9. Series representation for analytic
functions

9.1. Power series.

Definition: A power series is the formal expression

chz—a ,a, ¢;,1=0,1,--- —fixed, z € C. (1)

n=0

The n.th partial sum S,,(z) is the sum of the first n 4 1 terms. We say that the
power series does converge for a fixed z € C, if the sequence {S,,(z)} converges,
as n — oo. If S,(z) diverges, then we say that the power series diverges at the
point z. N
We will write S(z) < oo and S(z) = oo, respectively.
We draw the reader’s attention to the fact that the partial sums S, are
polynomials of degree n. A convergent power series is the limes of polynomial

sequences, e.g.
k

S(z) = kh—{EO cn(z —a)", (2)

so that all results from Chpr. 2 are applicable.

Definition: The power series

o
E cn(z —a)"

n=0

is absolutely convergent, if the series with nonnegative terms

oo
Z lenllz — a
n=0

and uniformly convergent, if S,, — S uniformly in the metric of Chebyshev on
compact sets. N
We recall some well known facts.



Theorem 9.1. Suppose that S(z) :== >~ ¢,(z — a)" is absolutely conver-
gent at zy. Then the power series converges in the regular sense at the same
point.

Proof: Fix an arbitrary . Taking into account the absolute convergence, we

may write
k+m

| Z lenllzo — af" = Z [enllzo — al"| <&

this inequality is Vahd for every k great enough (say k > ko) and for every
m € N. It turns out that

|Sktm(20) — Sk(20)| < e,k > ko,m € N.

Our statement follows immediately from Cauchy’s fundamental theorem®
Q.E.D.

Theorem 9.2. Let S(z) := Y >~ cu(z —a)" be convergent at z,. Then
cn(z0 —a)* — 0,n — 0.
Proof: The statement follows from the fact that
Sk(20) — Sk-1(20) = cx(z — a)* — 0, k — o0,
Q.E.D.
Theorem 9.3., Abel’s theorem Suppose thatS(z) = > 7 c,(z — a)"

converges at zy. Then S is absolutely convergent at every z such that |z—a| <

|20 — al.

Proof: Take z with |z — a| < |zp — a|. Fix ¢ > 0. By the previous theorem,
en(z —a)"[ <e

for all n > ng. We have further,

Z —
Z|cn||z—a|"—2| n|‘ |zO—a|"

[z —al"

Z’n|| |n’20_a"n+z‘cn“ZO a|n| — |

n0+1

L Cauchy’s fundamental theorem: the infinite sequence {a,} converges iff for every e > 0
there exists a number ko great enough such that |agym — ax| < € whenever k > ko and
m € N.



lz—al"
<Z|"| a|n+z |20 — a|™
no+1

Using common notations, we may write

>l -l < 3 2=

To complete the proof, we need to remember that |z —a| < |29 —a|. Q.E.D.
Corollary 9.4. : Suppose that S(z) := > " ca(z — a)" diverges at z.
Then it diverges at every point z with |z — a| > |29 — al.

Naturally we come to the definition of a radius of convergence:
Definition: Given S(z) :=> 7 ¢,(z —a)", we set

R := sup{p, S(z) < oo for |z — a| < p}.

The number R is called radius of convergence of the power series. N
Regarding Abel’s theorem, we conclude that the power series converges
in the disk D,(R) and diverges outside.
Theorem 9.5., H’Adamard ’s formula:

1

~ lim SUP,, o |Cn |1/

Proof: If R = then we are done. We assume that R is positive. Fix p < R.
We will show that the power series is uniformly convergent on D,(p).

Select a positive number ¢ in such a way that p + ¢ < R. Viewing the
definition of R, we get for every n > ny (n large enough) n the estimation

|c ‘ < ;
T (R—e)
Consequently,
[e'e) n=ng—1 fe'e)
Z enllz —al™ = Z lenl|z — a]™ + Z leallz — al™ <
n=0 n=0 n=no
n=ng—1
Z |cnllz — al” :
n=ng



or o o
n P \n
n - << .
> lalls =" < 3(52)

The right-hand side series is a convergent geometric progression, (recall the
choice of €. )

Therefore, S(z) is absolutely convergent, and thus, convergent in the
regular sense. Q.E.D.
Remark: There is no statement about the behavior on the circle C,(R).

