DESCRIPTION OF THE COMMUTANT OF COMPOSITIONS OF DUNKL OPERATORS

Valentin Z. Hristov

Institute of Mathematics and Informatics
Section Complex Analysis
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Block 8
Sofia – 1113, BULGARIA

Comm. by Virginia Kiryakova

Abstract. In this paper the commutant of a composition $\tilde{D} = D_1 D_2 \ldots D_n$ of Dunkl operators $D_j f(z) = \frac{d f(z)}{dz} + k_j \frac{f(z) - f(-z)}{z}$ with parameters $k_j \geq 0$, $j = 1, 2, \ldots, n$, is described using power series in the space A_R of the analytic functions in the disk $D_R = \{ z \in \mathbb{C} : |z| < R \}$.

Keywords: Dunkl operator, commutant of linear operator, space of analytic functions
AMS Subject Classification: 47B38, 47B39, 41A58

1 Introduction

The Dunkl operator is a differential-difference operator defined in [3] in 1989 and since then many mathematicians have studied its properties and applications.

Let A_R be the space of the analytic functions in the disk $D_R = \{ z \in \mathbb{C} : |z| < R \}$.

Definition 1. For $f \in A_R$, the operator $D_k : A_R \to A_R$ defined by

$$D_k f(z) = \frac{d f(z)}{dz} + k \frac{f(z) - f(-z)}{z}$$

is called the Dunkl operator with parameter $k \geq 0$.
Definition 2. It is said that a continuous linear operator \(M \) commutes with a fixed operator \(L \), if \(ML = LM \). The set of all operators commuting with \(L \) is called the commutant of \(L \) and will be denoted by \(\text{Comm}(L) \).

M.S. Hristova describes in [5] the commutant \(\text{Comm}(D_k) \) of the Dunkl operator \(D_k \) and in [6] the commutant \(\text{Comm}(D_k^\nu) \) of arbitrary power \(n \) of \(D_k \). Here our goal is to extend this description to the case of a composition \(\tilde{D} = D_1 D_2 \ldots D_n \) of Dunkl operators \(D_j = D_{k_j} \) with arbitrary parameters \(k_j \geq 0, j = 1, 2, \ldots, n \).

2 Representation of the commutant

Theorem 3. Let \(f \) be an analytic function from \(A_R \) with a Taylor series \(f(z) = \sum_{m=0}^{\infty} a_m z^m \). Then every continuous linear operator \(M : A_R \to A_R \) commutes with the composition \(\tilde{D} = D_1 D_2 \ldots D_n \) of Dunkl operators \(D_j = D_{k_j}, k_j \geq 0, j = 1, 2, \ldots, n \), i.e. \(M \in \text{Comm}(\tilde{D}) \), if and only if it can be represented in a power series form as

\[
Mf(z) = \sum_{\mu=0}^{n-1} \sum_{m=0}^{\infty} a_m d_{m,\mu} z^\mu + \sum_{\mu=n}^{\infty} \sum_{m=[\frac{\mu}{2}]}^{\infty} a_m \left(\prod_{\nu=1}^{ \mu \left(\nu \right) \left(\nu \right) \nu + j } c_{j,\mu - \nu + j} \right) d_{m-\nu,\mu-\nu} z^\mu,
\]

where

\[
d_{m,\mu}, 0 \leq \mu \leq n - 1, m = 0, 1, 2, \ldots, \text{are arbitrary complex numbers with the only restriction the series in the representation (2) to be convergent, and } [A] \text{ denotes the integer part of the number } A.
\]

Proof. First, let us consider the action of the Dunkl operator \(D_j = D_{k_j} \) on a single power \(z^m \) of the variable \(z \in \mathbb{C} \). If the power is even, i.e. \(m = 2s \), then

\[
D_j z^{2s} = \left(\frac{dz^2}{dz} z^{2s} - k_j \left(z^2 - (-z)^2 \right) \right) = 2s z^{2s-1} \quad \text{for } s \geq 1,
\]

for \(s = 0 \).

