4. Elementary functions

4.1. The exponential function e^{z}.

We repeat the definition from CHp. 1:
Definition: Given $z=x+i y \rightarrow e^{z}=e^{x} e^{i y}:=e^{x}(\cos y+i \sin y$. $)$ Properties:

1. e^{z} is one-to-one in any horizontal strip of length $\leq 2 \pi$, e.g. in $\{z,-\infty<$ $x<\infty, y \in[a, a+l], a \in \mathbb{R}, a-$ fixed, $0 \leq l \leq 2 \pi\} ;$
2. e^{z} is differentiable everywhere in \mathbb{C} and

$$
\frac{d}{d z} e^{z}=e^{z},
$$

3. The mapping by e^{z} is conformal, since the derivative is $\neq 0$.
4. e^{z} is periodic with complex period $2 \pi i$, e.g.

$$
e^{z}=e^{z+2 \pi i} ;
$$

further,

$$
e^{z}=1 \Longleftrightarrow z=2 k \pi i, k \in \mathbb{Z}
$$

5. e^{z} maps

$$
\begin{array}{ll}
\{z, z=C+i y, \alpha \leq y \leq \beta\} \text { on }\left\{w=e^{C} e^{i \phi}, \alpha \leq \phi \leq \beta\right\}, & C \text { real constant } \\
\{z, z=x+i C, a \leq x \leq b\} \text { on }\left\{e^{x} e^{i C}\right\}, & C \text { real constant }
\end{array}
$$

Definition: 4.2. Trigonometric functions:
Definition: Given any complex number z, we define

$$
\begin{array}{ll}
\cos z:=\frac{e^{i z}+e^{-i z}}{2}, & \sin z:=\frac{e^{i z}-e^{-i z}}{2 i} \\
\tan z=\frac{\sin z}{\cos z}, & \cot z=\frac{\cos z}{\sin z} \\
\csc z=\frac{1}{\sin }, & \sec z=\frac{1}{\cos z} \\
\sinh =\frac{e^{z}-e^{-z}}{2}, & \cosh =\frac{e^{z}+e^{-z}}{2} .
\end{array}
$$

It is left to the reader to deduce the known properties of the trigonometric functions.
4.3. The logarithmic function:

Definition: If $z \neq 0$, then we define $w=\log z$ to be any of the solutions of the equation

$$
z=e^{w},
$$

e.g.

$$
\begin{equation*}
\text { if } z \neq 0 \rightarrow \log z=\ln |z|+i \operatorname{Arg} z+2 k \pi i, k \in \mathbb{Z} \tag{1}
\end{equation*}
$$

Remark 1;

$$
z=e^{\log z}
$$

but

$$
\begin{equation*}
\log e^{z}=z+2 k \pi i, \text { any } k \in \mathbb{Z} \tag{2}
\end{equation*}
$$

From (1), we get

$$
\begin{equation*}
\log z_{1} z_{2}=\log z_{1}+\log z_{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\log \left(z_{1} / z_{2}\right)=\log z_{1}-\log z_{2} . \tag{4}
\end{equation*}
$$

Pay attention to the fact that (3) and (4) must be interpreted as equality among classes. If (3) and (4) are assigned to particular values then there exists a value of the third term such that an equality holds. For example, if $z_{1}=z_{2}=-1$ and we select πi to be the value of both $\log z_{1}$ and $\log z_{2}$, then (3) is satisfied if we use the particular value $2 \pi i$ for $\log z_{1} z_{2}$.
Definition: The principal value of the logarithmic function is the valued inherited by the principal part of the argument, that is

$$
\log z:=\ln |z|+i \operatorname{Arg} z
$$

\aleph.

Properties:

Theorem 4.1. The function $\log z$ is analytic in $D *:=\{z,-\pi<\operatorname{Arg} z<\pi\}$ and

$$
\frac{d}{d z} \log z=\frac{1}{z}
$$

From Theorem 4.1 we deduce
Corollary 4.1: The functions $\ln |z|$ and $\operatorname{Arg} z$ are harmonic in $D *$.
4.4. Single-valued branches of $\log z$.

$$
\mathcal{L}_{\tau}(z)=\ln |z|+i \arg _{\tau} z,
$$

where

$$
\arg _{\tau} z \in[\tau, \tau+2 \pi] .
$$

4.5. Complex Powers.

Definition: Given $\alpha \in \mathbb{C}$ and $z \neq 0$, we define

$$
\begin{equation*}
z^{\alpha}:=e^{\alpha \log z} \tag{5}
\end{equation*}
$$

Theorem 4.2 The function z^{α} is differentiable and

$$
\frac{d}{d z} z^{\alpha}=\alpha z^{\alpha-1}
$$

Remark 2: Let $\alpha=m \in \mathbb{Z}$. Then

$$
\left(e^{i \Theta}\right)^{m}=\cos (m \Theta)+i \sin (m \Theta)
$$

The last equality is the famous De Moivre's formula:

Exercises:

1. Show that

$$
\log e^{z}=z \Longleftrightarrow-\pi \leq \arg z<\pi
$$

2. Find the "error" in the following proof that $z=-z: z^{2}=(-z)^{2} \rightarrow \log (z)=$ $\log (-z) \rightarrow \log z=e^{\log z}=e^{\log (-z)}=-z$.
3. Show that if $z_{1}=i$ and $z_{2}=-1+i$, then $\log z_{1} z_{2} \neq \log i+\log (i-1)$.
4. Show that for any $m \in \mathbb{Z}, m>0$

$$
z^{1 / m}=z^{1 / m} e^{\frac{\operatorname{Arg} z+2 k \pi i}{m}}, k=0,1, \cdots m-1 .
$$

5. Find i^{i} and $1^{z}, z \in \mathbb{C}$.
