2. Topology in \mathbf{C} and in \bar{C} and Convergence Theory

Notations: We introduce following notations which will be actual along the course.

Given a complex point a and a positive number r, we set $D_{a}(R)$ for the open disk of radius r and centered at a; the boundary circle will be denoted by $C_{a}(r)$.

$$
D_{a}(r):=\{z,|z-a|<r\}, C_{a}(r):=\partial D_{a}(r)=\{z,|z-a|=r\} .
$$

In what follows we will call any disk $D_{a}(r)$ a neighborhood of a.

2.1. Topology

Topology in C. Let M be a set in C. We say that M is open, if any point $a \in M$ belongs to M together with some disk $D_{a}(r)$. Further, the set N is closed, if its complement $N^{c}:=\mathbf{C} \backslash N$ with respect to \mathbf{C} is open. The set K is compact, if it is closed and bounded. The the set $D \subset \mathbf{C}$ is a domain in \mathbf{C}, if it is open and connected.
Topology in $\overline{\mathbf{C}}$. In the same way, as in \mathbf{C}, we define open sets on the Riemann sphere \mathcal{S}_{f}. A set N on \mathcal{S}_{f} is closed, if its complement with respect to \mathcal{S}_{f} is open. Defining compact sets on the sphere as before, we remark that each closed set on \mathcal{S}_{f} is necessarily a compact set in \mathcal{S}_{f}.

We recall well known identities:
Given the sets A and B, we have

$$
A \bigcup B \equiv A^{c} \bigcap B^{c}, A \bigcap B \equiv A^{c} \bigcup B^{c} .
$$

From here, we derive
a) Let $M_{i}, i=1,2, \cdots$ be open sets. Then $\bigcup_{i=1}^{\infty} M_{i}$ and $\bigcap_{i=1}^{k} M_{i}$ are open; $k-$ any integer.
b) Let $M_{i}, i=1,2, \cdots$ be closed sets. Then $\bigcap_{i=1}^{\infty} M_{i}$ and $\bigcup_{i=1}^{k} M_{i}$ are open; k - any integer.

2.2. Convergence theory.

Definition: Given an infinite sequence of complex numbers $\left\{a_{n}\right\}$, we say that a is a concentration point of the sequence, if any neighborhood contains infinitely many numbers a_{n}, i.e., if for any $r>0$, there is an infinite sequence $\Lambda \subset \mathbb{N}$ of integers such that $\left|a_{n}-a\right|<r$ for all $n \in \Lambda$. For instance, the sequence

$$
a_{n}= \begin{cases}\frac{n}{n-1}, & n=2 k \\ \frac{1}{n}, & n=2 k+1\end{cases}
$$

has two points of concentration: $a=0, a=1$.
Definition: The sequence $\left\{a_{n}\right\}$ point is said to converge to a as $n \rightarrow \infty$, if the point $a \in \mathbf{C}$ is the only concentration point. We write

$$
\lim _{n \rightarrow \infty} a_{n}=a
$$

or, equivalently,

$$
a_{n} \rightarrow a, \text { as } n \rightarrow \infty .
$$

For instance, the sequence

$$
a_{n}:=\frac{i^{n}}{2^{n}}
$$

converges to zero.
Theorem 2.1, (a necessary and sufficient condition for a convergence):

$$
a_{n} \rightarrow a, n \rightarrow \infty
$$

iff for every $\varepsilon>0$ there exists a number $n_{0} \in \mathbb{N}$ such that

$$
\left|a_{n}-a\right|<\varepsilon
$$

every time when $n \geq n_{0} .{ }^{1}$
The convergence could be extended to the complex point of infinity (i.e. $z=\infty$), namely:

$$
a_{n} \rightarrow \infty, n \rightarrow \infty
$$

iff for every $R>0$ the inequality

$$
\left|a_{n}\right|>R
$$

for all n sufficiently large. We say that a_{n} diverges to infinity.
Suppose that the sequence $\left\{a_{n}\right\}$ converges to $a \in \mathbf{C}$. We easily can prove

[^0]Theorem 2.2. Suppose that

$$
a_{n} \rightarrow a, n \rightarrow \infty .
$$

Then

$$
\Re a_{n} \rightarrow \Re a, \Im a_{n} \rightarrow \Im a, n \rightarrow \infty
$$

and

$$
\left|a_{n}\right| \rightarrow|a|, n \rightarrow \infty .
$$

Further, a_{n} diverges to infinity iff the sequence $1 / a_{n}$ tends to zero.
We remark that the statement $\operatorname{Arg} a_{n} \rightarrow \operatorname{Arg} a, n \rightarrow \infty$ is, in general, not correct. Indeed, consider the sequence

$$
a_{n}:=\frac{(i)^{n}}{n}, n=1,2, \cdots .
$$

which tends to zero. At the same time, the sequence of the arguments has four concentration points ($-\pi / 2,0, \pi / 2, \pi$.) This expresses the circumstance that the numbers a_{n} can approach the limit a from from any direction in the plane.