If the power is odd, i.e. \(m = 2s + 1 \), then

\[
D_j z^{2s+1} = \frac{dz^{2s+1}}{dz} z^{2s+1} - k_j \left(z^{2s+1} - (-z)^{2s+1} \right) = (2s+1)z^{2s} + 2k_j z^{2s} = (2s+1+2k_j)z^{2s}.
\]

The two representations can be combined in one formula:

\[
D_j z^m = \left\{ \begin{array}{ll}
 c_{j,m} z^{m-1}, & \text{if } m \geq 1, \\
 0, & \text{if } m = 0.
 \end{array} \right.
\]

Next, if the composition \(\tilde{D} = D_1 D_2 \ldots D_n \) is considered, its action on an arbitrary power \(m \) of the variable \(z \) can be expressed as

\[
\tilde{D} z^m = \left\{ \begin{array}{ll}
 c_{n,m} c_{n-1,m-1} \ldots c_{1,m-n+1} z^{m-n} = \left(\prod_{j=1}^{n} c_{j,m-n+j} \right) z^{m-n}, & \text{for } m \geq n, \\
 0, & \text{for } 0 \leq m \leq n - 1.
 \end{array} \right.
\]
Now consider an arbitrary operator M from the commutant $\text{Comm}(\tilde{D})$. Let us represent its action again on an arbitrarily fixed power z^m by the power series

$$Mz^m = \sum_{\mu=0}^{\infty} d_{m,\mu}z^\mu, \quad m = 0, 1, 2, \ldots$$

(6)

Here the coefficients $d_{m,\mu}$ are unknown, but they will be determined below.

In order to analyze the commutation $M\tilde{D} = \tilde{D}M$, we start by expressing $M\tilde{D}z^m$ and $\tilde{D}Mz^m$ for arbitrarily fixed power z^m:

$$M\tilde{D}z^m = \begin{cases} M_{m,n} \ldots c_{1,m-n+1}z^{m-n} = \sum_{\mu=0}^{\infty} c_{n,m} \ldots c_{1,m-n+1}d_{m-n,\mu}z^\mu & \text{for } m \geq n, \\ 0 & \text{for } 0 \leq m \leq n - 1. \end{cases}$$

(7)

$$\tilde{D}Mz^m = \tilde{D}\sum_{\mu=0}^{\infty} d_{m,\mu}z^\mu = \sum_{\mu=0}^{\infty} d_{m,\mu}\tilde{D}z^\mu$$

$$= \sum_{\mu=n}^{\infty} d_{m,\mu}c_{n,\mu} \ldots c_{1,\mu-n+1}z^{\mu-n} = \sum_{\mu=0}^{\infty} d_{m,\mu+n}c_{n,\mu+n} \ldots c_{1,\mu+1}z^\mu.$$

(8)

In the last formula $\mu - n$ was replaced by a single letter μ for convenience.

We want to have $M\tilde{D}f(z) = \tilde{D}Mf(z)$ for every $f \in \mathcal{A}(R)$. By the uniqueness theorem for analytic functions this will be true if and only if for every $m \geq 0$ one has $M\tilde{D}z^m = \tilde{D}Mz^m$, i.e. if the expressions in (7) and (8) coincide.

Let us consider first the case $0 \leq m \leq n - 1$. Then one must have

$$0 = \sum_{\mu=0}^{\infty} d_{m,\mu+n}c_{n,\mu+n} \ldots c_{1,\mu+1}z^\mu.$$

By the uniqueness theorem the power series on the right is zero if and only if all its coefficients are equal to zero, i.e. $d_{m,\mu+n}c_{n,\mu+n} \ldots c_{1,\mu+1} = 0$ for every $\mu = 0, 1, 2, \ldots$. But all $c_{j,\mu+j}$, $1 \leq j \leq n$, are different from zero and hence it is necessary to have

$$d_{m,\mu+n} = 0, \quad 0 \leq m \leq n - 1, \quad \mu = 0, 1, 2, \ldots.$$

This can be written in a better way if $\mu + n$ is replaced by a single index μ:

$$d_{m,\mu} = 0, \quad 0 \leq m \leq n - 1, \quad \mu \geq n.$$

(9)

Now a recurrent formula for arbitrary $m \geq n$ will be found.

