z)$ be well defined in a neighborhood \mathcal{G} of a point z_{0}. We say that f is differentiable at z_{o}, if the limit

$$
\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
$$

does exists whenever

$$
\Delta z \rightarrow 0
$$

The expression $\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}$, provided the limit exists, is called the derivative at z_{0} and is denoted by $f^{\prime}\left(z_{0}\right)$: e.g.

$$
\begin{equation*}
\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} ;=f^{\prime}\left(z_{0}\right):=\frac{d f}{d z} . \tag{1}
\end{equation*}
$$

\aleph
As we see, the definition is just the same as for the real-valued functions in real-analysis. Similarly to the real analysis, we have
Theorem 3.1. If f and g are differentiable at z_{0}, then so are $f \pm g$ and $f g$, and

$$
(f+g)^{\prime}(z)=f^{\prime}(z)+g^{\prime}(z),(f g)^{\prime}(z)=f^{\prime}(z) g(z)+f(z) g^{\prime}(z)
$$

The function $\frac{f}{g}$ is differentiable if $g^{\prime}\left(z_{0}\right) \neq 0$ and

$$
\left(\frac{f}{g}\right)^{\prime}\left(z_{0}\right)=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}\left(z_{0}\right) .
$$

Definition: The complex valued function f is analytic in the open set \mathcal{D}, if it is differentiableat any point in \mathcal{D}. We will use the notation $f \in \mathcal{A}(\mathcal{D})$. «
2.2. Geometric interpretation of the derivative. Let f be differentiableat z_{0} and suppose that $f^{\prime}\left(z_{0}\right) \neq 0$. We set $\Delta z:=z-z_{0}$. From (1) we deduce that

$$
\frac{\left|f(z)-f\left(z_{0}\right)\right|}{\left|z-z_{0}\right|} \rightarrow\left|f^{\prime}\left(z_{0}\right)\right|
$$

and

$$
\operatorname{Arg}\left(f(z)-f\left(z_{0}\right)-\operatorname{Arg}\left(z-z_{0}\right) \rightarrow \operatorname{Arg} f^{\prime}\left(z_{0}\right)\right.
$$

We rewrite as

$$
\operatorname{Arg}\left(f(z)-f\left(z_{0}\right)-\operatorname{Arg}\left(z-z_{0}\right) \approx \operatorname{Arg} f^{\prime}\left(z_{0}\right)\right.
$$

Setting $w:=f(z)$, we see thanks to the condition $f^{\prime}\left(z_{0}\right) \neq 0$ that in "the closure of z_{0} " the mapping $f(z)$ is "similar" to the linear transformation

$$
w=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right) .
$$

This mapping preserves the angles, and is, as it is easy to see, one-to-one mapping. Such mappings are called conformal.
Definition: The function f is called to be entire, if it is analytic in the entire complex plane \mathbf{C}. We write $f \in \mathcal{E}$.

3.3. Cauchy-Reimann equations.

Let (\mathcal{D}) be an open set in \mathbb{C} and $f \in \mathcal{A}(\mathcal{D})$.
We write down

$$
f(z)=u(x, y)+i v(x, y), z=x+i y,(x, y) \in \mathcal{G}
$$

and

$$
\Delta z=\Delta x+i \Delta y
$$

Let first $\Delta z \rightarrow 0$ horizontally, e.g. $\Delta y=0$. The $\Delta z=\Delta x$ and by (1),

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=\frac{\partial u\left(x_{0}, y_{0}\right)}{\partial x}+i \frac{\partial v\left(x_{0}, y_{0}\right)}{\partial x} \tag{2}
\end{equation*}
$$

On the pother hand, if the approach is vertical, e,g, if $\Delta z=i \Delta y$, then

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=-i \frac{\partial u\left(x_{0}, y_{0}\right)}{\partial y}+\frac{\partial v\left(x_{0}, y_{0}\right)}{\partial y} . \tag{3}
\end{equation*}
$$

