
2. Topology in C and in C and Convergence Theory

Notations: We introduce following notations which will be actual along the
course.

Given a complex point a and a positive number r, we set Da(R) for the
open disk of radius r and centered at a; the boundary circle will be denoted
by Ca(r).

Da(r) := {z, |z − a| < r}, Ca(r) := ∂Da(r) = {z, |z − a| = r}.

In what follows we will call any disk Da(r) a neighborhood of a.

2.1. Topology

Topology in C. Let M be a set in C. We say that M is open, if any point
a ∈ M belongs to M together with some disk Da(r). Further, the set N is
closed , if its complement N c := C \ N with respect to C is open. The set
K is compact, if it is closed and bounded. The the set D ⊂ C is a domain in
C, if it is open and connected.

Topology in C. In the same way, as in C, we define open sets on the
Riemann sphere Sf . A set N on Sf is closed, if its complement with respect
to Sf is open. Defining compact sets on the sphere as before, we remark that
each closed set on Sf is necessarily a compact set in Sf .

We recall well known identities:
Given the sets A and B, we have

A
⋃

B ≡ Ac
⋂

Bc, A
⋂

B ≡ Ac
⋃

Bc.

From here, we derive
a) Let Mi, i = 1, 2, · · · be open sets. Then

⋃∞
i=1Mi and

⋂k
i=1Mi are open;

k− any integer.
b) Let Mi, i = 1, 2, · · · be closed sets. Then

⋂∞
i=1Mi and

⋃k
i=1Mi are open;

k− any integer.

2.2. Convergence theory.

Definition: Given an infinite sequence of complex numbers {an}, we say that a
is a concentration point of the sequence, if any neighborhood contains infinitely
many numbers an, i.e., if for any r > 0, there is an infinite sequence Λ ⊂ N of
integers such that |an − a| < r for all n ∈ Λ. For instance, the sequence
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an =

{
n

n−1
, n = 2k,

1
n
, n = 2k + 1.

has two points of concentration: a = 0, a = 1.

Definition: The sequence {an} point is said to converge to a as n→∞, if
the point a ∈ C is the only concentration point. We write

lim
n→∞

an = a

or, equivalently,
an → a, as n→∞.

ℵ
For instance, the sequence

an :=
in

2n

converges to zero.

Theorem 2.1, (a necessary and sufficient condition for a conver-
gence):

an → a, n→∞

iff for every ε > 0 there exists a number n0 ∈ N such that

|an − a| < ε

every time when n ≥ n0.
1

The convergence could be extended to the complex point of infinity (i.e.
z =∞), namely:

an →∞, n→∞

iff for every R > 0 the inequality

|an| > R

for all n sufficiently large. We say that an diverges to infinity.
Suppose that the sequence {an} converges to a ∈ C. We easily can prove

1or, as we use to say, for all n sufficiently large.
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Theorem 2.2. Suppose that

an → a, n→∞.

Then
<an → <a, =an → =a, n→∞

and
|an| → |a|, n→∞.

Further, an diverges to infinity iff the sequence 1/an tends to zero.
We remark that the statement Argan → Arga, n→∞ is, in general, not

correct. Indeed, consider the sequence

an :=
(i)n

n
, n = 1, 2, · · · .

which tends to zero. At the same time, the sequence of the arguments has
four concentration points (−π/2, 0, π/2, π.) This expresses the circumstance
that the numbers an can approach the limit a from from any direction in the
plane.

The latter statement is true if a 6= 0.

2.3. Functions of a complex variable.

Recall that a function is a rule that assigns to each element in a set A ⊂ C
one and only one element in the set B ⊂ C. if f assigns the value of b to the
value of a, we write

f(a) = b.

The set A is the domain of definition (even if A is not a domain in the sense
of P.2.1, and the set of all images f(a) is the range of f. We sometimes refer
to f as a mapping of A into B. ℵ

If f is expressed by a formula such as

f(z) :=
z2 + 1

z2 − 1
,

then, unless stated otherwise, we take the domain of f to be the set of all
z for which the formula is well defined (in this case C \ 1. If we agree that
f(∞) = 1, then the domain of definition coincides with the extended complex
plane C), and the range with C.
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Let
w = f(z).

Just as z decomposes into real and imaginary part as z = x + iy, the real
and imaginary part of w are real valued function of z, or, equivalently, of x
and y, and so we customary write

f(z) = u(x, y) + iv(x, y).

Example: Let f(z) := z2 + 1. Then

f(z) = x2 − y2 + 1 + 2ixy.

A fundamental concept in the function theory is the continuity. In what
follows we will get acquainted with.

2.4 Continuous functions.

Definition: Convergence of f at the point z = z0. Let f be defined in a
neighborhood of z = z0 with possible exception at z = z0. We say that the
limit of f(z) as z goes to z0 is the number w0 and write

lim
z→z0

f(z) = w0,

or equivalently,
f(z)→ w0, z → z0,

of for any ε > 0 there exists a number δ > 0 such that

|f(z)− w0| ≤ ε whenever |z − z0| < δ.