Comparing the first line in (7) with (8), we get by the uniqueness theorem that

$$c_{n,m} \ldots c_{1,m-n+1}d_{m-n,\mu} = d_{m,\mu+n}c_{n,\mu+n} \ldots c_{1,\mu+1}, \quad m \geq n, \mu \geq 0.$$

Replacing μ by $\mu - n$ we have

$$c_{n,m} \ldots c_{1,m-n+1}d_{m-n,\mu-n} = c_{n,\mu} \ldots c_{1,\mu-n+1}d_{m,\mu}, \quad m \geq n, \mu \geq n.$$

(10)

But all constants $c_{j,\mu-n+j}$, $1 \leq j \leq n$, are different from zero and we obtain the desired recurrent formula

$$d_{m,\mu} = \frac{c_{n,m} \ldots c_{1,m-n+1}}{c_{n,\mu} \ldots c_{1,\mu-n+1}} d_{m-n,\mu-n} = \left(\prod_{j=1}^{n} \frac{c_{j,m-n+j}}{c_{j,\mu-n+j}}\right) d_{m-n,\mu-n}, \quad m \geq n, \mu \geq n.$$

(11)
Now this important recurrent formula (11) will be used for expressing any coefficient $d_{m, \mu}$ with $m \geq n$ and $\mu \geq n$ by a coefficient $d_{p, q}$, where either $0 \leq p \leq n - 1$ or $0 \leq q \leq n - 1$.

Let us remind that in the sequel $[A]$ will denote the integer part of a number A.

In the case $\left\lfloor \frac{m}{n} \right\rfloor < \left\lfloor \frac{\mu}{n} \right\rfloor$ one can apply $\left\lfloor \frac{m}{n} \right\rfloor$ times the recurrent formula (11) and then

$$d_{m, \mu} = \left(\prod_{j=1}^{n} c_{j, m-n+j} \right) d_{m-n, \mu-n} = \left(\prod_{j=1}^{n} c_{j, m-n+j} \right) \left(\prod_{j=1}^{n} c_{j, \mu-2n+j} \right) d_{m-2n, \mu-2n}$$

$$= \ldots = \left(\prod_{\nu=1}^{\lceil \frac{\mu}{n} \rceil} \prod_{j=1}^{\lfloor \frac{m}{n} \rfloor} c_{j, m-\nu n+j} \right) d_{m-[\frac{\mu}{n}]n, \mu-[\frac{\mu}{n}]n}. \quad (12)$$

Here $m - \left\lfloor \frac{m}{n} \right\rfloor n \leq n - 1$, i.e. the first index is the remainder when m is divided by n, and $\mu - \left\lfloor \frac{\mu}{n} \right\rfloor n \geq n$. Then by our first observation (9) the coefficient $d_{m-[\frac{\mu}{n}]n, \mu-[\frac{\mu}{n}]n}$ must be zero. Therefore (12) gives

$$d_{m, \mu} = 0, \quad \text{for } \left\lfloor \frac{m}{n} \right\rfloor < \left\lfloor \frac{\mu}{n} \right\rfloor. \quad (13)$$

In the other case, when $\left\lfloor \frac{m}{n} \right\rfloor \geq \left\lfloor \frac{\mu}{n} \right\rfloor$, one can apply $\left\lfloor \frac{\mu}{n} \right\rfloor$ times the recurrent formula (11) to get

$$d_{m, \mu} = \left(\prod_{j=1}^{n} c_{j, m+n-j} \right) d_{m-n, \mu-n} = \left(\prod_{j=1}^{n} c_{j, m+n-j} \right) \left(\prod_{j=1}^{n} c_{j, \mu-2n+j} \right) d_{m-2n, \mu-2n}$$

$$= \ldots = \left(\prod_{\nu=1}^{\lfloor \frac{\mu}{n} \rfloor} \prod_{\nu=1}^{\lfloor \frac{\mu}{n} \rfloor} c_{j, m-\nu n+j} \right) d_{m-[\frac{\mu}{n}]n, \mu-[\frac{\mu}{n}]n}. \quad (14)$$

Now the second index $\mu - \left\lfloor \frac{\mu}{n} \right\rfloor n$ is the remainder when μ is divided by n.

