2. Topology in C and Convergence Theory

Notations: Given a complex point a and a positive number 7, we set D,(R)
for the open disk of radius r and centered at a; the boundary circle will be
denoted by Cy(r).

Dy(r):={z, |z —a| <r}, Cu(r) :=0D,(r) ={z, |z —a| =r}.

In what follows we will call any disk D,(r) a neighborhood of a.
2.1. Topology in C.

Definition: Let M be a set in C. We say that M is open, if any point a € M
belongs to M together with some disk D, (7). Further, the set N is closed , if
its complement N¢:= C\ N with respect to C is open. The set K is compact,
if it is closed and bounded. We say that the set D C C is a domain if it is
open and connected.

2.2. Convergence theory.

Definition: Given an infinite sequence of complex numbers {a,,}, we say that a
is a concentration point of the sequence, if any neighborhood contains infinitely
many numbers a,,, e.g., if for any r > 0, there is an infinite sequence A C N of
integers such that |a, — a| < r for all n € A. For instance, the sequence
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has two points of concentration: a = 0,a = 1.
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Definition: The sequence {a,} point is said to converge to a as n — oo, if
the point a € C is the only concentration point. We write

lim a, = a

n—oo

or, equivalently,
@, — @, as n — 0.

For instance, the sequence



converges to zero.

Theorem 2.1, (the necessary and sufficient condition for a conver-
gence:)
ap — a, N — 00

iff for every € > 0 there exists a number ng € N such that
la, —al <€

every time when n > ng.!
The convergence could be extended to the complex point of infinity, namely:

Ay — 00, N — 00
iff for every R > 0 the inequality
la,| > R

for all n sufficiently large. We say that a,, diverges to infinity.
Suppose that the sequence {a,} converges to a € C. Then We easily can
prove

Theorem 2.2. Suppose that
ay — @, N — 00.
Then
Ra,, — Ra, Sa, — Sa,n — 00

and
la,| — la|, n — oo.

Further, a,, diverges to infinity iff the sequencew 1/a,, tends to zero.
We remark that the statement Arga,, — Arga, n — oo is, in general, not
correct. Indeed, consider the sequence

U

n - )

Lor, as we use to say, for all n sufficiently large.



which tends to zero. At the same time, the sequence of the arguments has
four concentration points (—m/2,0,7/2,7.) This expresses the circumstance
that the numbers a,, can approach the limit a from from any direction in the
plane.

The latter statement is true if a # 0.

2.3. Functions of a complex variable.

Recall that a function is a rule that assigns to each element inaset A C C
one and only one element in the set B C C. if f assigns the value of b to the
value of a, we write

fla)=b.
The set A is the domain of definition (even if A is not a domain in the sense
of P.2.1, and the set of all images f(a) is the range of f. We sometimes refer

to f as a mapping of A into B. N
If f is expressed by a formula such as
22+1
f(Z) T 22 - 17

then, unless stated otherwise, we take the domain of f to be the set of all
z for which the formula is well defined (in this case C \ 1. If we agree that
f(o0) = 1, then the domain of definition coincides with the extended complex
plane C), and the range with C.
Let
w = f(2).

Just as z decomposes into real and imaginary part as z = x + iy, the real
and imaginary part pf w are real valued function of z, or, equivalently, of x
and y, and so we customary write

f(z) = u(z,y) + iv(z,y).
Example: Let f(z) := 2% + 1. Then
f(2) =2 —y* + 1+ 2ixy.

2.4 Continuous functions.

Definition: Convergence of f at the point z = z,. Let f be defined in
a neighborhood of z = z; with possible exception at z = z;. We say that the
limit of f(z) as z goes to z; is the number w, and write

lim f(z) = wo,

zZ—20



or equivalently,
f(Z) — Wp, 2 — 20,

of for any € > 0 there exists a number 6 > 0 such that

|f(2) — wp| < e whenever |z — zy| < 4.

N
Example:: Show that lim,_,; f(2) = 0, where
2241
J() = z41i

We note the obvious statement:

Theorem 2.3. Let f(z) = u(x,y) + iv(z,y) be defined in a neighborhood of
20 = (wo,0). Then f(z) — wo = wy + iwy, z — 20, iff

U(S(Z,y) — W1, 2 — 20,

and
v(z,y) — we, 2 — 2.

