1. COMPLEX NUMBERS

Notations: $\mathbf{N}-$ the set of the natural numbers, $\mathbf{Z}-$ the set of the integers, \mathbf{R} - the set of real numbers, $\mathbf{Q}:=$ the set of the rational numbers.

Given a quadratic equation

$$
a x^{2}+b x+c=0,
$$

we know that it is not always solvable; for example, the simple equation

$$
\begin{equation*}
x^{2}=-1 \tag{1}
\end{equation*}
$$

cannot be satisfied for any real number. But we can expand our number system \mathbf{R} by appending a symbol for a solution of (1); customary the symbol used is i, e.g.

$$
\begin{equation*}
i^{2}=-1 \tag{2}
\end{equation*}
$$

Definition: A complex number z is an expression of the form $z:=a+i b$, where $a, b \in \mathbf{R}$. Two complex numbers $a+i b$ and $c+i d$ are equal $(a+i b=c+i d)$ if and only if $a=c, b=d$.

1.1. The algebra of the complex numbers

Set \mathbf{C} for the set of complex numbers. Let $z_{j}=a_{j}+i b_{j}$. Following (2), we define
Addition by:

$$
z_{1}+z_{2}:=\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right)
$$

Multiplication by;

$$
\begin{equation*}
z_{1} z_{2}:=\left(a_{1}+i b_{1}\right)\left(a_{2}+i b_{2}\right)=\left(a_{1} a_{2}-b_{1} b_{2}\right)+i\left(a_{1} b_{2}+a_{2} b_{1}\right) . \tag{3}
\end{equation*}
$$

The Division of the complex numbers $\frac{z_{1}}{z_{2}}, z_{2} \neq 0$ is given by

$$
\frac{a_{1}+i b_{1}}{a_{2}+i b_{2}}:=\frac{a_{1}+i b_{1}}{a_{2}+i b_{2}} \frac{a_{2}-i b_{2}}{a_{2}-i b_{2}}=\frac{a_{1} a_{2}+b_{1} b_{2}+i\left(a_{2} b_{1}-a_{1} b_{2}\right)}{a_{2}^{2}+b_{2}^{2}} .
$$

We easily prove that addition and multiplication are commutative and distributive, as well as that the Distributive Law takes place, that is:

$$
\left(z_{1}+z_{2}\right) z_{3}=z_{1} z_{3}+z_{2} z_{3}
$$

Definition: The real part $\Re z$ of the complex number $z=a+i b$ is the (real) number a, its imaginary part $\Im z$ is the (real) number b. If a is zero, the number is said to be a pure imaginary number.

1.2. Point representation of complex numbers, absolute value and complex conjugate.

A convenient way to represent complex numbers as points in the $x y$-plane is suggested by the Cartesian coordinate system; namely, to each complex number $z=a+i b$ we associate that point in the $x y$-plane which has the coordinates (a, b) (the projection of the $0 x-$ axis is a, and the one on the $O y$ - axis is b. Obviously, the correspondence between the set of the complex numbers and the set of ordered pairs (x, y) is one-to -one.

When the $x y$-plane is used to describe complex numbers it is referred to as complex plane or \mathbf{C} plane. The $O x-$ axis is called the real axis, whereas the oy- axis - the imaginary axis.

Definition: The absolute value or the modulus of the number $z=a+i b$ is denoted by $|z|$ and is given by

$$
\begin{equation*}
|z|:=\sqrt{a^{2}+b^{2}} \tag{4}
\end{equation*}
$$

\aleph.
Remark: $|z|$ is always nonnegative; $|z|=0$ iff $\Re z=\Im z=0$. The distance between $z_{i}=a_{i}+i b_{i}, i=1,2$ is given by

$$
\left|z_{1}-z_{2}\right|=\sqrt{\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}} .
$$

Definition: The complex conjugate of the number $z=a+i b$ is denoted by \bar{z} and is given by

$$
\begin{equation*}
\bar{z}:=a-i b . \tag{5}
\end{equation*}
$$

\aleph.
As we see, the complex conjugate of z is its reflection with respect to the real axis.

One easily can show that
$\left(z_{1} \overline{+} z_{2}\right)=\bar{z}_{1}+\bar{z}_{2}$,
$\left(z_{1} z_{2}\right)=\bar{z}_{1} \bar{z}_{2}$,
$\frac{\overline{z_{1}}}{z_{2}}=\frac{\bar{z}_{1}}{z_{2}}$,
$|z|=|\bar{z}|,|z|^{2}=z \bar{z}$,
$\Re z=\frac{z+\bar{z}}{2}, \Im z=\frac{z-\bar{z}}{2}$.

1.3. Vectors and polar forms.

Definition: The Vector determined by the point z (the vector from the origin to the point z) in the complex plane \mathbf{C} will be called the vector \mathbf{z}. \aleph. Addition: Let $z_{i}, i=1,2$ be two vectors, $\left.z_{i}=8 a_{i}, b_{i}\right)$. Hereafter,the sum of z_{1} and z_{2} is presented by the vector sum of both vectors, e.g., by the parallelogram law; $z_{1}+z_{2}=\left(a_{1}+a_{2}, b_{1}+b_{2}\right)$.
Substraction: $z_{1}-z_{2}=\left(a_{1}-a_{2}, b_{1}-b_{2}\right)$.