Let us combine (13) and (14) as

$$d_{m, \mu} = \begin{cases} 0 & \text{for } \left\lfloor \frac{m}{n} \right\rfloor < \left\lfloor \frac{\mu}{n} \right\rfloor, \\ \left(\prod_{\nu=1}^{\lfloor \frac{\mu}{n} \rfloor} \prod_{\nu=1}^{\lfloor \frac{\mu}{n} \rfloor} c_{j, m-\nu n+j} \right) d_{m-[\frac{\mu}{n}]n, \mu-[\frac{\mu}{n}]n} & \text{for } \left\lfloor \frac{m}{n} \right\rfloor \geq \left\lfloor \frac{\mu}{n} \right\rfloor. \end{cases} \quad (15)$$

This important formula shows that all coefficients $d_{m, \mu}$ with $0 \leq \mu \leq n - 1$ can be chosen arbitrarily, and then all other coefficients $d_{m, \mu}$ with $\mu \geq n$ are either equal to zero or can be expressed by some of the arbitrarily chosen $d_{\nu, \mu}$ with $0 \leq \nu \leq n - 1$.

The recurrent relation (15) allows a representation of Mz^m as a polynomial of degree at most $\left(\left\lfloor \frac{m}{n} \right\rfloor + 1 \right) n - 1$:

$$Mz^m = \sum_{\mu=0}^{n-1} d_{m, \mu} z^\mu + \sum_{\mu=n}^{\lfloor \frac{\mu}{n} \rfloor n-1} \left(\prod_{\nu=1}^{\lfloor \frac{\mu}{n} \rfloor} \prod_{\nu=1}^{\lfloor \frac{\mu}{n} \rfloor} c_{j, m-\nu n+j} \right) d_{m-[\frac{\mu}{n}]n, \mu-[\frac{\mu}{n}]n} \cdot z^\mu. \quad (16)$$

Finally, the action of an operator $M \in \text{Comm}(\hat{D})$ on some analytic function $f(z) = \sum_{m=0}^{\infty} a_m z^m$ is
\(Mf(z) = M \sum_{m=0}^{\infty} a_m z^m = \sum_{m=0}^{\infty} a_m M z^m \)

\[
\sum_{m=0}^{\infty} a_m \left(\sum_{\mu=0}^{n-1} d_{m,\mu} z^\mu \right) + \sum_{\mu=n}^{\infty} \left(\prod_{\nu=1}^{n} c_{j,\mu-\nu+n+j} \right) d_{m-[\frac{n}{\mu}]-[\frac{n}{\mu}] n} . z^\mu.
\]

It is natural to interchange the two sums in order to have a standard power series representation of (17):

\[
Mf(z) = \sum_{\mu=0}^{n-1} \sum_{m=0}^{\infty} a_m d_{m,\mu} z^\mu + \sum_{\mu=n}^{\infty} \sum_{m=0}^{\infty} a_m \left(\prod_{\nu=1}^{n} c_{j,\mu-\nu+n+j} \right) d_{m-[\frac{n}{\mu}]-[\frac{n}{\mu}] n} . z^\mu.
\]

This is in fact the desired representation (2) and thus, we proved the necessity, i.e. if \(M \in \text{Com}(\tilde{D}) \), then the operator \(M \) must be of the form (2).

Now, let us check the sufficiency, i.e. if an operator \(M \) has the form (2), then it commutes with the composition \(\tilde{D} = D_1 D_2 \ldots D_n \) of the Dunkl operators \(D_j = D_{k_j}, j = 1, 2, \ldots, n \), i.e. \(M \tilde{D} = \tilde{D} M \). It is enough to verify this for all powers \(z^m, m = 0, 1, 2, \ldots \), since they form a basis of the space of the analytic functions \(A_R \). In fact, for arbitrarily fixed \(m \) we can use the representation (16) instead of the general expression (2).

In the case \(0 \leq m \leq n - 1 \) the representation (16) reduces to the first sum and \(M z^m = \sum_{m=0}^{n-1} d_{m,\mu} z^\mu \). Now we calculate \(\tilde{D} M z^m \) and \(M \tilde{D} z^m \):

\[
\tilde{D}(M z^m) = \tilde{D} \sum_{m=0}^{n-1} d_{m,\mu} z^\mu = \sum_{m=0}^{n-1} d_{m,\mu} \tilde{D} z^\mu = \sum_{m=0}^{n-1} d_{m,\mu} 0 = 0;
\]

\[
M(\tilde{D} z^m) = M 0 = 0,
\]

i.e. \(\tilde{D} M z^m = M \tilde{D} z^m = 0 \). Here we used the second case in (5).