ℵ
Example:: Show that limz→i f(z) = 0, where

f(z) :=
z2 + 1

z + i
.

We note the obvious statement:

Theorem 2.3. Let f(z) = u(x, y) + iv(x, y) be defined in a neighborhood of
z0 = (x0, y0). Then f(z)→ w0 = w1 + iw2, z → z0, iff

u(x, y)→ w1, z → z0,
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and
v(x, y)→ w2, z → z0.

Definition: Continuity of a function f at the point z = z0. Suppose
that f is defined in a neighborhood of z = z0. Then f is continuous at z = z0,
if

lim
z→z0

f(z) = f(z0).

A function is continuous in a set A (we write f ∈ C(A)), if it is continuous at
every point of A. ℵ

Because of the analogy to real analysis, many of familiar theorems on
real sequences, limits and continuity remain valid in the complex case. A
theorem is stated here:

Theorem 2.4. If the functions f and g are continuous at z0, then so are
f(z)± g(z), and f(z)g(z). If g(z0) 6= 0, then so does the quotient f(z)/g(z).

Consider the definition on continuity. If f ∈ C(A), then the number
δ depends in general on the number z0. Look for instance at the function
f(z) = z2. This fact can lead to essential difficulties. So, it is of interest for
us when δ does not depend on z. This is the case of uniform continuity.

Definition: Suppose that f is well defined in the set E. We say that f is
continuous on E, if for every ε > there is a number δ such that |f(z1)−f(z2)| < ε
whenever |z1 − z2| < δ, z1, z2 ∈ E. ℵ

The classical result of Weierstraß provides a sufficient condition for A
uniform continuity of a function.

Theorem 2.5. (Weierstraß:) Let K be a compact set in C and f ∈ C(K).
Then f is uniformly continuous on E.

The proof proceeds along the same argumentation as in the real case.
Before continuing, we recall another classical result by Weierstraß.

Theorem 2.6. (Weierstraß:) In the conditions of Theorem 2.5, there is a
point z0 ∈ K such that

max
z∈K
|f(z)| = |f(z0)|.

In what follows we will write ‖f‖K instead of maxz∈K |f(z)|. The expres-
sion ‖f‖K will be called Chebyshev or max− norm of f on K..
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2.5 Convergence of sequences of functions.

Definition: Let the functions {fn} be continuous in the set A. We say that
the sequence {fn} converges uniformly to a function f in A, if

‖fn‖A → ||f‖A as n→∞. (1)

The following important theorem is due (again) to Weierstraß.

Theorem 2.7 (Weierstraß:) Let K be a compact set and fn(z) ∈ C(K.)
Suppose that {fn} converges uniformly to a function f. Then f ∈ C(K).
Proof: Select an arbitrary positive number ε. If we find a number δ > 0
such that |f(z)− f(w)| < ε every time when |z −w| < δ and z, w ∈ K, then
we are done.

Indeed, in the conditions of the theorem,

‖fn − f‖K ≤
ε

3
(2)

for all n great enough. Take such a number m. By Theorem 2.5 each function
fn is uniformly continuous on K, and so does fm. Hence, there is a positive
number δ such that

|fm(z)− fm(w)| < ε

3
whenever |z − w| < δ. (3)

Let now |z − w| < δ. Applying successively (2) and (3), we get

|f(z)− f(w)| <

|f(z)− fm(z)|+ |fm(z)− fm(w)|+ |fm(w)− f(w)| ≤

≤ 2‖fm − f‖K + |fm(z)− fm(w)| < ε.

This completes the proof. Q.E.D.

Exercises:
1. Given the sets A,B, show that A

⋃
B = (C \ A)

⋂
(C \ A).

2. Let {Mi}∞i=1 be open sets in C. Show that
a)
⋃∞

i=1Mi is open;
b)
⋂m

i=1Mi is open for every m ∈ N.
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3. Let {Ni}∞i=1 be closed sets in C. Show that
a)
⋂∞

i=1Mi is closed ;
b)
⋃m

i=1Mi is closed for every m ∈ N.

4. Let K be a compact set in C. Show that

L(f) := ‖f‖K , f ∈ C(K)

is a Norm, that is:
a) L(f) ≥ 0 and L(f) = 0 iff f ≡ 0.
b) L(αf) = |α|L(f) for every real number α.
c) L(f + g) ≤ L(f) + L(g).
5. Show that f(z) := z̄ is continuous everywhere in C.
6. Suppose that f is continuous at z0. Show that the functions |f(z)|, Re f(z), Im f(z)
do so.
7. Prove that lim zn = 0 iff |zn| → 0.
8. Prove that

zn →
{

0, if |z| < 1,
∞, if |z| > 1.

9. Show that the function Arg is continuous at each point on the nonpositive
real axis.
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