Since the limits are just the derivative $f^{\prime}\left(z_{0}\right)$, we deduce that

$$
\begin{equation*}
u_{x}^{\prime}\left(x_{o}, y_{0}\right)=v_{y}^{\prime}\left(x_{o}, y_{0}\right), u_{y}^{\prime}\left(x_{o}, y_{0}\right)=-v_{x}^{\prime}\left(x_{o}, y_{0}\right) \tag{4}
\end{equation*}
$$

Equations (4) are called Cauchy.Riemann equations.
Theorem 3.2 A necessary condition for a function $f(z)=u(x, y)+i v(x, y)$ to be differentiableat z_{0} is that the Cauchy-Riemann equations hold at z_{0}.

Consequently, if $f \in \mathcal{A}(\mathcal{D})$ then the Cauchy-Riemann equations hold at every point of \mathcal{D}.
Definition:The functions $u(x, y)$ and $v(x, y)$ are called harmonic conjugate.队.

We now are going to establish the sufficient conditions for a function f to be analytic at some point z_{0}. The story is given by the following theorem Theorem 3.3. Let $f(z), f(z)=u(x, y)+i v(x, y)$, be defined in an neighborhood \mathcal{U} of z_{0}, suppose that the real and imaginary components $u(x, y)$ and $v(x, y)$ satisfy the Cauchy-Riemann equations and are continuous in \mathcal{U}. Then f is differentiableat z_{0}.
Proof: Set as before $\Delta z:=\Delta x+i \Delta y$ and consider the quotient

$$
\begin{gathered}
\frac{f(z+\Delta z)-f(z)}{\Delta z}= \\
\frac{u\left(x_{0}+\Delta x, y_{o}+\Delta y\right)-u\left(x_{0}, y_{0}\right)+i\left(v\left(x_{0}+\Delta x, y_{o}+\Delta y\right)-v\left(x_{0}, y_{0}\right)\right)}{\Delta x+i \Delta y}:=\mathcal{L}_{\Delta} .
\end{gathered}
$$

We write the diference

$$
u\left(x_{0}+\Delta x, y_{o}+\Delta y\right)-u\left(x_{0}, y_{0}\right)
$$

as

$$
\left[u\left(x_{0}+\Delta x, y_{o}+\Delta y\right)-u\left(x_{0}, y_{0}+\Delta y\right)\right]+\left[u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)\right]
$$

Because of the continuity of $u^{\prime} x, u^{\prime} y$ we may apply the mean valued theorem which yields

$$
u\left(x_{0}+\Delta x, y_{o}+\Delta y\right)-u\left(x_{0}, y_{0}+\Delta y\right)=\Delta x \frac{\partial u}{\partial x}\left(x *, y_{0}+\Delta y\right)
$$

where the point $x * \in[x, x+\Delta x)]$ is appropriate. Again by continuity, we may write

$$
\frac{\partial u}{\partial x}\left(x *, y_{0}+\Delta y\right)=\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)+\varepsilon_{1},
$$

where $\varepsilon_{1} \rightarrow 0, x * \rightarrow x_{0}$ and $\Delta y \rightarrow 0$. Summarizing, we write

$$
u\left(x_{0}+\Delta x, y_{o}+\Delta y\right)-u\left(x_{0}, y_{0}+\Delta y\right)=\Delta x\left[\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)+\varepsilon_{1}\right] .
$$

Treating the expression \mathcal{L}_{Δ} similarly, we get

$$
\begin{equation*}
\mathcal{L}_{\Delta}:=\frac{\Delta x\left[\frac{\partial u}{\partial x}+\varepsilon_{1}+i \frac{\partial v}{\partial x}+i \varepsilon_{3}\right]+\Delta y\left[\frac{\partial u}{\partial y}+\varepsilon_{2}+i \frac{\partial v}{\partial y}+i \varepsilon_{4}\right]}{\Delta x+i \Delta y} \tag{5}
\end{equation*}
$$

where the partial derivatives are taken at the point $z_{0}=\left(x_{0}, y_{0}\right)$. Now we use the equations of Cauchy-Riemann:

