7. Cauchy's integral theorem and Cauchy's integral formula

7.1. Independence of the path of integration

Theorem 6.3. can be rewritten in the following form:

Theorem 7.1 : Let \mathcal{D} be a domain in \mathbb{C} and suppose that $f \in C(\mathcal{D})$. Suppose further that F(z) is a continuous antiderivative of f(z) through \mathcal{D} . \mathcal{D} . Let z_0 and z_T be distinct points in \mathcal{D} . Then the integral

$$\int_{z_0}^{z_T} f(z) dz$$

does not depend on the path of integration, e.g., for every smooth contour $\gamma \subset \mathcal{D}$ which start at z_0 and terminates at z_T , we have

$$\int_{z_0}^{z_T} f(z) dz = \int_{\gamma} f(z) dz = F(z_T) - F(z_0).$$

Theorem 7.1. is called Theorem on the depend of the path of integration. From this theorem we get the following obvious consequence:

Corollary 7.2. : Under the conditions on f of Theorem 7.1., let γ be a smooth closed contour which lies entirely in \mathcal{D} .¹ Then

$$\int_{\gamma} f(z) dz = 0$$

Our coming considerations are based on the following theorem:

Theorem 7.3. Let \mathcal{D} be a domain in \mathbb{C} and $f \in C(\mathcal{D})$. Then the following statements are equivalent:

(1) f has a continuous antiderivative in \mathcal{D} ; (2)

$$\int_{\gamma} f(z) dz = 0$$

for every loop γ lying in $\subset \mathcal{D}$.

 $^{^1\}mathrm{We}$ call such contours loops.

(3) The integral

$$\int_{z_1}^{z_2} f(z) dz$$

is independent of the path of integration; e.g., if γ_1 and γ_2 share the same initial and terminal points, then

$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz.$$

Proof: Since the implications $1) \rightarrow 2$ and $2) \rightarrow 3$ already established (Theorem 7.1 and Theorem 7.2), we will concentrate on the proof of $3) \rightarrow 1$).

Select an arbitrary point $z_0 \in \mathcal{D}$ and let $z \in \mathcal{D}$. Set

$$F(z) := \int_{z_0}^z f(z) dz.$$

We claim that F(z) is an antiderivative of f in \mathcal{D} . Before, we notice that the integral is well defined - because of the connectedness of the domain \mathcal{D} there is a contour which combines z_0 and z.

We shall show that

$$\frac{F(z + \Delta z) - F(z)}{\Delta z} \to f(z), \Delta z \to 0.$$

Indeed,

$$\frac{F(z + \Delta z) - F(z)}{\Delta z} = \frac{\int_{z}^{z + \Delta z}(w)dw}{\Delta z},$$

where we integrate along a segment lying completely in the domain.

Regarding Theorem 6.4, we may write

$$\begin{aligned} |\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)| =\\ &=|\frac{\int_{z}^{z+\Delta z}(f(w)-f(z)dw}{\Delta z}| \leq \|f(w)-f(z)\|_{[z,z+\Delta z]} \to 0 \text{ as } \Delta z \to 0. \end{aligned}$$

Thus $F'(z)=f(z).$ This concludes the proof. Q.E.D.

7.2. Continuous deformations of loops.

Definition: The loop γ_1 is said to be continuously deformable to the loop γ_2 in the domain D, if there exists a function z(s,t), $(s,t) \in ([0,1] \times [0,1])$ that satisfies the conditions:

- **1.** $z(s,t) \in C^2([0,1] \times [0,1]);$
- **2.** For each fixed $s \in [0, 1]$ the function z(s, t) parametrizes a loop in D;
- **3.** The function z(0,t) parametrizes γ_1 ;
- 4. The function z(1,t) parametrizes γ_2 .

Example: THE function

$$z(s,t) := (1+s)e^{2\pi i t}, \ 0 \le s, t \le 1$$

deforms continuously the circle $C_0(1)$ into the circle $C_0(2)$.

7.3. Deformation Invariance Theorem.

We first recall the definition of a *simply connected domain*.

Definition: Any domain D in the complex plane \mathbb{C} possessing the property that every loop in D can be continuously deformed in D to a point is called simply connected. \aleph .