The latter statement is true if $a \neq 0$.

2.3. Functions of a complex variable.

Recall that a function is a rule that assigns to each element in a set $A \subset \mathbf{C}$ one and only one element in the set $B \subset \mathbf{C}$. if f assigns the value of b to the value of a, we write

$$
f(a)=b .
$$

The set A is the domain of definition (even if A is not a domain in the sense of P.2.1, and the set of all images $f(a)$ is the range of f. We sometimes refer to f as a mapping of A into B.

If f is expressed by a formula such as

$$
f(z):=\frac{z^{2}+1}{z^{2}-1}
$$

then, unless stated otherwise, we take the domain of f to be the set of all z for which the formula is well defined (in this case $\mathbf{C} \backslash 1$. If we agree that $f(\infty)=1$, then the domain of definition coincides with the extended complex plane $\overline{\mathbf{C}}$), and the range with $\overline{\mathbf{C}}$.

Let

$$
w=f(z)
$$

Just as z decomposes into real and imaginary part as $z=x+i y$, the real and imaginary part of w are real valued function of z, or, equivalently, of x and y, and so we customary write

$$
f(z)=u(x, y)+i v(x, y)
$$

Example: Let $f(z):=z^{2}+1$. Then

$$
f(z)=x^{2}-y^{2}+1+2 i x y .
$$

A fundamental concept in the function theory is the continuity. In what follows we will get acquainted with.

2.4 Continuous functions.

Definition: Convergence of f at the point $z=z_{0}$. Let f be defined in a neighborhood of $z=z_{0}$ with possible exception at $z=z_{0}$. We say that the limit of $f(z)$ as z goes to z_{0} is the number w_{0} and write

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0}
$$

or equivalently,

$$
f(z) \rightarrow w_{0}, z \rightarrow z_{0}
$$

of for any $\varepsilon>0$ there exists a number $\delta>0$ such that

$$
\left|f(z)-w_{0}\right| \leq \varepsilon \text { whenever }\left|z-z_{0}\right|<\delta
$$

Example:: Show that $\lim _{z \rightarrow i} f(z)=0$, where

$$
f(z):=\frac{z^{2}+1}{z+i}
$$

We note the obvious statement:
Theorem 2.3. Let $f(z)=u(x, y)+i v(x, y)$ be defined in a neighborhood of $z_{0}=\left(x_{0}, y_{0}\right)$. Then $f(z) \rightarrow w_{0}=w_{1}+i w_{2}, z \rightarrow z_{0}$, iff

$$
u(x, y) \rightarrow w_{1}, z \rightarrow z_{0}
$$

and

$$
v(x, y) \rightarrow w_{2}, z \rightarrow z_{0} .
$$

Definition: Continuity of a function f at the point $z=z_{0}$. Suppose that f is defined in a neighborhood of $z=z_{0}$. Then f is continuous at $z=z_{0}$, if

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right) .
$$

A function is continuous in a set A (we write $f \in C(A)$), if it is continuous at every point of A.

Because of the analogy to real analysis, many of familiar theorems on real sequences, limits and continuity remain valid in the complex case. A theorem is stated here:

Theorem 2.4. If the functions f and g are continuous at z_{0}, then so are $f(z) \pm g(z)$, and $f(z) g(z)$. If $g\left(z_{0}\right) \neq 0$, then so does the quotient $f(z) / g(z)$.

Consider the definition on continuity. If $f \in C(A)$, then the number δ depends in general on the number z_{0}. Look for instance at the function $f(z)=z^{2}$. This fact can lead to essential difficulties. So, it is of interest for us when δ does not depend on z. This is the case of uniform continuity.

Definition: Suppose that f is well defined in the set E. We say that f is continuous on E, if for every $\varepsilon>$ there is a number δ such that $\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|<\varepsilon$ whenever $\left|z_{1}-z_{2}\right|<\delta, z_{1}, z_{2} \in E$. א

The classical result of Weierstraß provides a sufficient condition for A uniform continuity of a function.

