Garden

	Tags
	On the full solution
	On the subtasks

	
	
Dynamic programming in a tree

	
Dijkstra




Analysis
	Interestingly, there is also probably a solution with  complexity with Small-to-large ideas, but it would be very unpleasant to write it ☺. Also, another interesting thing is that there is a solution for a chain, using Dijkstra, but I don’t feel the need to describe it here. It makes sense to think that  for , because otherwise, we can irrigate more gardens for less cost. We can precalculate for each vertex the minimum amount of electricity needed to cover all vertices at  distance from each vertex for each . When I use the term “power ”, I refer to a pump, working for  minutes. When I use “cover”, I mean a vertex being irrigated. suggest reading the whole analysis because I will skip explaining some details if explained in earlier subtasks.
	Solution for a chain
	The task screams for dynamic programming, at least I tried to make the tests good enough to prevent other solutions from gaining good points (I hope  line test generator is long enough). Interestingly, the solution for a chain and a tree will begin from the same core idea, which will be optimized.
	Solution for 
	I haven’t predicted a solution for the following , but I’m ready to be surprised ☺.
	Solution for 
	For convenience, let's renumber the vertices according to their position in the chain, with the leftmost being  and the rightmost being . We will choose the water, released from the pumps, as we choose the water for vertex , then for vertex , …, and last for vertex . Let’s consider the DP with state dp[vertex][balance]. All upcoming DPs will have the same state, although they will have different recurrent dependencies/optimizations. If , then water is incoming from the previous vertex, which will cover all vertex right from the current vertex, being at distance at most  from the current vertex, including the current vertex itself. If , then the previous vertex borrowed water from the current vertex, so all vertices left from the current vertex, being at distance at most   from the current vertex, stay unirrigated. If , then all vertices up the previous vertex will be irrigated, but the current vertex won’t be irrigated. Then the answer to the task will be dp[1][0]. We can choose the water, released from the pump of the current vertex and look at how the balance changes. I will leave this as your exercise ☺.
	Achieved complexity: 
	Implementation: garden_23p.cpp
	Solution for 
	Several optimizations can be made here. One of them is the use of a segment tree or Dijkstra with a different state of the DP, which as I said, I will not explain in the analysis. Let's optimize the current state. One option is to do fun interval minimums, which frankly I haven't looked at so I can save myself the headaches. Instead, one could apply the standard trick of making the balance parameter an inequality. One can easily prove that . Because of this, let  be the minimum cost if water of strength x enters the current vertex for                     . For this purpose, we can consider 3 options:
· To cover the necessary vertices with the next vertex: .
· For , to cover the balance with the minimum cost for electricity:            , if .
· To cover the balance with more than the minimum possible cost: . In this way we will consider all cases with the power of the water being , , , …, . It’s never optimal to use power . To prove this, look at the picture below:[image: ]
· Red – covered vertices to the moment.
· Blue – covered from vertex .  
· Yellow – covered from a vertex from the right, in this case, .
In this case, the current vertex is  and . The picture illustrates the case when we cover the vertices with power being equal to . As we don’t cover all the vertices left from , some vertex from the right must cover it (in this case, ). In this way the water from 4 is meaningless.
In this way, we get  points. If any contestant solves the current subtask with this idea, he will hardly remain with  points, he will probably reach a full solution.
	Achieved complexity: 
	Implementation: garden_36p.cpp
	


Solution for a tree
	Let’s jump right into the next subtasks, without a parachute. I hope you land smoothly ☺.
	Solution for 
	We will use the DP with state dp[vertex][balance]. The state in a tree will mean that the parent of the current vertex has lent or borrowed water from it. Let’s look at how the recurrent dependency changes. We consider the same cases – whether the pump in the current vertex works or not. I will leave the easier cases for your exercise ☺. The case when  stands out. Then there are two cases – to cover the vertices the parent has borrowed from the current vertex, or hand over the water to some vertex in the subtree of the current vertex. The case when we hand over the borrowed water to the subtree is more interesting. It’s always optimal to hand over the water to only one child of the current vertex. To consider the case where we cover the water from  vertices, look at the illustration below:[image: ]
· Blue – the current vertex (in this case ).
· Red – The covered from the vertex, from which less water comes out (in this case ).
· Yellow – The covered from the vertex, from which more water comes out (in this case ).
As you may notice from the picture, the current vertex is  and . The child from which more water comes out will cover all the vertices outside of the subtree of  which will be covered by the child, from which less water comes out. Because of this, we won’t need to hand over the borrowed water to more than one vertex. Nothing prevents water coming out of the subtree of more than one child – sometimes it will be necessary to cover the subtree of the child itself. Because of this, we will choose the power of the water for the current vertex/its children. The details will be for your exercise ☺.   
The solution, probably for a very logical reason that I didn't take the time to think about, doesn't pass the tests for  complexity, but it passes the tests provided for  complexity.
Achieved complexity: ?
Implementation: garden_40p.cpp
	Solution for 
	Many optimizations can be made to solve this subtask, but I don’t feel the need to describe them here. If you are curious, you may check the difference between the previous and the current implementations and see the optimization.
Achieved complexity: 
Implementation: garden_65p.cpp
	Solution for 
	To optimize the DP even further, we will use the same optimization we used for a chain. The cases we need to consider are identical to the solution for .
Achieved complexity: 
Implementation: garden_100p.cpp
P.P: For implementation reasons, in most of my solutions, I’ve split the DP into two functions: plus and minus, respectively for the cases when  and . The parameter in the minus function is equal to .
	P.P : The task is old, relatively a year and a half old, having undergone numerous transformations in the statement, affecting the meaning and plot. If you are curious about what they are, you can text me and I can show you ☺.
  Author: Boris Mihov




image1.png

image2.png

