2. Topology in C and in C' and Convergence Theory

Notations: We introduce following notations which will be actual along the
course.

Given a complex point a and a positive number 7, we set D,(R) for the
open disk of radius r and centered at a; the boundary circle will be denoted

by Cq(r).
Dy(r):={z, |z —a| <r}, Cu(r) :=0D,(r) ={z, |z —a| =r}.

In what follows we will call any disk D,(r) a neighborhood of a.
2.1. Topology

Topology in C. Let M be a set in C. We say that M is open, if any point
a € M belongs to M together with some disk D,(r). Further, the set N is
closed , if its complement N°¢:= C \ N with respect to C is open. The set
K is compact, if it is closed and bounded. The the set D C C is a domain in
C, if it is open and connected.

Topology in C. In the same way, as in C, we define open sets on the
Riemann sphere Sy. A set N on &y is closed, if its complement with respect
to &y is open. Defining compact sets on the sphere as before, we remark that
each closed set on Sy is necessarily a compact set in Sy.

We recall well known identities:
Given the sets A and B, we have

Al B=A(\B, A(B=A°| B~
From here, we derive
a) Let M;, i = 1,2,--- be open sets. Then |J;°, M; and ﬂle M; are open;
k— any integer.
b) Let M;, i = 1,2,--- be closed sets. Then (;-, M; and Ule M; are open;
k— any integer.

2.2. Convergence theory.

Definition: Given an infinite sequence of complex numbers {a,}, we say that a
is a concentration point of the sequence, if any neighborhood contains infinitely
many numbers a,, i.e., if for any r > 0, there is an infinite sequence A C N of
integers such that |a,, — a| < r for all n € A. For instance, the sequence

1



o — L n =2k,
" ., n=2k+1.

3 |=3

has two points of concentration: a = 0,a = 1.

Definition: The sequence {a,} point is said to converge to a as n — oo, if
the point a € C is the only concentration point. We write

lim a, = a

n—oo

or, equivalently,
@, — @, as n — 00.

For instance, the sequence

converges to zero.

Theorem 2.1, (a necessary and sufficient condition for a conver-
gence):
ap, — a, N — 00

iff for every € > 0 there exists a number ny € N such that
la, —al <€

every time when n > ng.!
The convergence could be extended to the complex point of infinity (i.e.
z = 00), namely:

a, — 00, N — 00

iff for every R > 0 the inequality
la,] > R

for all n sufficiently large. We say that a,, diverges to infinity.
Suppose that the sequence {a,} converges to a € C. We easily can prove

Lor, as we use to say, for all n sufficiently large.



Theorem 2.2. Suppose that
ap, — a, N — 0.

Then
Ra, — Ra, Sa,, — Fa,n — 0o

and
la,| — |a|, n — oo.

Further, a,, diverges to infinity iff the sequence 1/a, tends to zero.
We remark that the statement Arga,, — Arga, n — oo is, in general, not
correct. Indeed, consider the sequence

anzzﬂ,nzl,l---.
n

which tends to zero. At the same time, the sequence of the arguments has
four concentration points (—m/2,0,7/2,7.) This expresses the circumstance
that the numbers a,, can approach the limit a from from any direction in the
plane.

The latter statement is true if a # 0.

2.3. Functions of a complex variable.

Recall that a function is a rule that assigns to each element in a set A C C
one and only one element in the set B C C. if f assigns the value of b to the
value of a, we write

f(a) =0.

The set A is the domain of definition (even if A is not a domain in the sense

of P.2.1, and the set of all images f(a) is the range of f. We sometimes refer

to f as a mapping of A into B. N
If f is expressed by a formula such as

Z?
fe) =5,

z

then, unless stated otherwise, we take the domain of f to be the set of all
z for which the formula is well defined (in this case C \ 1. If we agree that
f(o0) = 1, then the domain of definition coincides with the extended complex
plane C), and the range with C.



Let
w = f(2).
Just as z decomposes into real and imaginary part as z = = + 1y, the real

and imaginary part of w are real valued function of z, or, equivalently, of x
and y, and so we customary write

f(2) = ulz,y) + iv(z,y).
Example: Let f(z) := 22+ 1. Then

f(2) =2 —y* + 1+ 2ixy.

A fundamental concept in the function theory is the continuity. In what
follows we will get acquainted with.

2.4 Continuous functions.

Definition: Convergence of f at the point z = zy. Let f be defined in a
neighborhood of z = z; with possible exception at z = z;. We say that the
limit of f(z) as z goes to z is the number wy and write

lim f(z) = wo,

zZ—20

or equivalently,
f(Z) — Wp, 2 — 20,

of for any € > 0 there exists a number § > 0 such that

|f(2) —wo| < e whenever |z — z| < 0.

