6. Integration in the Complex Plane

6.1. A smooth curve in C.

Definition: Let z = 2(t), t € [«, 5] be a continuous complex valued function
with following properties:
(1)

a) The mapping z(t) is one-to- one on the domain of definition [, 3; |

t
b) 2(t) € C*([ev, B]);

&) (1) £0, £ € a, .
(2'(a) == 2(a”), 2/(b) :=2"(b7)).
The curve 7 is the image of [a, 3] under the mapping z(t). N.

Definition: The curve v is closed, if z(«a) = z(3) and /() = 2/(3). A curve
that satisfies the first conditions a) and b) and additionally
c)
(o) = 2'(B)

is called A Jordan curve Also, we will use the term an arc.

Given a function z(4) as above, we say that z(t) is an admissible parametriza-
tion of .
Jordan’s curve theorem: Any closed Jordan curve separates the complex
plane into two disjoint simply connected domains.

The proof will be omitted.

The bounded domain is called the interior of ~, the unbounded - the
exterior.

Example:

z1(t) = cost +isint, t € [0, 27], (2)
and

2(t) = sint +icost, t € [0, 2] (3)
Co(1)

Both z, z5 are admissible parametrization of the unit circle.

Directed arcs. Given an arc v with endpoints Z; and Z;;, we see that there
are two ways of of ordering the points on ; to start at Z; and to terminate
at Zpr, or conversely, to start at Z;; and to terminate at Z;. Declaring the
initial and the terminal points among Z; and Z;;, we declare a direction on

.



Definition: A smooth arc together with a specific ordering of its points, is called
directed smooth arc.

In Examples (2) the unit circle is directed clockwise, whereas in Example
(3) - counterclockwise. For the first case, we write Cy(1). The unit circle in
(3) will be denoted by —Cy(1); e.g. the opposite of Cy(1).

Let now v be a closed directed curve. Let D be the interior of ~.
Definition: If D lies to the left with respect to the direction of ~, then it is
called positively orientated. Otherwise, it is negative orientated. N.

Definition: A contour I is either a single point zy or a finite sequence of directed
smooth curves (7, - -, ¥ )such that the terminal point of , coincides with the
initial point of 7.1 foreach k=1,---,m — 1. N.

In analogy with simple curves, one can introduce the terms directed con-
tours.

Consider, as an example, the annulus {z,1 < |z| < 2}. The interior is
positively orientated with respect to 7, := Cy(2) and 9 := —Cy(1). Under
this orientation, the open unit disk is negatively orientated with respect to
72, whereas the open disk Dg(2) is positively orientated with respect to ;.

We recall that if v is a smooth curve and z = 2(¢),t € [a, 3]— an admis-
sible parametrization, then its length () is given by

i) /ds - /5 4 i = /j 2 (0)|dt. (@)

6.2. Contours integrals.

Definition: Let v is a smooth directed curve and 2 = 2(t) = z(t) + iy(t),t €
[, f]— an admissible parametrization, and suppose that f € C(v), f(z2) =
u(z,y) + iw(x,y). Then

[yf(z)dz = /aﬁ f(z()2 (t)dt =

B
= / (u(z(t), (1)) + dulx(t), y () (='(t) + iy (t))dt, ()
where the integral is an integral of Riemann. N.

It is a natural question whether the integral does exist. A positive answer
gives the theorem of Riemann, saying that every function, continuous on an

2



interval [a,b] is integrable in the sense of Riemann. We leave to the reader
the answer of the question whether the function z(¢)2/(¢) is continuous on
the interval of paramatrization «, 3].

The following properties result from the definition.

/vf(z)dz - —/Wf(z)dz.

/v(af(z) +bg(z))dz = a/vf(z)dz + b/yf@)dz’ a,beC.

Properties:

3. Let I' is a directed contour in C,vy = Ule Vi, then

/f(z)dz = Z ‘f(z)dz.

Since equation (5) is valid for all suitable parametrizations of v and since
the integral of f along ~ is defined independently on any parametzization,
we immediately deduce the following

Theorem 6.1. Let z(t),t € [a,b] and 2(t),t € [c,d] be two admissible
parametrizations of v, preserving the direction. Then

b d
[ 1@z = [ sanzia = [ o

6.3. Independence on the path of integration.
We start by establishing Theorem 6.2. Before introducing it, we recall
that a function F' is an antiderivativeof f through a domain D, if

for each z € D.
Theorem 6.2. Suppose that f € Cla, b], [a,b]- a real segment and let F'(t) be

a n antiderivative. Then

[a,b]



Proof: Indeed, let f(t) = u(t) +iv(t), t € [a,b] and F(t) =U(t)+iV (t), t €
[a,b]. In view of the conditions,

U'(t) = ult), V'(t) = v(t) t € [a,b].

Joining now (1), we may write

/Wf@)dz_/abf(t)dt—/ab(u(t)ﬂv(t))dt—

/ (U'(8) + iV (£))dt = / ou(t) = WO) g~ F) - Fla).

a a

Q.E.D.
Theorem 6.2 is a particular case of the main basic result given by

Theorem 6.3 Given v— a directed curve with Z; and Z an initial and a terminal
point, and f € C(y), let F(z) be an antiderivative through ~. Then

/ f(2)dz = F(Zr) - F(Zy).

Proof: INdeed, by definition

which implies that

dF(z) dz
o =S =

FE0))Z(1).

Let [a,b] be the definition interval of the parametrization z(t); the function
f(2(t))Z'(t) is defined on this interval, and at the same time because of the last
equality, the function F'(z(¢)) is an antiderivative of its. Applying Theorem
6.2, we arrive at

. f(2(2))2 (t)de +t = F(2(b)) — F(z(a)) = F(Zr) — F(Zr).

Q.E.D.



In our further considerations, we often will use the following

Theorem 6.4. Let I" be a contour and f € C(I'"). Then

| / F(2)dz] < | FIel(D).

The proof is left to the reader.

Exercises:

1. Parametrize the triangle with vertices at = (—1,0), (1,0) and (0, 7).

2. Using an appropriate parametrization, find the length of [z1, 23] and of C,(p).
3. Find an upper estimate of [ Zf;;dz, where I' = Cj(2), traversed one time in
the positive direction.

Is it true that

4| [ 251 < T = Co3);

5 | Jp %dd < #%, T = the segment[R, R + 2ir];

6. | Jpes™#dz| < 1, with T' being the segment with endpoints at z = 0 and
z =1.

7. Let f € Cla,b],00 < a < b < co. Prove that

\/jf(t)dt! < /ab\f(t)|dt.