For example, any disk $D_a(r), r > 0$ is a simply connected domain.

Now we are in position to prove the Deformation Invariance Theorem.

Theorem 7.3. Let \mathcal{D} be a domain in \mathbb{C} and suppose that $f \in \mathcal{A}(\mathcal{D})$. If γ_1, γ_2 are continuously deformable into each other closed curves, then

$$\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz.$$

Proof:

Fix $s \in [0,1]$ and set $\gamma(s) := z(s,t), t \in [0,1]$. We shall show that the function $I(s) := \int_{\gamma(s)} f(z) dz$ equals a constant. Indeed,

$$\int_{\gamma(s)} f(z)dz = \int_{\gamma(s)} f(z(s,t)) \frac{\partial z(s,t)}{\partial t} dt.$$

Look at the derivative of I(s); we have

$$I'(s) = \int_{\gamma(s)} f(z(s,t)) \frac{\partial z(s,t)}{\partial t} dt =$$

$$= \int_{\gamma(s)} \left[\frac{\partial f(z(s,t))}{\partial t} \frac{\partial z(s,t)}{\partial s} \frac{\partial z(s,t)}{\partial t} + f(z(s,t)) \frac{\partial^2 z(s,t)}{\partial s \partial t}\right] dt.$$

On the other hand,

$$\frac{\partial}{\partial t}(f(z(s,t))\frac{\partial z(s,t)}{\partial s}) = \frac{\partial f(z(s,t))}{\partial t}\frac{\partial z(s,t)}{\partial t}\frac{\partial z(s,t)}{\partial s} + f(z(s,t))\frac{\partial^2 z(s,t)}{\partial t\partial s}.$$

The theorem by Weierstrass about the independence of second order derivatives of the order of differentiation guarantees that

$$\frac{dI(s)}{ds} = \int_0^1 \frac{\partial}{dt} [f(z(s,t))\frac{\partial z(s,t)}{\partial s}]dt =$$
$$= f(z(s,1))\frac{\partial z(s,t)}{\partial s}(s,1) - f(z(s,0))\frac{\partial z(s,t)}{\partial s}(s,0).$$

As we know, the curves $\gamma(s)$ are closed which means that for every $s \in [0,1]$ z(s,0) = z(s,1).

Thus

$$I(s) = \int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz.$$

Q.E.D.

Cauchy's integral theorem An easy consequence of Theorem 7.3. is the following, familiarly known as *Cauchy's integral theorem*.

Theorem 7.4. If D is a simply connected domain, $f \in \mathcal{A}(D)$ and Γ is any loop in D, then

$$\int_{\Gamma} f(z) dz = 0$$

Proof: The proof follows immediately from the fact that each closed curve in D can be shrunk to a point. Q.E.D.

We conclude the following

Theorem 7.5. Let \mathcal{D} be a domain in \mathbb{C} and $f \in \mathcal{A}(\mathcal{D}) \cap C(\overline{\mathcal{D}})$. Set $\partial \mathcal{D} := \Gamma$. Then

$$\int_{\Gamma} f(z)dz = 0.$$

Proof: Without losing the generality, we may assume that all components of Γ are smooth curves. It \mathcal{D} is simply connected, then we are done. Assume that \mathcal{D} is double connected and let $\Gamma = \Gamma_1 \bigcup \Gamma_2$. The domain is positively orientated with respect to Γ ; let Γ_1 be the positive component (clockwise) and Γ_2 - the negative (counterclockwise) ($\Gamma = \Gamma_1 \bigcup (-\Gamma_2)$.) Without loosing the generality we suppose that Γ_1 and Γ_2 are continuously deformable into each other, and by Theorem 7.3.

$$\int_{\Gamma_1} f(z)dz = \int_{\Gamma_2} f(z)dz.$$
(1)

On the other hand

$$\int_{\Gamma} f(z)dz = \int_{\Gamma_1} f(z)dz + \int_{-\Gamma_2} f(z)dz = \int_{\Gamma_1} f(z)dz - \int_{\Gamma_2} f(z)dz = 0.$$

Joining (1), we arrive at the statement.

The Cauchy's integral theorem indicates the intimate relation between simply connectedness and existence of a continuous antiderivative.