N
Example:: Show that lim,_,; f(z) = 0, where
22 +1
J(2) = z+10

We note the obvious statement:

Theorem 2.3. Let f(z) = u(x,y) + iv(z,y) be defined in a neighborhood of
20 = (wo,0). Then f(z) — wo = wy + iwy, 2 — 20, iff

U(.flf,y) — Wi, 2 — 20,
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and
v(z,y) — we, 2 — 2.

Definition: Continuity of a function f at the point z = z;. Suppose
that f is defined in a neighborhood of z = z;. Then f is continuous at z = z,
if

lim f(z) = f(z)-

z—20

A function is continuous in a set A (we write f € C(A)), if it is continuous at
every point of A. N

Because of the analogy to real analysis, many of familiar theorems on
real sequences, limits and continuity remain valid in the complex case. A
theorem is stated here:

Theorem 2.4. If the functions f and g are continuous at zy, then so are
f(2)£g(2), and f(2)g(z). If g(20) # 0, then so does the quotient f(z)/g(2).

Consider the definition on continuity. If f € C(A), then the number
0 depends in general on the number z;. Look for instance at the function
f(2) = 2%. This fact can lead to essential difficulties. So, it is of interest for
us when ¢ does not depend on z. This is the case of uniform continuity.

Definition: Suppose that f is well defined in the set . We say that f is
continuous on E | if for every € > there is a number 6 such that |f(z1)—f(22)] < €
whenever |27 — 23| < 6, 21,22 € E. N

The classical result of Weierstrafl provides a sufficient condition for A
uniform continuity of a function.

Theorem 2.5. (Weierstraf:) Let K be a compact set in C and f € C(K).
Then f is uniformly continuous on E.
The proof proceeds along the same argumentation as in the real case.
Before continuing, we recall another classical result by Weierstraf.

Theorem 2.6. (Weierstraf3:) In the conditions of Theorem 2.5, there is a
point zg € K such that

max | f(2)| = | f(z0)|-

zeK

In what follows we will write || f||x instead of max,cx |f(z)|. The expres-
sion || f||x will be called Chebyshev or max — norm of f on K..



2.5 Convergence of sequences of functions.

Definition: Let the functions {f,} be continuous in the set A. We say that
the sequence {f,} converges uniformly to a function f in A, if

[fnlla = [[f1[a as n — oo. (1)

The following important theorem is due (again) to Weierstraf.

Theorem 2.7 (Weierstraf}:) Let K be a compact set and f,(z) € C(K.)
Suppose that {f,} converges uniformly to a function f. Then f € C(K).
Proof: Select an arbitrary positive number ¢. If we find a number 6 > 0
such that |f(z) — f(w)| < € every time when |z —w| < § and z,w € K, then
we are done.

Indeed, in the conditions of the theorem,

o= fllxc < 5 (2)

for all n great enough. Take such a number m. By Theorem 2.5 each function
fn is uniformly continuous on K, and so does f,,. Hence, there is a positive
number § such that

|[fn(2) = fm(w)] < % whenever |z — w| < 0. (3)
Let now |z — w| < §. Applying successively (2) and (3), we get
|f(z) = f(w)] <

1f(2) = fn(2)] + [ fin(2) = fn(w)] + | fn(w) — fw)] <
<2 fin = fllx + [fm(2) = fn(w)| <&
This completes the proof. Q.E.D.

Exercises:

1. Given the sets A, B, show that A|JB = (C\ A)N(C\ A).

2. Let {M;}3°, be open sets in C. Show that
a) U2, M; is open;
b) Ni~, M; is open for every m € N.



3. Let {N;}2, be closed sets in C. Show that
a) (oo, M; is closed ;
b) Ui~ , M; is closed for every m € N.

4. Let K be a compact set in C. Show that

L(f) = lflle, f € C(K)

is a Norm, that is:

a) L(f) > 0and L(f)=0iff f=0.

b) L(af) = |a|L(f) for every real number «.

&) L(f + 9) < L() + L(g).

5. Show that f(z) := Z is continuous everywhere in C.

6. Suppose that f is continuous at zo. Show that the functions | f(z)], Re f(z), Im f(2)
do so.

7. Prove that lim z, = 0 iff |z,| — 0.

8. Prove that
n_ 0, iflz| <1,
- 0o, if|z] > 1.

9. Show that the function Arg is continuous at each point on the nonpositive
real axis.