Theorem 9.6. Suppose that the power series S(z) := > " c,(z — a)" is of
positive radius of convergence R. Then it converges uniformly on compact
subsets of the disk D,(R) and absolutely at every point z € D,(R).

Proof: Fix p < R. By the previous theorem,

o0

5 el < .

n=0

Rearranging the difference S,,,, — 5, yields

n+m n+m
1Snim = Sl = D ez =) < > lelo".
k=n+1 k=n+1

Applying again Cauchy’s fundamental theorem, for all n large enough we get
| Srtm — Sn”m, which means a uniform convergence on D,(p). Q.E.D.
9.2. Taylor’s theorem and consequences

Theorem 9.7. (Taylor’s theorem) Let f € A(D4(p)),p > 0,a € C. Then
f can be represented as a Taylor series® ), (z —a)”, which is convergent
uniformly inside D,(p) and

S B

N 211 Ca(p) (C - G)nJrl

Proof: In view of the integral formula,

27 (—=z

2it if a = 0, then we speak about MacLaurin series.

z —L &d zeD .
£(2) /CM ¢, 2 € Dalp)




We remember that |z — a| < |¢ — a|. Consequently,

1 0 L £(0) =z =ay,
(=5— > C—)"
21 Jo (—a

2mi Jo,(p) (C—a) — (z — a) W C—a=
Using known estimates, we obtain
N n 1 f©) __ _

A=d gy [ =Y @
Q.E.D

Remark: o
S hiC), (4)

n

Example: Write down the Taylor series of Logz(:= In|z| 4+ iArgz, .) around
z =1
Solution; Since

& Logz

i <_1)]+1(j - 1)‘z_j) .] = 1727 e
V4

we get

Logz =0+ (2 —1) — (z = 1)?/2! + 21(z = 1)3/3! = 3l(z — 1)* /4! + ... =
=2 =1

The series converges uniformly on D;(r) for every r < 1.

Theorem 9.8. Suppose that f is analytic at the point z = a, f(z) =
> (z—a)"? Then

f'(z) = Z nep(z —a)" .

Proof: Indeed, from Chpt. 8 we know that f’(z) is also analytic at z = a.
From THeorem 9.7, we get

< ()™ (g

n
n=0

3analytic in some domain D,(r), r > 0.



Recalling that
(f'()™ () = (f(2)"*(a),
we obtain the required statement. Q.E.D.
The proof of the following theorems is left to the reader.

Theorem 9.9. Let the functions f(z) and g(z) be analytic at z = 1,

f2) =) falz=a)" g(2) = Y galz —a)™.

Denote by R(f), R(g) the radii of convergence of both Taylor series. Then
f £ g and fg are analytic at z = a and

R(f £+ g) > min(R(f), R(g)),
R(fg) = min(R(f), R(g)).

and

(f£9)(z) = Z(fn + g,)(2 — a)",

with .
Cp = Z fkgnfk
k=0

9.3. The point of infinity.

Definition: The function f(z), defined at infinity, is said to be analytic at
z = oo, if the function

is analytic at ( = 0. N
The checking of the validity of the following theorem is left to the reader:

Theorem 9.10. Suppose that f is analytic at infinity. Then it is expandable

into Taylor series
oo
CTL

f(z) = o

n=0
17 and is uniformly
1/n

The series converges at every point z,|z| > limsup |c,|
convergent in the exterior of every circle Do(R) with R > limsup |c,,|



EXxercises:
1. Find the Taylor series of

1
2 _
f(z) := z° cos 3
at z = 0.
2. Find the Taylor series of
1
f(Z) - ”— 2
at z = oo.
3. Find the Taylor series of
1

at z = 1.



