
9. Series representation for analytic
functions

9.1. Power series.

Definition: A power series is the formal expression

S(z) :=
∞∑
n=0

cn(z − a)n, a, ci, i = 0, 1, · · · ,−fixed, z ∈ C. (1)

The n.th partial sum Sn(z) is the sum of the first n+ 1 terms. We say that the
power series does converge for a fixed z ∈ C, if the sequence {Sn(z)} converges,
as n→∞. If Sn(z) diverges, then we say that the power series diverges at the
point z. ℵ

We will write S(z) <∞ and S(z) =∞, respectively.
We draw the reader’s attention to the fact that the partial sums Sn are

polynomials of degree n. A convergent power series is the limes of polynomial
sequences, e.g.

S(z) := lim
k→∞

k∑
n=0

cn(z − a)n, (2)

so that all results from Chpr. 2 are applicable.

Definition: The power series

S(z) :=
∞∑
n=0

cn(z − a)n

is absolutely convergent, if the series with nonnegative terms

∞∑
n=0

|cn||z − a|n <∞

and uniformly convergent, if Sn → S uniformly in the metric of Chebyshev on
compact sets. ℵ

We recall some well known facts.
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Theorem 9.1. Suppose that S(z) :=
∑∞

n=0 cn(z − a)n is absolutely conver-
gent at z0. Then the power series converges in the regular sense at the same
point.

Proof: Fix an arbitrary ε. Taking into account the absolute convergence, we
may write

|
k+m∑

0

|cn||z0 − a|n −
k∑
0

|cn||z0 − a|n| ≤ ε;

this inequality is valid for every k great enough (say k ≥ k0) and for every
m ∈ N. It turns out that

|Sk+m(z0)− Sk(z0)| ≤ ε, k ≥ k0,m ∈ N.

Our statement follows immediately from Cauchy’s fundamental theorem1

Q.E.D.

Theorem 9.2. Let S(z) :=
∑∞

n=0 cn(z − a)n be convergent at z0. Then
cn(z0 − a)n → 0, n→∞.
Proof: The statement follows from the fact that

Sk(z0)− Sk−1(z0) = ck(z − a)k → 0, k →∞.

Q.E.D.

Theorem 9.3., Abel’s theorem Suppose thatS(z) :=
∑∞

n=0 cn(z − a)n

converges at z0. Then S is absolutely convergent at every z such that |z−a| <
|z0 − a|.
Proof: Take z with |z − a| < |z0 − a|. Fix ε > 0. By the previous theorem,

|cn(z − a)n| ≤ ε

for all n ≥ n0. We have further,

∞∑
0

|cn||z − a|n =
∞∑
0

|cn|
|z − a|n

|z0 − a|n
|z0 − a|n ≤

n0∑
0

|cn|
|z − a|n

|z0 − a|n
|z0 − a|n +

∞∑
n0+1

|cn||z0 − a|n
|z − a|n

|z0 − a|n

1Cauchy’s fundamental theorem: the infinite sequence {an} converges iff for every ε > 0
there exists a number k0 great enough such that |ak+m − ak| < ε whenever k ≥ k0 and
m ∈ N.
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≤
n0∑
0

|cn|
|z − a|n

|z0 − a|n
|z0 − a|n +

∞∑
n0+1

ε
|z − a|n

|z0 − a|n
.

Using common notations, we may write

∞∑
0

|cn||z − a|n �
∞∑
0

|z − a|n

|z0 − a|n
.

To complete the proof, we need to remember that |z− a| < |z0− a|. Q.E.D.
Corollary 9.4. : Suppose that S(z) :=

∑∞
n=0 cn(z − a)n diverges at z0.

Then it diverges at every point z with |z − a| > |z0 − a|.
Naturally we come to the definition of a radius of convergence:

Definition: Given S(z) :=
∑∞

n=0 cn(z − a)n, we set

R := sup{ρ, S(z) <∞ for |z − a| < ρ}.

The number R is called radius of convergence of the power series. ℵ
Regarding Abel’s theorem, we conclude that the power series converges

in the disk Da(R) and diverges outside.
Theorem 9.5., H’Adamard ’s formula:

R =
1

lim supn→∞ |cn|1/n
.

Proof: If R = then we are done. We assume that R is positive. Fix ρ < R.
We will show that the power series is uniformly convergent on Da(ρ).

Select a positive number ε in such a way that ρ + ε < R. Viewing the
definition of R, we get for every n > n0 (n large enough) n the estimation

|cn| ≤
1

(R− ε)n
.

Consequently,

∞∑
n=0

|cn||z − a|n =

n=n0−1∑
n=0

|cn||z − a|n +
∞∑

n=n0

|cn||z − a|n <

n=n0−1∑
n=0

|cn||z − a|n +
∞∑

n=n0

(
ρ

R− ε
)n,
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or
∞∑
n=0

|cn||z − a|n �
∞∑
n=0

(
ρ

R− ε
)n.