In the case \(m \geq n \) use the first line in (5) and next use (16) with \(z^{m-n} \) to represent \(M \tilde{D} z^m \):

\[
M \tilde{D} z^m = M \left(\prod_{j=1}^{n} c_{j,m-n+j} \right) z^{m-n} = \left(\prod_{j=1}^{n} c_{j,m-n+j} \right) M z^{m-n}
\]

\[
= \left(\prod_{j=1}^{n} c_{j,m-n+j} \right) \left(\sum_{\mu=0}^{n-1} d_{m,\mu} z^\mu + \sum_{\mu=n}^{\infty} \left(\prod_{\nu=1}^{n} c_{j,\mu-\nu+n+j} \right) d_{m-[\frac{n}{\mu}]-[\frac{n}{\mu}] n} . z^\mu \right).
\]

To represent the inverse commutation \(\tilde{D} M z^m \), apply \(\tilde{D} \) to (16):

\[
\tilde{D} M z^m = \sum_{\mu=0}^{n-1} d_{m,\mu} \tilde{D} z^\mu + \sum_{\mu=n}^{\infty} \left(\prod_{\nu=1}^{n} c_{j,\mu-\nu+n+j} \right) d_{m-[\frac{n}{\mu}]-[\frac{n}{\mu}] n} \cdot \tilde{D} z^\mu.
\]
The first sum will vanish because the second case in (5) gives $\tilde{D} z^{\mu} = 0$ for $0 \leq \mu \leq n - 1$. Now use (5) for $\mu \geq n$:

$$
\tilde{D} M z^m = \sum_{\mu = n}^{[\frac{n}{2}]} \frac{\prod_{j=1}^{[\frac{n}{2}]} \prod_{j=1}^{[\frac{n}{2}]} c_{j,m-\nu+n+j}}{\prod_{j=1}^{[\frac{n}{2}]} \prod_{j=1}^{[\frac{n}{2}]} c_{j,m-\nu+n+j}} d_{m-[\frac{n}{2}]n,\mu-[\frac{n}{2}]n} \left(\prod_{j=1}^{[\frac{n}{2}]} c_{j,m-\nu+n+j} \right) z^{\mu-n}. \tag{21}
$$

It is suitable to separate the sum as $\sum_{\mu = n}^{2n-1} \left(\prod_{j=1}^{[\frac{n}{2}]} c_{j,m-\nu+n+j} \right) \left(\prod_{j=1}^{[\frac{n}{2}]} \prod_{j=2}^{[\frac{n}{2}]} c_{j,m-\nu+n+j} \right) d_{m-[\frac{n}{2}]n,\mu-[\frac{n}{2}]n} z^{\mu-n}$. In the first sum the whole denominator will be canceled with the product in brackets since $[\frac{n}{2}] = 1$, but in the second sum, after canceling $\prod_{j=1}^{n} c_{j,m-\nu+n+j}$, the denominator will have n factors less than the numerator (without $\nu = 1$):

$$
\tilde{D} M z^m = \sum_{\mu = n}^{2n-1} \left(\prod_{j=1}^{[\frac{n}{2}]} c_{j,m-\nu+n+j} \right) d_{m-n,\mu-n} z^{\mu-n} \tag{22}
$$

$$
+ \sum_{\mu = 2n}^{(\frac{n}{2})+n-1} \left(\prod_{j=1}^{[\frac{n}{2}]} c_{j,m-\nu+n+j} \right) \left(\prod_{j=1}^{[\frac{n}{2}]} \prod_{j=2}^{[\frac{n}{2}]} c_{j,m-\nu+n+j} \right) d_{m-[\frac{n}{2}]n,\mu-[\frac{n}{2}]n} z^{\mu-n}. \tag{23}
$$