Definition: Continuity at z = z;. Suppose that f is defined in a neighbor-
hood of z = zy. Then f is continuous at z = z, if
lim f(2) = f(z0).
A function is continuous in a set A (we write f € C(A)), if it is continuous
at every point of A. N
Because of the analogy to real analysis, many of familiar theorems on

real sequences, limits and continuity remain valid in the complex case. A
theorem is stated here:

Theorem 2.4. If the functions f and g are continuous at zy, then so are

f(z)£9(2), and f(2)g(2). If g(z0) # 0, then so does the quotient f(z)/g(z).
Consider the definition on continuity. If f € C(A), then the number

0 depends in general on the number zy. Look for instance at the function
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f(2) = 2%. This fact can lead to essential difficulties. So, it is of interest for
us when 0 does not depend on z. This is the case of uniform continuity.

Definition: Suppose that f is well defined in the set . We say that f is
continuous on E | if for every € > there is a number 6 such that |f(z1)—f(22)]| < €
whenever |27 — 23| < 0, 21,22 € E. N

The classical result of Weierstraf§ provides a sufficient condition for A
uniform continuity of a function.

Theorem 2.5. (WeierstraB:) Let K be a compact set in C and f € C(K).
Then f is uniformly continuous on E.
The proof proceeds along the same argumentation as in the real case.
Before continuing, we recall another classical result by Weierstraf.

Theorem 2.6. (WeierstraB:) In the conditions of Theorem 2.5, there is a
point zg € K such that

max | f(2)| = |f(z0)|-

zeK

In what follows we will write || f||x instead of max,cx |f(z)|. The expres-
sion || f||x will be called Chebyshev or max — norm of f on K..
Convergence of sequences of functions.

Definition: Let the functions {f,} be continuous in the set A. We say that
the sequence {f,} converges uniformly to a function f in A, if

[fnlla = [[f1[a as n — oo. (1)

The following important theorem is due to Weierstraf.

Theorem 2.7 (Weierstraf3:) Let K be a compact set and f,(z) € C(K.)
Suppose that {f,,} converges uniformly to a function f. Then f € C(K).



Proof: Select an arbitrary positive number e. If we find a number 6 > 0
such that |f(z) — f(w)| < € every time when |z —w| < d and z,w € K, then
we are done.

Indeed, in the conditions of the theorem,

1o = flle < < (2)

for all n great enough. Take such a number m. By Theorem 2.7 each function
fn is uniformly continuous on K, and so does f,,. Hence, there is a positive
number ¢ such that

u(2) — fulw)]| < g whenever |z — w| < 4. (3)

Let now |z — w| < §. Applying successively (2) and (3), we get
|f(2) = f(w)] <
1f(2) = fa(D)] + [ fu(2) = fu(w)] + | fo(w) = f(w)] <
<2|fo = fllg+ [fu(2) — fw)] <e.

This completes the proof. QED Ot paBHOMepHAaTA HEIPEKLCHATOCT

Ha BCAKA (YHKIUs BBLPXY KOMIAKTHOTO MHO:keCTBO E (2. Teopema
Ha Weierstrass) caensa TBbprenuero caensa ot (2), (3) u mocienHara
OIIEHKA. Q.E.D.

FExercises:

1. Given the sets A, B, show that A|JB = (C\ A)N(C\ A4).

2. Let {M;}3°, be open sets in C. Show that
a) U;~, M; is open;
b) M-, M; is open for every m € N.

3. Let {N;}2, be closed sets in C. Show that
a) (oo, M; is closed ;
b) Ui~ , M; is closed for every m € N.

4. Let K be a compact set in C. Show that
L(f) = lflx. f € C(K)
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is a Norm, that is:

a) L(f) >0 and L(f) = 0iff f =0.

b) L(af) = |a|L(f) for every real number a.

c) L(f +9) < L(f) + L(9g)-

5. Show that f(z) := Z is continuous everywhere in C.

6. Suppose that f is continuous at zo. Show that the functions | f(z)], Re f(z), Im f(2)
do so.

7. Prove that lim z, = 0 iff |z,| — 0.

8: Prove that
w_, J 0, i |z| < 1,
: 0o, if 2] > 1.

9. Show that the function Arg is continuous at each point on the nonpositive
real axis.



