
8. Cauchy’s integral theorem and its
consequences

We first provide the theorem of Morera which is an inverse result to
Cauchy’s theorem:

Theorem 8.1. Let the domain - D be simply connected and suppose that
f ∈ C(D). Assume that ∮

γ

f(z)dz = 0

along each closed contour γ ⊂ A(D). Then f ∈ A(D)
The proof will be omitted.
Given a domain D in C and f ∈ C(D) we know by the classical theorem

by Weierstrass that the function |f(z)| attains its absolute maximum valued
on D. Where does it lie? In the case of analytic function the answer is
given by the following theorem known as a maximum principle for analytic
functions.

Theorem 8.2. Let D be a domain in C and suppose that f ∈ A(D)
⋂
C(D).

Then |f(z)| attains its maximal valued in D on the boundary ∂D, unless f
is a constant. 1

Proof: If f ≡ Const, the theorem is trivial. THat’s why we will consider the
case when f 6≡ Const. Suppose that the statement of the theorem is wrong.
Let maxz∈D |f(z)| := |f(z0)| with z0 being an inner point in the domain D.

For z0 is an inner point, we may apply Cauchy’s formula, namely,

f(z0) =
1

2πi

∮
Cz0 (ρ)

f(z)

z − z0

dz, (1)

with some ρ small enough and a circle Cz0(ρ) traversed once in a positive
direction. Since f 6≡ Const, there is a curve γ ∈ Cz0(ρ) on the circle of
positive length l(γ), such that |f(z)| < |f(z0)| on γ. Let, for definiteness,

|f(z)| ≤ |f(z0)| − δ, δ > 0, z ∈ γ for some δ > 0.

1Obviously A(D)
⋂

C(D) ⊃ A(D).
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We estimate (1) by using this inequality:

|f(z0)| ≤
1

2π

(|f(z0)| − δ)l(γ)

ρ
+ |f(z0)|

(2πρ− l(γ))

2πρ
.

Since δ, l(γ) > 0, we conclude that

|f(z0)| < |f(z0)|

which is impossible. Hence our assumption is not correct and z0 ∈ D.Q.E.D.
Another important consequence of Cauchy’s integral formula is that every

analytic function is infinitely many times differentiable.

Theorem 8.3. Let D be a domain and f ∈ A(D). Let a ∈ A(D) be an
arbitrary point. Then f is infinitely many times differentiable at a and

fn(a) =
n!

2πi

∮
Cz0 (ρ)

f(z)

(z − a)n+1
dz; (2)

the number ρ is small enough and we integrate counterclockwise along the
circle Ca(ρ).

Proof: Indeed, the expression
∮
Cz0 (ρ)

f(z)
(z−a)dz is a differentiable function at a.

We have

d

da

∮
Cz0 (ρ)

f(z)

(z − a)
dz =

∮
Cz0 (ρ)

d

f(z)
(z−a)

da
dz =

∮
Cz0 (ρ)

f(z)

(z − a)2
dz,

which implies (2) for n = 1. Using mathematical induction we prove (2) for
every n. The further proof is left to the reader. Q.E.D.

From Theorem 8.3. we deduce the theorem of Loiuville:

Theorem 8.4. Let f be entire and bounded in C. Then f ≡ Const.

Proof: Take an arbitrary a ∈ C and fix ∈ N. Regarding (2), we may write

f (n)(a) = n!
1

2πi

∮
Ca(r)

f(z)

(z − a)n+1
dz.

Since f ∈ E , the last equality is valid for every r > 0. Applying Theorem 6.4,
we get

|f (n)(a)| ≤ n!
M

rn
.
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Letting r →∞, we see that
f (n)(a) = 0

everywhere in C. Thus, f ≡ Const. Q.E.D.

We provide a result known as Schwartz’s Lemma:

Theorem 8.5. Suppose that f ∈ A(D0(1)), f(0) = 1 and ‖f‖D0(1) := M.

Then for every z ∈ D0(1) the inequality

|f(z)| ≤M |z| (3)

holds. If for some z0, |z0| < 1

|f(z0)| = M |z0|,

then f(z) ≡Mzeiα for some α ∈ R.

Proof: We introduce the function g(z) := f(z)
z
. From the definition, g ∈

A(D0(1)), ‖g‖D0(1) = M and, by the maximum principle,

|g(z)| ≤ ‖g‖D0(1) = M.

Estimation (3) follows immediately from here. On the other hand, if

|g(z0)| = M

for some z0 ∈ D0(1), then necessarily g ≡ Const = Meiα for some α, so that

f(z) = zMeiα.

Q.E.D.

Theorem 8.6. D-a domain in C, {fn} ∈ A(D) and suppose that {fn}
converges to a function f uniformly on compact subsets ofD. Then f ∈ A(D).

Proof: Let K be a compact subset of D. By Theorem 2.7, f ∈ C(K). Since
K is arbitrary, it follows that f ∈ CD.

Take now γ an arbitrary loop in D. Cauchy’s theorem yields∫
γ

fn(z)dz = 0, n = 1, 2, · · · .
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On the other hand, by the uniform convergence on γ,∫
γ

fn(z)dz →
∫
γ

f(z)dz.

Hence, ∫
γ

f(z)dz = 0

along every closed curve in D. Thus, by Morera’s theorem, f ∈ A(D.)
Remark: Using the mean-value theorem for harmonic functions and pro-
ceeding along the same way of considerations, one can prove the maximum
principle for harmonic functions. Even more, in case of harmonic function
one can show the minimum principle. The proof is left to the reader.
Exercises:

1. Let f ∈ A(D)
⋂
C(D), and suppose that f(z) 6= 0, z ∈ D. Prove that

minz∈D|f |(z) is attained at boundary point D, unless f is a constant.♠
2. Using the maximum principle for analytic functions show that each poly-
nomial which is not a constant, has at least one zero in C. ♣
3. Let f ∈ A(D0(1), and suppose that |f(z)| ≤ 1/(1 − |z|). Prove the
inequality

|f (n)(0)| ≤ n!

rn(1− r)
, 0, r > 1.

♠
4. Let f ∈ A(D0(r)) be bounded from above by M when |z| ≤ r. Prove that

|f (n)(z)| ≤ Mn!

(r − |z|)n
, |z| < r.

♠
5. Let f ∈ E and Re f be bounded in C. Show that f ≡ Const.♠
Hint.Consider the function ef(z).

6. Let f ∈ A(D)
⋂
C(D) and suppose that |f(z)| ≡ Const, z ∈ ∂D. Show

that there exists at least one inner point z0 such that f(z0) = 0.♠
7. Let f ∈ E and suppose that Re f(z) is bounded in C. Prove that f ≡
Const.
Hint: Show that ef(z) ∈ E ; then apply Loiuville’s theorem.♠
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