Theorem 7.6. Let \mathcal{D} be simply connected in \mathbb{C} and $f \in \mathcal{A}(\mathcal{D})$.

Then f possesses a continuous antiderivative and its contour integral does not depend on the path of integration.

The proof follows from Theorem 7.3.

7.4. Cauchy's integral formula

Theorem 7.7. Let \mathcal{D} be a domain in \mathbb{C} , $\Gamma := \partial \mathcal{D}$ and $f \in \mathcal{A}(\mathcal{D}) \cap C(\overline{\mathcal{D}})$. Then, for every point $a \in \mathcal{D}$ the representation

$$f(a) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z-a} dz \tag{2}$$

holds.

Proof:

Take r sufficiently small (e.g. $\overline{D}_a(r) \subset \mathcal{D}$) and consider $\oint_{|z-a|=r} \frac{f(z)}{z-a} dz$. (the circle is traversed once in the positive direction). We have

$$\frac{1}{2\pi i} \oint_{|z-a|=r} \frac{f(z)}{z-a} dz = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(a+re^{i\Theta})}{re^{i\Theta}} ire^{i\Theta} d\Theta.$$

Letting now $r \to 0$ we obtain that

$$\frac{1}{2\pi i} \oint_{|z-a|=r} f(z)dz = f(a).$$

To complete the proof, we apply Theorem 7.5. with respect to the function $\frac{f(z)}{z-a}$ and to the domain $\mathcal{D} \setminus \overline{\mathcal{D}}_a(r)$. Q.E.D.

As an application, we provide the mean value theorem for harmonic functions.

Theorem 7.7. Let h be harmonic in the disk $D_a(R), R > 0$. Then

$$h(a) = \frac{1}{2\pi} \int_0^{2\pi} h(a + Re^{i\Theta}) d\Theta.$$

Proof: We recall that the real and the imaginary components of an analytic function are complex conjugate harmonic functions. Let $f \in \mathcal{A}(D_a(R))$ be such that $h(z) := \Re f(z)$. Denote the imaginary component by k(z).

$$f(f) = h(z) + ik(z), \ z \in K_a(R).$$

Using (2), we get

$$h(a) + ik(a) = \frac{1}{2\pi i} \int_{C_a(R)} \frac{h(\zeta) + ik(\zeta)}{\zeta - a} d\zeta.$$

Hence,

$$h(z) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{h(a + Re^{i\Theta})}{Re^{i\Theta}} iRe^{i\Theta} d\Theta.$$

The statement follows after completing the needed cancellations.

Exercises: 1. Prove that

$$\int_{C_a(\rho)} \frac{dz}{(z-a)^m} = \begin{cases} 0, & m \neq 1\\ 2\pi i, & m = 1 \end{cases}$$

2. Prove that

$$\int_{C_0(\rho)} \frac{dz}{(z-a)} = \begin{cases} 0, & |a| > \rho \\ 2\pi i, & |a| < \rho \end{cases}$$

3. Which of the following domains are simply connected? a) $\{z, | \text{ Im } z| < 1\};$ b) $\{z, 1 < |z| < 2\};$ c) $\{z, |z| < 1\};$ d) $\{z, |z| > 1\};$ e) $\{z, |z| < 1\} \setminus \{z, 0 < \text{ Re } z < 1\}.$ 3. Calculate $\int \frac{1}{dz} dz$

$$\int_{\mathcal{S}} \frac{1}{1+z^2} dz,$$

with S being the interval [1, 1+i]. 4. Show that if f(z) is of the form

$$f(z) = \sum_{k=0}^{n} \frac{A_k}{z^k} + g(z),$$

where g(z) is analytic outside $C_0(1)$, then

$$\oint_{|z|=1} f(z)dz = 2\pi i A_1$$

(By definition, $\oint_{|z|=1} := \int_{C_0(1)}, C_0(1)$ traversed once in positive direction.) 5. Let P be a polynomial of degree ≥ 2 , such that all zeros lie in $\mathcal{D}_l(\mathcal{R}), R > 0$. Show that

÷

$$\oint_{|z|=R} \frac{1}{P(z)} dz = 0.$$

Hint Apply Theorem 7.5. with respect to the annulus $\{z, R < |z| < R + r\}$ and then let r increase to infinity.