6. Integration in the Complex Plane

6.1. A smooth curve in \mathbb{C}.

Definition: Let $z=z(t), t \in[\alpha, \beta]$ be a continuous complex valued function with following properties:
a) The mapping $z(t)$ is one-to- one on the domain of definition $[\alpha, \beta ;]$
b) $z(t) \in C^{1}([\alpha, \beta])$;
c) $z^{\prime}(t) \neq 0, t \in[\alpha, \beta]$.
$\left(z^{\prime}(a):=z^{\prime}\left(a^{+}\right), z^{\prime}(b):=z^{\prime}\left(b^{-}\right)\right)$.
The curve γ is the image of $[\alpha, \beta]$ under the mapping $z(t)$.
火.
Definition: The curve γ is closed, if $z(\alpha)=z(\beta)$ and $z^{\prime}(\alpha)=z^{\prime}(\beta)$. A curve that satisfies the first conditions a) and b) and additionally c')

$$
z^{\prime}(\alpha)=z^{\prime}(\beta)
$$

is called A Jordan curve Also, we will use the term an arc.
Given a function $z(4)$ as above, we say that $z(t)$ is an admissible parametrization of γ.
Jordan's curve theorem: Any closed Jordan curve separates the complex plane into two disjoint simply connected domains.

The proof will be omitted.
The bounded domain is called the interior of γ, the unbounded - the exterior.
Example:

$$
\begin{equation*}
z_{1}(t)=\cos t+i \sin t, t \in[0,2 \pi] \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{2}(t)=\sin t+i \cos t, t \in[0,2 \pi] \tag{3}
\end{equation*}
$$

$C_{0}(1)$
Both z_{1}, z_{2} are admissible parametrization of the unit circle.
Directed arcs. Given an arc γ with endpoints Z_{I} and $Z_{I I}$, we see that there are two ways of of ordering the points on γ; to start at Z_{I} and to terminate at $Z_{I I}$, or conversely, to start at $Z_{I I}$ and to terminate at Z_{I}. Declaring the initial and the terminal points among Z_{I} and $Z_{I I}$, we declare a direction on γ.

Definition: A smooth arc together with a specific ordering of its points, is called directed smooth arc.

In Examples (2) the unit circle is directed clockwise, whereas in Example (3) - counterclockwise. For the first case, we write $C_{0}(1)$. The unit circle in (3) will be denoted by $-C_{0}(1)$; e.g. the opposite of $C_{0}(1)$.

Let now γ be a closed directed curve. Let D be the interior of γ.
Definition: If D lies to the left with respect to the direction of γ, then it is called positively orientated. Otherwise, it is negative orientated.

Definition: A contour Γ is either a single point z_{0} or a finite sequence of directed smooth curves $\left(\gamma_{1}, \cdots, \gamma_{m}\right)$ such that the terminal point of γ_{k} coincides with the initial point of γ_{k+1} for each $k=1, \cdots, m-1$.
\aleph.
In analogy with simple curves, one can introduce the terms directed contours.

Consider, as an example, the annulus $\{z, 1 \leq|z| \leq 2\}$. The interior is positively orientated with respect to $\gamma_{1}:=C_{0}(2)$ and $\gamma_{2}:=-C_{0}(1)$. Under this orientation, the open unit disk is negatively orientated with respect to γ_{2}, whereas the open disk $D_{0}(2)$ is positively orientated with respect to γ_{1}.

We recall that if γ is a smooth curve and $z=z(t), t \in[\alpha, \beta]-$ an admissible parametrization, then its length $l(\gamma)$ is given by

$$
\begin{equation*}
l(\gamma)=\int_{\gamma} d s=\int_{\alpha}^{\beta} \frac{d s}{d t} d t=\int_{\alpha}^{\beta}\left|z^{\prime}(t)\right| d t \tag{4}
\end{equation*}
$$

6.2. Contours integrals.

Definition: Let γ is a smooth directed curve and $z=z(t)=x(t)+i y(t), t \in$ $[\alpha, \beta]-$ an admissible parametrization, and suppose that $f \in C(\gamma), f(z)=$ $u(x, y)+i v(x, y)$. Then

$$
\begin{gather*}
\int_{\gamma} f(z) d z:=\int_{\alpha}^{\beta} f(z(t)) z^{\prime}(t) d t= \\
=\int_{\alpha}^{\beta}\left(u(x(t), y(t))+i u(x(t), y(t))\left(x^{\prime}(t)+i y^{\prime}(t)\right) d t\right. \tag{5}
\end{gather*}
$$

where the integral is an integral of Riemann. \aleph.

It is a natural question whether the integral does exist. A positive answer gives the theorem of Riemann, saying that every function, continuous on an
interval $[a, b]$ is integrable in the sense of Riemann. We leave to the reader the answer of the question whether the function $z(t) z^{\prime}(t)$ is continuous on the interval of paramatrization α, β].

The following properties result from the definition.

