
3. Analytic functions

3.1. Differentiability and analycity.

Definition:Let the function f(z) be well defined in a neighborhood G of a point
z0. We say that f is differentiable at zo, if the limit

lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z

does exists whenever
∆z → 0.

The expression lim∆z→0
f(z0+∆z)−f(z0)

∆z
, provided the limit exists, is called the

derivative at z0 and is denoted by f ′(z0) : e.g.

lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
; = f ′(z0) :=

df

dz
. (1)

ℵ
As we see, the definition is just the same as for the real-valued functions

in real-analysis. Similarly to the real analysis, we have
Theorem 3.1. If f and g are differentiable at z0, then so are f ± g and fg,
and

(f + g)′(z) = f ′(z) + g′(z), (fg)′(z) = f ′(z)g(z) + f(z)g′(z).

The function f
g

is differentiable if g′(z0) 6= 0 and

(
f

g
)′(z0) =

f ′g − fg′

g2
(z0).

Definition: The complex valued function f is analytic in the open set D, if
it is differentiableat any point in D. We will use the notation f ∈ A(D). ℵ

2.2. Geometric interpretation of the derivative. Let f be differen-
tiableat z0 and suppose that f ′(z0) 6= 0. We set ∆z := z − z0. From (1) we
deduce that

|f(z)− f(z0)|
|z − z0|

→ |f ′(z0)|
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and
Arg(f(z)− f(z0)− Arg(z − z0)→ Argf ′(z0).

We rewrite as

Arg(f(z)− f(z0)− Arg(z − z0) ≈ Argf ′(z0).

Setting w := f(z), we see thanks to the condition f ′(z0) 6= 0 that in ”the
closure of z0” the mapping f(z) is ”similar” to the linear transformation

w = f(z0) + f ′(z0)(z − z0).

This mapping preserves the angles, and is, as it is easy to see, one-to-one
mapping. Such mappings are called conformal.

Definition: The function f is called to be entire, if it is analytic in the
entire complex plane C. We write f ∈ E .
3.3. Cauchy-Reimann equations.

Let (D) be an open set in C and f ∈ A(D).
We write down

f(z) = u(x, y) + iv(x, y), z = x+ iy, (x, y) ∈ G

and
∆z = ∆x+ i∆y.

Let first ∆z → 0 horizontally, e.g. ∆y = 0. The ∆z = ∆x and by (1),

f ′(z0) =
∂u(x0, y0)

∂x
+ i

∂v(x0, y0)

∂x
. (2)

On the pother hand, if the approach is vertical, e,g, if ∆z = i∆y, then

f ′(z0) = −i∂u(x0, y0)

∂y
+
∂v(x0, y0)

∂y
. (3)

Since the limits are just the derivative f ′(z0), we deduce that

u′x(xo, y0) = v′y(xo, y0), u′y(xo, y0) = −v′x(xo, y0) (4)

Equations (4) are called Cauchy.Riemann equations.
Theorem 3.2 A necessary condition for a function f(z) = u(x, y) + iv(x, y)
to be differentiableat z0 is that the Cauchy-Riemann equations hold at z0.
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Consequently, if f ∈ A(D) then the Cauchy-Riemann equations hold at every
point of D.
Definition:The functions u(x, y) and v(x, y) are called harmonic conjugate.ℵ.

We now are going to establish the sufficient conditions for a function f
to be analytic at some point z0. The story is given by the following theorem
Theorem 3.3. Let f(z) , f(z) = u(x, y)+ iv(x, y), be defined in an neighbor-
hood U of z0, suppose that the real and imaginary components u(x, y) and
v(x, y) satisfy the Cauchy-Riemann equations and are continuous in U . Then
f is differentiableat z0.

Proof: Set as before ∆z := ∆x+ i∆y and consider the quotient

f(z + ∆z)− f(z)

∆z
=

u(x0 + ∆x, yo + ∆y)− u(x0, y0) + i(v(x0 + ∆x, yo + ∆y)− v(x0, y0))

∆x+ i∆y
:= L∆.

We write the diference

u(x0 + ∆x, yo + ∆y)− u(x0, y0)

as

[u(x0 + ∆x, yo + ∆y)− u(x0, y0 + ∆y)] + [u(x0, y0 + ∆y)− u(x0, y0)] .

