3. Analytic functions

3.1. Differentiability and analycity.

Definition:Let the function f(z) be well defined in a neighborhood \mathcal{G} of a point z_0 . We say that f is differentiable at z_o , if the limit

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

does exists whenever

$$\Delta z \to 0$$

The expression $\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$, provided the limit exists, is called *the* derivative at z_0 and is denoted by $f'(z_0)$: e.g.

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}; = f'(z_0) := \frac{df}{dz}.$$
 (1)

Х

As we see, the definition is just the same as for the real-valued functions in real-analysis. Similarly to the real analysis, we have

Theorem 3.1. If f and g are differentiable at z_0 , then so are $f \pm g$ and fg, and

$$(f+g)'(z) = f'(z) + g'(z), \ (fg)'(z) = f'(z)g(z) + f(z)g'(z).$$

The function $\frac{f}{g}$ is differentiable if $g'(z_0) \neq 0$ and

$$(\frac{f}{g})'(z_0) = \frac{f'g - fg'}{g^2}(z_0).$$

Definition: The complex valued function f is analytic in the open set \mathcal{D} , if it is differentiableat any point in \mathcal{D} . We will use the notation $f \in \mathcal{A}(\mathcal{D})$.

2.2. Geometric interpretation of the derivative. Let f be differentiable z_0 and suppose that $f'(z_0) \neq 0$. We set $\Delta z := z - z_0$. From (1) we deduce that

$$\frac{|f(z) - f(z_0)|}{|z - z_0|} \to |f'(z_0)|$$

and

$$\operatorname{Arg}(f(z) - f(z_0) - \operatorname{Arg}(z - z_0) \to \operatorname{Arg} f'(z_0)$$

We rewrite as

$$\operatorname{Arg}(f(z) - f(z_0) - \operatorname{Arg}(z - z_0) \approx \operatorname{Arg} f'(z_0).$$

Setting w := f(z), we see thanks to the condition $f'(z_0) \neq 0$ that in "the closure of z_0 " the mapping f(z) is "similar" to the linear transformation

$$w = f(z_0) + f'(z_0)(z - z_0).$$

This mapping preserves the angles, and is, as it is easy to see, one-to-one mapping. Such mappings are called *conformal*.

Definition: The function f is called to be **entire**, if it is analytic in the entire complex plane **C**. We write $f \in \mathcal{E}$.

3.3. Cauchy-Reimann equations.

Let (\mathcal{D}) be an open set in \mathbb{C} and $f \in \mathcal{A}(\mathcal{D})$.

We write down

$$f(z) = u(x, y) + iv(x, y), \ z = x + iy, (x, y) \in \mathcal{G}$$

and

$$\Delta z = \Delta x + i \Delta y.$$

Let first $\Delta z \to 0$ horizontally, e.g. $\Delta y = 0$. The $\Delta z = \Delta x$ and by (1),

$$f'(z_0) = \frac{\partial u(x_0, y_0)}{\partial x} + i \frac{\partial v(x_0, y_0)}{\partial x}.$$
(2)

On the pother hand, if the approach is vertical, e.g., if $\Delta z = i\Delta y$, then

$$f'(z_0) = -i\frac{\partial u(x_0, y_0)}{\partial y} + \frac{\partial v(x_0, y_0)}{\partial y}.$$
(3)

Since the limits are just the derivative $f'(z_0)$, we deduce that

$$u'_{x}(x_{o}, y_{0}) = v'_{y}(x_{o}, y_{0}), \ u'_{y}(x_{o}, y_{0}) = -v'_{x}(x_{o}, y_{0})$$

$$\tag{4}$$

Equations (4) are called *Cauchy.Riemann equations*.

Theorem 3.2 A necessary condition for a function f(z) = u(x, y) + iv(x, y) to be differentiable z_0 is that the Cauchy-Riemann equations hold at z_0 .

Consequently, if $f \in \mathcal{A}(\mathcal{D})$ then the Cauchy-Riemann equations hold at every point of \mathcal{D} .

Definition: The functions u(x, y) and v(x, y) are called *harmonic conjugate*. \aleph .

We now are going to establish the sufficient conditions for a function f to be analytic at some point z_0 . The story is given by the following theorem **Theorem 3.3**. Let f(z), f(z) = u(x, y) + iv(x, y), be defined in an neighborhood \mathcal{U} of z_0 , suppose that the real and imaginary components u(x, y) and v(x, y) satisfy the Cauchy-Riemann equations and are continuous in \mathcal{U} . Then f is differentiable z_0 .