Theorem1.1 The Triangle Inequality. For any two complex numbers z_{1} and z_{2}, the inequalities

$$
\begin{equation*}
\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \tag{6}
\end{equation*}
$$

are valid.
There is another set of parameters that characterize the vector from the origin to the point z. This is the set of polar coordinates $r-$ the modulus, and Θ - the argument of z. The coordinate r is the distance from the origin to
the point $z ; r:=|z|$. Theta is an angle of inclination of the vector z measured positively in a counterclockwise sense from the positive real axis (and thus measured negative when clockwise). Let x, y be the Cartesian (rectangular) coordinates of z; then

$$
\begin{equation*}
x=r \cos \Theta \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
y=r \sin \Theta \tag{8}
\end{equation*}
$$

(recall that $r=|z|$.) Further,

$$
\begin{equation*}
\cos \Theta=\frac{x}{r}, \sin \Theta=\frac{y}{r} . \tag{9}
\end{equation*}
$$

Remark: Although it is certainly true that $\tan \Theta=x / y$, the natural conclusion

$$
\Theta=\arctan (y / x)
$$

is not true in the second and the third quadrants.
On the "uniqueness" of Θ_{0}. Let Θ satisfy (9). Then so does each

$$
\Theta_{0}+2 k \pi, k \in \mathbf{Z}
$$

We shall call the value of any of these angles an argument and denote it by $\arg z$. That value of the argument which belongs to the interval $(-\pi, \pi]$ will be called the Principal Part of the argument and denoted by $\operatorname{Arg} z$.

For instance,

$$
\begin{array}{lll}
\arg 1=0, & 2 \pi, & -2 \pi, \cdots, \\
\arg i=\frac{\pi}{2}, & \frac{5 \pi}{2}, & \frac{-3 \pi}{2}, \cdots \\
\arg (1-i)=\frac{-\pi}{4}, & \frac{7 \pi}{4}, & \frac{-9 \pi}{4}, \cdots
\end{array} .
$$

With these convention in hand, one can now write $z=x+i y$ in a polar form

$$
\begin{equation*}
z=x+i y=r(\cos \Theta+\sin \Theta) \tag{10}
\end{equation*}
$$

Let now $z_{i}=r_{i}\left(\cos \Theta_{i}+i \sin \Theta_{i}\right), i=1,2$. Applying (3), we get

$$
z_{1} z_{2}=r_{1} r_{2}\left(\cos \left(\Theta_{1}+\Theta_{2}\right)+i \sin \left(\Theta_{1}+\Theta_{2}\right)\right)
$$

So we conclude that

$$
\begin{equation*}
\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2} . \tag{12}
\end{equation*}
$$

Also,

$$
\begin{gather*}
\arg (1 / z)=-\arg z \tag{13}\\
\arg \bar{z}=-\arg z \tag{14}
\end{gather*}
$$

1.4. The complex exponential - Euler's equation.

Definition: Euler's equation:

$$
e^{i y}:=\cos y+i \sin y .
$$

This enables us to define the exponential function $e^{z}, z \in \mathbf{C}$:

Definition: if $z=x+i y$, then e^{z} is defined to be the complex number

$$
e^{z}=e^{x+i y}=e^{x}(\cos y+i \sin y) .
$$

EXERCISES:

1. Write in the form $a+i b$.
a): $-3(i / 2) ; 2 / i ;(-1+i)^{2}, i^{3}(i+1)^{2}$.
b) Show that $\Re(i z)=-\Im(z)$ for every complex number z.
2.

a) Let $z=3-2 i$. Plot the points $z,-z, \bar{z}$ and $1 / z$ in the complex plane.
b) Describe the set of points z in \mathbf{C} that satisfy $\Im z=-2,|z-2| \leq 1$, $\Re z>2,|z|=\Re z-2$.
c) Prove that $|\Re z| \leq|z|,|\Im z| \leq|z|$.
d) Let $a_{i}, i=1, \cdots, n$ are real numbers. Show that if z_{0} is a root of the polynomial $z^{n}+a_{1} z^{n-1}+\cdots+a_{n}=0$, then so is \bar{z}_{0}.
3.
a) Write down in a polar form $1,-1, i,-i, 1 \pm i, \frac{ \pm 1+i \pm \sqrt{3}}{2}, \frac{ \pm 1+i \pm 1}{2}$.
b) Is it true or not: $\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg} z_{1}+\operatorname{Arg} z_{2} ; \operatorname{Arg} z=-\operatorname{Arg}(-z), \arg z=$ $\operatorname{Arg} z+2 k \pi, k \in \mathbf{Z}$
4.

Prove Moivre's formula

$$
(\cos \Theta+i \sin \Theta)^{n}=\cos n \Theta+i \sin n \Theta
$$

Show that $\left|e^{i \alpha}\right|=1, e^{2 k \pi i}=1, k \in \mathbf{Z}, e^{\pi i / 2}=i, e^{(2 k+1) \pi / 2}=-1$.

$$
\sum_{k=0}^{n} z^{k}=\frac{z^{n+1}-1}{z-1}, z \neq 1
$$