Because of the continuity of u′x, u′y we may apply the mean valued theorem
which yields

u(x0 + ∆x, yo + ∆y)− u(x0, y0 + ∆y) = ∆x
∂u

∂x
(x∗, y0 + ∆y),

where the point x∗ ∈ [x, x + ∆x)] is appropriate. Again by continuity, we
may write

∂u

∂x
(x∗, y0 + ∆y) =

∂u

∂x
(x0, y0) + ε1,

where ε1 → 0, x∗ → x0 and ∆y → 0. Summarizing, we write

u(x0 + ∆x, yo + ∆y)− u(x0, y0 + ∆y) = ∆x

[
∂u

∂x
(x0, y0) + ε1

]
.
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Treating the expression L∆ similarly, we get

L∆ :=
∆x
[

∂u
∂x

+ ε1 + i ∂v
∂x

+ iε3

]
+ ∆y

[
∂u
∂y

+ ε2 + i∂v
∂y

+ iε4

]
∆x+ i∆y

, (5)

where the partial derivatives are taken at the point z0 = (x0, y0). Now we use
the equations of Cauchy-Riemann:

L∆ =
∆x
[

∂u
∂x

+ i ∂v
∂x

]
+ i
[

∂u
∂x

+ i ∂v
∂x

]
∆x+ i∆y

+
λ

∆x+ i∆y
,

with λ := ∆x(ε1 + iε3) + ∆y(ε2 + iε4). Since

L∆ =
∆x
[

∂u
∂x

+ i ∂v
∂x

]
+ i
[

∂u
∂x

+ i ∂v
∂x

]
∆x+ i∆y

+
λ

∆x+ i∆y
,

with λ := ∆x(ε1 + iε3) + ∆y(ε2 + iε4), we see that (5) approaches the zero
if ∆z → 0. Thus, f is differentiableat z0 and

f ′(z0) = lim
f(z + ∆z)− f(z)

∆z
= (

∂u

∂x
+ i

∂v

∂y
)(x0, y0).

Q.E.D.
As a further applications of these techniques, let us prove the following

theorem
Theorem 5.4 Let U be a domain and let f ∈ A()(U). If f ′(z) = for every
point of U , then f ≡ Const.

Before proceeding with the proof, we observe that the connectedness of
the domain U of essential. We illustrate this by an example. Let

f(z) =

{
1, |z| < 1
0, |z| > 2

Here f ′(z) = 0 at every point of the domain of definition (which is not a
domain), yet f is not constant.
Proof: From (2) and from (3) we get

∂v

∂x
=
∂u

∂x
=
∂v

∂y
=
∂u

∂y
= 0.

Thus, f is constant. Q.E.D.
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Using previous theorems and the Cauchy-Riemann equations, one can
show that f ∈ A()(U) is constant if

u(x, y) ≡ Const,
v(x, y) ≡ Const,
|f(z)| ≡ Const.

Definition:The function h is said to be harmonic in D, if h ∈ C2(D) and
∆h := hx,x + hy,y = 0 in D. The operator ∆ is called the Laplacian ℵ.

Going back to our considerations, we see that se have established the
following theorem
Theorem 5.5. If f(z) ∈ A(D), D− an open set, then both u and v are
harmonic and harmonic conjugate to each other.

Exercises:1. Show that the function

f(z) =
1

z

is nowhere differentiable.
2. Do the same for f(z) =

√
|z2 + z|. (or f(z) 6∈ A(C). ♣.)

3. Suppose that f ∈ A(D) and f̄ ∈ A(D). Prove that f ≡ Const.
4. Given

f(z) :=

{
x4/3y5/3+ix5/3y4/3

x2y2 , z 6= 0

0, z = 0

show that Cauchy-Riemann equations are satisfied at z = 0, but is not
differentiablethere.
5. 5. f(z) ∈ A(D), f(z) = u(x, y) + iv(x, y). Write the functions u and v in
polar coordinates (r,Θ). Show that

∂u

∂r
=

1

r

∂v

∂Θ
, −1

r

∂u

∂Θ
=
∂v

∂r
.
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