Properties:

1.

$$
\int_{\gamma} f(z) d z=-\int_{-\gamma} f(z) d z
$$

2.

$$
\int_{\gamma}(a f(z)+b g(z)) d z=a \int_{\gamma} f(z) d z+b \int_{\gamma} f(z) d z, a, b \in \mathbb{C} .
$$

3. Let Γ is a directed contour in $\mathbb{C}, \gamma=\bigcup_{i=1}^{k} \gamma_{i}$, then

$$
\int_{\gamma} f(z) d z=\sum_{i=1}^{k} \int_{\gamma_{i}} f(z) d z
$$

Since equation (5) is valid for all suitable parametrizations of γ and since the integral of f along γ is defined independently on any parametzization, we immediately deduce the following

Theorem 6.1. Let $z_{1}(t), t \in[a, b]$ and $z_{2}(t), t \in[c, d]$ be two admissible parametrizations of γ, preserving the direction. Then

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f\left(z_{1}(t)\right) z_{1}^{\prime}(t) d t=\int_{c}^{d} f\left(z_{2}(t)\right) z_{2}^{\prime}(t) d t .
$$

6.3. Independence on the path of integration.

We start by establishing Theorem 6.2. Before introducing it, we recall that a function F is an antiderivativeof f through a domain D, if

$$
F^{\prime}(z)=f(z)
$$

for each $z \in D$.
Theorem 6.2. Suppose that $f \in C[a, b],[a, b]$ - a real segment and let $F(t)$ be a n antiderivative. Then

$$
\int_{[a, b]} f(z) d z=F(b)-F(a) .
$$

Proof: Indeed, let $f(t)=u(t)+i v(t), t \in[a, b]$ and $F(t)=U(t)+i V(t), t \in$ $[a, b]$. In view of the conditions,

$$
U^{\prime}(t)=u(t), V^{\prime}(t)=v(t) t \in[a, b] .
$$

Joining now (1), we may write

$$
\begin{gathered}
\int_{\gamma} f(z) d z=\int_{a}^{b} f(t) d t=\int_{a}^{b}(u(t)+i v(t)) d t= \\
\int_{a}^{b}\left(U^{\prime}(t)+i V^{\prime}(t)\right) d t=\int_{a}^{b} \frac{\partial(u(t)+i v(t))}{\partial t} d t=F(b)-F(a) .
\end{gathered}
$$

Q.E.D.

Theorem 6.2 is a particular case of the main basic result given by
Theorem 6.3 Given γ - a directed curve with Z_{I} and Z_{T} an initial and a terminal point, and $f \in C(\gamma)$, let $F(z)$ be an antiderivative through γ. Then

$$
\int_{\gamma} f(z) d z=F\left(Z_{T}\right)-F\left(Z_{I}\right) .
$$

Proof: INdeed, by definition

$$
\frac{d}{d z} F(z)=f(z)
$$

which implies that

$$
\frac{d F(z)}{d t}=f(z) \frac{d z}{d t}=f(z(t)) z^{\prime}(t)
$$

Let $[a, b]$ be the definition interval of the parametrization $z(t)$; the function $f(z(t)) z^{\prime}(t)$ is defined on this interval, and at the same time because of the last equality, the function $F(z(t))$ is an antiderivative of its. Applying Theorem 6.2 , we arrive at

$$
\int_{[a, b]} f(z(t)) z^{\prime}(t) d e+t=F(z(b))-F(z(a))=F\left(Z_{T}\right)-F\left(Z_{I}\right) .
$$

Q.E.D.

In our further considerations, we often will use the following
Theorem 6.4. Let Γ be a contour and $f \in C(\Gamma)$. Then

$$
\left|\int_{\Gamma} f(z) d z\right| \leq\|f\|_{\Gamma} l(\Gamma)
$$

The proof is left to the reader.

Exercises:

1. Parametrize the triangle with vertices at $=(-1,0),(1,0)$ and $(0, i)$.
2. Using an appropriate parametrization, find the length of $\left[z_{1}, z_{2}\right]$ and of $C_{a}(\rho)$.
3. Find an upper estimate of $\int_{\Gamma} \frac{e^{z}}{z^{2}+1} d z$, where $\Gamma=C_{0}(2)$, traversed one time in the positive direction.
Is it true that
4. $\left|\int_{\Gamma} \frac{d z}{z^{2}-i}\right| \leq \frac{3 \pi}{4}, \Gamma:=C_{0}(3)$;
5. $\left|\int_{\Gamma} \frac{e^{3 z}}{1+e^{z}} d z\right| \leq \frac{2 \pi}{e^{R}-1}, \Gamma:=$ the segment $[R, R+2 i \pi]$;
6. $\left|\int_{\Gamma} e^{\sin z} d z\right| \leq 1$, with Γ being the segment with endpoints at $z=0$ and $z=i$.
7. Let $f \in C[a, b], \infty<a \leq b<\infty$. Prove that

$$
\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t
$$