The right-hand side series is a convergent geometric progression, (recall the
choice of ε. )

Therefore, S(z) is absolutely convergent, and thus, convergent in the
regular sense. Q.E.D.
Remark: There is no statement about the behavior on the circle Ca(R).

Theorem 9.6. Suppose that the power series S(z) :=
∑∞

n=0 cn(z − a)n is of
positive radius of convergence R. Then it converges uniformly on compact
subsets of the disk Da(R) and absolutely at every point z ∈ Da(R).

Proof: Fix ρ < R. By the previous theorem,

∞∑
n=0

|cn|ρn <∞.

Rearranging the difference Sn+m − Sn yields

‖Sn+m − Sn‖Da(ρ) = ‖
n+m∑
k=n+1

ck(z − a)k‖ ≤
n+m∑
k=n+1

|ck|ρk.

Applying again Cauchy’s fundamental theorem, for all n large enough we get
‖Sn+m − Sn‖Da(ρ), which means a uniform convergence on Da(ρ). Q.E.D.
9.2. Taylor’s theorem and consequences

Theorem 9.7. (Taylor’s theorem) Let f ∈ A(Da(ρ)), ρ > 0, a ∈ C. Then
f can be represented as a Taylor series2

∑
cn

(z − a)n, which is convergent
uniformly inside Da(ρ) and

cn =
1

2πi

∫
Ca(ρ)

f(ζ)

(ζ − a)n+1
dζ.

Proof: In view of the integral formula,

f(z) =
1

2πi

∫
Ca(ρ)

f(ζ)

ζ − z
dζ, z ∈ Da(ρ).

2it if a = 0, then we speak about MacLaurin series.
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We remember that |z − a| < |ζ − a|. Consequently,

1

2πi

∫
Ca(ρ)

f(ζ)

(ζ − a)− (z − a)
dζ =

1

2πi

∫
Ca(ρ)

f(ζ)

ζ − a

∞∑
n=0

(
z − a
ζ − a

)n.

Using known estimates, we obtain

f(z) =
∞∑
n=0

(z − a)n
1

2πi

∫
Ca(ρ)

f(ζ)

ζ − a)n+1
dζ :=

∑
cn(z − a)n. (3)

Q.E.D.
Remark:

cn =
f (n)(a)

n!
. (4)

Example: Write down the Taylor series of Logz(:= ln |z|+ iArgz, .) around
z = 1.
Solution; Since

dj Logz

dzj
= (−1)j+1(j − 1)!z−j, j = 1, 2, · · ·

we get

Logz = 0 + (z − 1)− (z − 1)2/2! + 2!(z − 1)3/3!− 3!(z − 1)4/4! + · · · =

=
∞∑
j=1

(−1)j+1(z − 1)j/j.

The series converges uniformly on D1(r) for every r < 1.

Theorem 9.8. Suppose that f is analytic at the point z = a, f(z) =∑
cn

(z − a)n,3 Then

f ′(z) =
∞∑
n=1

ncn(z − a)n−1.

Proof: Indeed, from Chpt. 8 we know that f ′(z) is also analytic at z = a.
From THeorem 9.7, we get

f ′(z) =
∞∑
n=0

(f ′(z))(n)(a)

n!
(z − a)n.

3analytic in some domain Da(r), r > 0.
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Recalling that
(f ′(z))(n)(a) = (f(z))(n+1)(a),

we obtain the required statement. Q.E.D.
The proof of the following theorems is left to the reader.

Theorem 9.9. Let the functions f(z) and g(z) be analytic at z = 1,

f(z) =
∑

fn(z − a)n, g(z) =
∑

gn(z − a)n.

Denote by R(f), R(g) the radii of convergence of both Taylor series. Then
f ± g and fg are analytic at z = a and

R(f ± g) ≥ min(R(f), R(g)),
R(fg) ≥ min(R(f), R(g)).

and
(f ± g)(z) =

∑
(fn ± gn)(z − a)n,

f(z)g(z) =
∑

cn(z − a)n

with

cn =
n∑
k=0

fkgn−k.

9.3. The point of infinity.

Definition: The function f(z), defined at infinity, is said to be analytic at
z =∞, if the function

g(ζ) := f(
1

ζ
)

is analytic at ζ = 0. ℵ
The checking of the validity of the following theorem is left to the reader:

Theorem 9.10. Suppose that f is analytic at infinity. Then it is expandable
into Taylor series

f(z) =
∞∑
n=0

cn
zn
.

The series converges at every point z, |z| > lim sup |cn|1/n and is uniformly
convergent in the exterior of every circle D0(R) with R > lim sup |cn|1/n.
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Exercises:
1. Find the Taylor series of

f(z) := z2 cos
1

3z

at z = 0.
2. Find the Taylor series of

f(z) =
1

z − 2

at z =∞.
3. Find the Taylor series of

f(z) =
1

z(z − 2)

at z = 1.
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