4. Elementary functions

4.1. The exponential function e^z .

We repeat the definition from CHp. 1:

Definition: Given $z = x + iy \rightarrow e^z = e^x e^{iy} := e^x (\cos y + i \sin y)$ **Properties:**

1. e^z is one-to-one in any horizontal strip of length $\leq 2\pi$, e.g. in $\{z, -\infty < x < \infty, y \in [a, a + l], a \in \mathbb{R}, a - \text{fixed}, 0 \leq l \leq 2\pi\}$; 2. e^z is differentiable everywhere in \mathbb{C} and

$$\frac{d}{dz}e^z = e^z,$$

3. The mapping by e^z is conformal, since the derivative is $\neq 0$.

4. e^z is periodic with complex period $2\pi i$, e.g.

$$e^z = e^{z + 2\pi i};$$

further,

$$e^z = 1 \iff z = 2k\pi i, k \in \mathbb{Z},$$

5. e^z maps

 $\begin{aligned} &\{z, z = C + iy, \alpha \leq y \leq \beta\} \text{ on } \{w = e^C e^{i\phi}, \alpha \leq \phi \leq \beta\}, \quad C \text{ real constant} \\ &\{z, z = x + iC, a \leq x \leq b\} \text{ on } \{e^x e^{iC}\}, \qquad C \text{ real constant} \end{aligned}$

Definition: 4.2. Trigonometric functions:

Definition: Given any complex number z, we define

$$\cos z := \frac{e^{iz} + e^{-iz}}{2}, \quad \sin z := \frac{e^{iz} - e^{-iz}}{2i}$$
$$\tan z = \frac{\sin z}{\cos z}, \qquad \cot z = \frac{\cos z}{\sin z}$$
$$\csc z = \frac{1}{\sin}, \qquad \sec z = \frac{1}{\cos z}$$
$$\sinh = \frac{e^z - e^{-z}}{2}, \qquad \cosh = \frac{e^z + e^{-z}}{2}.$$

It is left to the reader to deduce the known properties of the trigonometric functions.

4.3. The logarithmic function:

Definition: If $z \neq 0$, then we define $w = \log z$ to be any of the solutions of the equation

$$z = e^w,$$

e.g.

if
$$z \neq 0 \rightarrow \log z = \ln |z| + i \operatorname{Arg} z + 2k\pi i, k \in \mathbb{Z}$$
 (1)

Remark 1;

 $z = e^{\log z},$

but

$$\log e^z = z + 2k\pi i, \text{ any } k \in \mathbb{Z}.$$
 (2)

From (1), we get

$$\log z_1 z_2 = \log z_1 + \log z_2 \tag{3}$$

and

$$\log(z_1/z_2) = \log z_1 - \log z_2.$$
(4)

Pay attention to the fact that (3) and (4) must be interpreted as equality among classes. If (3) and (4) are assigned to particular values then there exists a value of the third term such that an equality holds. For example, if $z_1 = z_2 = -1$ and we select πi to be the value of both $\log z_1$ and $\log z_2$, then (3) is satisfied if we use the particular value $2\pi i$ for $\log z_1 z_2$.

Definition: The *principal value* of the logarithmic function is the valued inherited by the principal part of the argument, that is

$$\operatorname{Log} z := \ln |z| + i\operatorname{Arg} z.$$

Х.

Properties:

Theorem 4.1. The function Log z is analytic in $D* := \{z, -\pi < \text{Arg } z < \pi\}$ and

$$\frac{d}{dz} \mathsf{Log}\, z = \frac{1}{z}.$$

From Theorem 4.1 we deduce

Corollary 4.1: The functions $\ln |z|$ and Arg z are harmonic in D *. **4.4. Single-valued branches of** $\log z$.

$$\mathcal{L}_{\tau}(z) = \ln |z| + i \text{ arg }_{\tau} z,$$

where

arg
$$_{\tau}z \in [\tau, \tau + 2\pi].$$

4.5. Complex Powers.

Definition: Given $\alpha \in \mathbb{C}$ and $z \neq 0$, we define

$$z^{\alpha} := e^{\alpha \log z} \tag{5}$$

Theorem 4.2 The function z^{α} is differentiable and

$$\frac{d}{dz}z^{\alpha} = \alpha z^{\alpha-1}.$$

Remark 2: Let $\alpha = m \in \mathbb{Z}$. Then

$$(e^{i\Theta})^m = \cos(m\Theta) + i\sin(m\Theta).$$

The last equality is the famous De Moivre's formula:.

Exercises:

1. Show that

$$\log e^z = z \iff -\pi \leq \arg z < \pi.$$

2. Find the "error" in the following proof that $z = -z : z^2 = (-z)^2 \rightarrow \text{Log}(z) = \text{Log}(-z) \rightarrow \text{Log} z = e^{\text{Log} z} = e^{\text{Log}(-z)} = -z.$ 3. Show that if $z_1 = i$ and $z_2 = -1 + i$, then $\text{Log} z_1 z_2 \neq \text{Log} i + \text{Log}(i - 1).$ 4. Show that for any $m \in \mathbb{Z}, m > 0$

$$z^{1/m} = z^{1/m} e^{\frac{\operatorname{Arg}_{z+2k\pi i}}{m}}, \ k = 0, 1, \cdots m - 1.$$

5. Find i^i and 1^z , $z \in \mathbb{C}$.