$$
\mathcal{L}_{\Delta}=\frac{\Delta x\left[\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right]+i\left[\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right]}{\Delta x+i \Delta y}+\frac{\lambda}{\Delta x+i \Delta y},
$$

with $\lambda:=\Delta x\left(\varepsilon_{1}+i \varepsilon_{3}\right)+\Delta y\left(\varepsilon_{2}+i \varepsilon_{4}\right)$. Since

$$
\mathcal{L}_{\Delta}=\frac{\Delta x\left[\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right]+i\left[\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right]}{\Delta x+i \Delta y}+\frac{\lambda}{\Delta x+i \Delta y},
$$

with $\lambda:=\Delta x\left(\varepsilon_{1}+i \varepsilon_{3}\right)+\Delta y\left(\varepsilon_{2}+i \varepsilon_{4}\right)$, we see that (5) approaches the zero if $\Delta z \rightarrow 0$. Thus, f is differentiableat z_{0} and

$$
f^{\prime}\left(z_{0}\right)=\lim \frac{f(z+\Delta z)-f(z)}{\Delta z}=\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial y}\right)\left(x_{0}, y_{0}\right) .
$$

Q.E.D.

As a further applications of these techniques, let us prove the following theorem
Theorem 5.4 Let \mathcal{U} be a domain and let $f \in \mathcal{A}()(\mathcal{U})$. If $f^{\prime}(z)=$ for every point of \mathcal{U}, then $f \equiv$ Const.

Before proceeding with the proof, we observe that the connectedness of the domain \mathcal{U} of essential. We illustrate this by an example. Let

$$
f(z)= \begin{cases}1, & |z|<1 \\ 0, & |z|>2\end{cases}
$$

Here $f^{\prime}(z)=0$ at every point of the domain of definition (which is not a domain), yet f is not constant.
Proof: From (2) and from (3) we get

$$
\frac{\partial v}{\partial x}=\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=\frac{\partial u}{\partial y}=0 .
$$

Thus, f is constant.
Q.E.D.

Using previous theorems and the Cauchy-Riemann equations, one can show that $f \in \mathcal{A}()(\mathcal{U})$ is constant if

$$
\begin{aligned}
& u(x, y) \equiv \text { Const }, \\
& v(x, y) \equiv \text { Const }, \\
& |f(z)| \equiv \text { Const } .
\end{aligned}
$$

Definition:The function h is said to be harmonic in \mathcal{D}, if $h \in C^{2}(\mathcal{D})$ and $\Delta h:=h_{x, x}+h_{y, y}=0$ in \mathcal{D}. The operator Δ is called the Laplacian \aleph.

Going back to our considerations, we see that se have established the following theorem
Theorem 5.5. If $f(z) \in \mathcal{A}(D), D-$ an open set, then both u and v are harmonic and harmonic conjugate to each other.

Exercises:1. Show that the function

$$
f(z)=\frac{1}{z}
$$

is nowhere differentiable.
2. Do the same for $f(z)=\sqrt{\left|z^{2}+z\right|}$. (or $f(z) \notin \mathcal{A}(\mathcal{C})$. \&.)
3. Suppose that $f \in \mathcal{A}(D)$ and $\bar{f} \in \mathcal{A}(D)$. Prove that $f \equiv$ Const.
4. Given

$$
f(z):= \begin{cases}\frac{x^{4 / 3} y^{5 / 3}+i x^{5 / 3} y^{4 / 3}}{x^{2} y^{2}}, & z \neq 0 \\ 0, & z=0\end{cases}
$$

show that Cauchy-Riemann equations are satisfied at $z=0$, but is not differentiablethere.
5. 5. $f(z) \in \mathcal{A}(\mathcal{D}), f(z)=u(x, y)+i v(x, y)$. Write the functions u and v in polar coordinates (r, Θ). Show that

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \Theta},-\frac{1}{r} \frac{\partial u}{\partial \Theta}=\frac{\partial v}{\partial r}
$$