It remains to replace μ by $\mu + n$ and ν by $\nu + 1$:

$$
\tilde{D} M z^m = \sum_{\mu = 0}^{n-1} \left(\prod_{j=1}^{n} c_{j,m-n+j} \right) d_{m-n,\mu-n} z^{\mu} \tag{24}
$$

$$
+ \sum_{\mu = n}^{(\frac{n}{2})+n-1} \left(\prod_{j=1}^{[\frac{n}{2}]} c_{j,m-n+j} \right) \left(\prod_{j=1}^{n} \prod_{j=1}^{n} c_{j,m-(\nu+1)n+j} \right) d_{m-[\frac{n}{2}]n,\mu-[\frac{n}{2}]n} z^{\mu}. \tag{25}
$$

After the obvious simplifications this representation of $\tilde{D} M z^m$ coincides with the representation (19) of $M \tilde{D} z^m$ which proves the sufficiency of (2) and thus the theorem.

3. Particular cases

Example 1. Let us note that as a simplest particular case of the Dunkl operator, when all parameters k_j, $j = 1, 2, \ldots, n$, of the Dunkl operators $D_j = D_{k_j}$ are taken to be 0, one can have the n-th power D^n of the classical differentiation operator $D f(z) = D f(z) = \frac{df(z)}{dz}$. Then $c_{j,m} = m, j = 1, 2, \ldots, n$, and Theorem 3 describes the commutant of D^n as:

$$
M f(z) = \sum_{\mu = 0}^{n-1} \sum_{m = 0}^{\infty} a_m d_{m,n} z^{\mu} + \sum_{\mu = n}^{\infty} \sum_{m = [\frac{m}{2}]}^{\infty} a_m \frac{m - [\frac{m}{2}] n + 1}{\mu - [\frac{m}{2}] n + 1} d_{m-[\frac{m}{2}]n,\mu-[\frac{m}{2}]n} z^{\mu}. \tag{24}
$$

Similar results for D, its powers, and generalizations of D are given by some Russian mathematicians. In particular, in [4] (5.1) one can find such theorem and also additional bibliography.

Example 2. If we take not a composition, but a single Dunkl operator with parameter $k > 0$, i.e. $n = 1$, then the representation of Comm(D_k) given by M.S. Hristova from [5] is obtained:

$$
M f(z) = \sum_{m = 0}^{\infty} a_m d_{m,n} z^{\mu} + \sum_{\mu = 1}^{\infty} \sum_{m = \mu}^{\infty} a_m \frac{c_m \cdots c_{m-\mu+1}}{c_{\mu} \cdots c_1} d_{m-\mu} z^{\mu}. \tag{25}
$$
Example 3. If \(n \geq 1 \) is arbitrary, but all parameters of the Dunkl operators \(D_j = D_{k_j} \) in the composition \(\tilde{D} = D_1 D_2 \ldots D_n \) are equal, i.e. \(k_1 = k_2 = \ldots = k_n = k > 0 \), then our result reduces to the representation due to M.S. Hristova in [6]:

\[
Mf(z) = \sum_{\mu=0}^{n-1} \sum_{m=0}^{\infty} a_m d_{m,\mu} z^\mu + \sum_{\mu=n}^{\infty} \sum_{m=0}^{\infty} a_m \frac{c_m \ldots c_{m-[\frac{\mu}{n}]+1} d_{m-[\frac{\mu}{n}]+1} d_{m-[\frac{\mu}{n}]-[\frac{\mu}{n}]-[\frac{\mu}{n}]}}{c_{\mu} \ldots c_{\mu-[\frac{\mu}{n}]+1}} \cdot z^\mu.
\] (26)

Final notes. A different description of the commutant \(\text{Comm}(D_k) \) of the first power of the Dunkl operator in the space of the continuous functions on the real line \(\mathbb{R} \) is given in [2], based on the convolutional approach (see Dimovski [1]). It depends on an arbitrary continuous linear functional \(\Phi : C(\mathbb{R}) \to \mathbb{C} \). Note, that Theorem 3 also allows in the case of composition of \(n \) Dunkl operators to choose arbitrarily \(n \) systems of constants \(d_{m,\mu} \), \(0 \leq \mu \leq n-1 \), \(m = 0, 1, 2, \ldots \).

Acknowledgements. This paper is accomplished in the frames of the Project MM “Integral Transform Methods, Special Functions and Applications”, National Science Fund - Ministry of Education, Youth and Science, Bulgaria.

References