Theorem 2.5. (Weierstraß:) Let K be a compact set in \mathbf{C} and $f \in C(K)$. Then f is uniformly continuous on E.

The proof proceeds along the same argumentation as in the real case. Before continuing, we recall another classical result by Weierstraß.

Theorem 2.6. (Weierstraß:) In the conditions of Theorem 2.5, there is a point $z_{0} \in K$ such that

$$
\max _{z \in K}|f(z)|=\left|f\left(z_{0}\right)\right| .
$$

In what follows we will write $\|f\|_{K}$ instead of $\max _{z \in K}|f(z)|$. The expression $\|f\|_{K}$ will be called Chebyshev or max - norm of f on K..

2.5 Convergence of sequences of functions.

Definition: Let the functions $\left\{f_{n}\right\}$ be continuous in the set A. We say that the sequence $\left\{f_{n}\right\}$ converges uniformly to a function f in A, if

$$
\begin{equation*}
\left\|f_{n}\right\|_{A} \rightarrow\|f\|_{A} \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

The following important theorem is due (again) to Weierstraß.
Theorem 2.7 (Weierstraß:) Let K be a compact set and $f_{n}(z) \in C(K$. Suppose that $\left\{f_{n}\right\}$ converges uniformly to a function f. Then $f \in C(K)$.
Proof: Select an arbitrary positive number ε. If we find a number $\delta>0$ such that $|f(z)-f(w)|<\varepsilon$ every time when $|z-w|<\delta$ and $z, w \in K$, then we are done.

Indeed, in the conditions of the theorem,

$$
\begin{equation*}
\left\|f_{n}-f\right\|_{K} \leq \frac{\varepsilon}{3} \tag{2}
\end{equation*}
$$

for all n great enough. Take such a number m. By Theorem 2.5 each function f_{n} is uniformly continuous on K, and so does f_{m}. Hence, there is a positive number δ such that

$$
\begin{equation*}
\left|f_{m}(z)-f_{m}(w)\right|<\frac{\varepsilon}{3} \text { whenever }|z-w|<\delta . \tag{3}
\end{equation*}
$$

Let now $|z-w|<\delta$. Applying successively (2) and (3), we get

$$
\begin{gathered}
|f(z)-f(w)|< \\
\left|f(z)-f_{m}(z)\right|+\left|f_{m}(z)-f_{m}(w)\right|+\left|f_{m}(w)-f(w)\right| \leq \\
\leq 2\left\|f_{m}-f\right\|_{K}+\left|f_{m}(z)-f_{m}(w)\right|<\varepsilon
\end{gathered}
$$

This completes the proof. Q.E.D.

Exercises:

1. Given the sets A, B, show that $A \bigcup B=(\mathbf{C} \backslash A) \bigcap(\mathbf{C} \backslash A)$.
2. Let $\left\{M_{i}\right\}_{i=1}^{\infty}$ be open sets in C. Show that
a) $\bigcup_{i=1}^{\infty} M_{i}$ is open;
b) $\bigcap_{i=1}^{m} M_{i}$ is open for every $m \in \mathbb{N}$.
3. Let $\left\{N_{i}\right\}_{i=1}^{\infty}$ be closed sets in C. Show that
a) $\bigcap_{i=1}^{\infty} M_{i}$ is closed ;
b) $\bigcup_{i=1}^{m=1} M_{i}$ is closed for every $m \in \mathbb{N}$.
4. Let K be a compact set in C. Show that

$$
L(f):=\|f\|_{K}, f \in C(K)
$$

is a Norm, that is:
a) $L(f) \geq 0$ and $L(f)=0$ iff $f \equiv 0$.
b) $L(\alpha f)=|\alpha| L(f)$ for every real number α.
c) $L(f+g) \leq L(f)+L(g)$.
5. Show that $f(z):=\bar{z}$ is continuous everywhere in \mathbf{C}.
6. Suppose that f is continuous at z_{0}. Show that the functions $|f(z)|, \operatorname{Re} f(z), \operatorname{Im} f(z)$ do so.
7. Prove that $\lim z_{n}=0$ iff $\left|z_{n}\right| \rightarrow 0$.
8. Prove that

$$
z^{n} \rightarrow \begin{cases}0, & \text { if }|z|<1 \\ \infty, & \text { if }|z|>1\end{cases}
$$

9. Show that the function Arg is continuous at each point on the nonpositive real axis.

[^0]: ${ }^{1}$ or, as we use to say, for all n sufficiently large.