Proof: Set as before $\Delta z := \Delta x + i\Delta y$ and consider the quotient

$$\frac{f(z + \Delta z) - f(z)}{\Delta z} =$$

 $\frac{u(x_0 + \Delta x, y_o + \Delta y) - u(x_0, y_0) + i(v(x_0 + \Delta x, y_o + \Delta y) - v(x_0, y_0))}{\Delta x + i\Delta y} := \mathcal{L}_{\Delta}.$

We write the diference

$$u(x_0 + \Delta x, y_o + \Delta y) - u(x_0, y_0)$$

as

$$[u(x_0 + \Delta x, y_o + \Delta y) - u(x_0, y_0 + \Delta y)] + [u(x_0, y_0 + \Delta y) - u(x_0, y_0)].$$

Because of the continuity of u'x, u'y we may apply the mean valued theorem which yields

$$u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0 + \Delta y) = \Delta x \frac{\partial u}{\partial x}(x_*, y_0 + \Delta y),$$

where the point $x^* \in [x, x + \Delta x)$ is appropriate. Again by continuity, we may write

$$\frac{\partial u}{\partial x}(x^*, y_0 + \Delta y) = \frac{\partial u}{\partial x}(x_0, y_0) + \varepsilon_1,$$

where $\varepsilon_1 \to 0, x^* \to x_0$ and $\Delta y \to 0$. Summarizing, we write

$$u(x_0 + \Delta x, y_o + \Delta y) - u(x_0, y_0 + \Delta y) = \Delta x \left[\frac{\partial u}{\partial x}(x_0, y_0) + \varepsilon_1 \right].$$

Treating the expression \mathcal{L}_{Δ} similarly, we get

$$\mathcal{L}_{\Delta} := \frac{\Delta x \left[\frac{\partial u}{\partial x} + \varepsilon_1 + i \frac{\partial v}{\partial x} + i \varepsilon_3 \right] + \Delta y \left[\frac{\partial u}{\partial y} + \varepsilon_2 + i \frac{\partial v}{\partial y} + i \varepsilon_4 \right]}{\Delta x + i \Delta y}, \qquad (5)$$

where the partial derivatives are taken at the point $z_0 = (x_0, y_0)$. Now we use the equations of Cauchy-Riemann:

$$\mathcal{L}_{\Delta} = \frac{\Delta x \left[\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}\right] + i \left[\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}\right]}{\Delta x + i \Delta y} + \frac{\lambda}{\Delta x + i \Delta y},$$

with $\lambda := \Delta x(\varepsilon_1 + i\varepsilon_3) + \Delta y(\varepsilon_2 + i\varepsilon_4)$. Since

$$\mathcal{L}_{\Delta} = \frac{\Delta x \left[\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}\right] + i \left[\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}\right]}{\Delta x + i \Delta y} + \frac{\lambda}{\Delta x + i \Delta y},$$

with $\lambda := \Delta x(\varepsilon_1 + i\varepsilon_3) + \Delta y(\varepsilon_2 + i\varepsilon_4)$, we see that (5) approaches the zero if $\Delta z \to 0$. Thus, f is differentiable z_0 and

$$f'(z_0) = \lim \frac{f(z + \Delta z) - f(z)}{\Delta z} = (\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial y})(x_0, y_0).$$

Q.E.D.

As a further applications of these techniques, let us prove the following theorem

Theorem 5.4 Let \mathcal{U} be a domain and let $f \in \mathcal{A}(\mathcal{U})$. If f'(z) = for every point of \mathcal{U} , then $f \equiv Const$.

Before proceeding with the proof, we observe that the connectedness of the domain \mathcal{U} of essential. We illustrate this by an example. Let

$$f(z) = \begin{cases} 1, & |z| < 1\\ 0, & |z| > 2 \end{cases}$$

Here f'(z) = 0 at every point of the domain of definition (which is not a domain), yet f is not constant.

Proof: From (2) and from (3) we get

$$\frac{\partial v}{\partial x} = \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = \frac{\partial u}{\partial y} = 0.$$

Thus, f is constant.

Q.E.D.

Using previous theorems and the Cauchy-Riemann equations, one can show that $f \in \mathcal{A}(\mathcal{U})$ is constant if

$$u(x, y) \equiv Const, v(x, y) \equiv Const, |f(z)| \equiv Const.$$

Definition: The function h is said to be harmonic in \mathcal{D} , if $h \in C^2(\mathcal{D})$ and $\Delta h := h_{x,x} + h_{y,y} = 0$ in \mathcal{D} . The operator Δ is called *the Laplacian* \aleph .

Going back to our considerations, we see that se have established the following theorem

Theorem 5.5. If $f(z) \in \mathcal{A}(D)$, D- an open set, then both u and v are harmonic and harmonic conjugate to each other.

Exercises:1. Show that the function

$$f(z) = \frac{1}{z}$$

is nowhere differentiable.

- 2. Do the same for $f(z) = \sqrt{|z^2 + z|}$. (or $f(z) \notin \mathcal{A}(\mathcal{C})$.
- 3. Suppose that $f \in \mathcal{A}(D)$ and $\overline{f} \in \mathcal{A}(D)$. Prove that $f \equiv Const$.
- 4. Given

$$f(z) := \begin{cases} \frac{x^{4/3}y^{5/3} + ix^{5/3}y^{4/3}}{x^2y^2}, & z \neq 0\\ 0, & z = 0 \end{cases}$$

show that Cauchy-Riemann equations are satisfied at z = 0, but is not differentiable there.

5. 5. $f(z) \in \mathcal{A}(\mathcal{D}), f(z) = u(x, y) + iv(x, y)$. Write the functions u and v in polar coordinates (r, Θ) . Show that

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \Theta}, \ -\frac{1}{r} \frac{\partial u}{\partial \Theta} = \frac{\partial v}{\partial r}.$$