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Analysis 

 Interestingly, there is also probably a solution with 𝑂(𝑁 𝑙𝑜𝑔2 𝑁) complexity with Small-to-large 

ideas, but it would be very unpleasant to write it ☺. Also, another interesting thing is that there is a 

solution for a chain, using Dijkstra, but I don’t feel the need to describe it here. It makes sense to think 

that 𝑐𝑖 ≤ 𝑐𝑗 for (𝑖 < 𝑗), because otherwise, we can irrigate more gardens for less cost. We can 

precalculate for each vertex the minimum amount of electricity needed to cover all vertices at 𝑥 distance 

from each vertex for each (0 ≤ 𝑥 < 𝑁). When I use the term “power 𝑥”, I refer to a pump, working for 𝑥 

minutes. When I use “cover”, I mean a vertex being irrigated. suggest reading the whole analysis because 

I will skip explaining some details if explained in earlier subtasks. 

 Solution for a chain 

 The task screams for dynamic programming, at least I tried to make the tests good enough to 

prevent other solutions from gaining good points (I hope ≈ 600 line test generator is long enough). 

Interestingly, the solution for a chain and a tree will begin from the same core idea, which will be 

optimized. 

 Solution for 𝑁 ≤ 75 

 I haven’t predicted a solution for the following 𝑁, but I’m ready to be surprised ☺. 

 Solution for 𝑁 ≤ 500 

 For convenience, let's renumber the vertices according to their position in the chain, with the 

leftmost being 1 and the rightmost being 𝑁. We will choose the water, released from the pumps, as we 

choose the water for vertex 1, then for vertex 2, …, and last for vertex 𝑁. Let’s consider the DP with state 

dp[vertex][balance]. All upcoming DPs will have the same state, although they will have different 

recurrent dependencies/optimizations. If 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 > 0, then water is incoming from the previous vertex, 

which will cover all vertex right from the current vertex, being at distance at most 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 − 1 from the 

current vertex, including the current vertex itself. If 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ≤ 0, then the previous vertex borrowed 

water from the current vertex, so all vertices left from the current vertex, being at distance at most  

−𝑏𝑎𝑙𝑎𝑛𝑐𝑒 from the current vertex, stay unirrigated. If 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 0, then all vertices up the previous 

vertex will be irrigated, but the current vertex won’t be irrigated. Then the answer to the task will be 

dp[1][0]. We can choose the water, released from the pump of the current vertex and look at how the 

balance changes. I will leave this as your exercise ☺. 

 Achieved complexity: 𝑂(𝑁3) 
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 Implementation: garden_23p.cpp 

 Solution for 𝑁 ≤ 2 000 

 Several optimizations can be made here. One of them is the use of a segment tree or Dijkstra with 

a different state of the DP, which as I said, I will not explain in the analysis. Let's optimize the current state. 

One option is to do fun interval minimums, which frankly I haven't looked at so I can save myself the 

headaches. Instead, one could apply the standard trick of making the balance parameter an inequality. 

One can easily prove that 𝑑𝑝[𝑣𝑒𝑟𝑡𝑒𝑥][𝑏𝑎𝑙𝑎𝑛𝑐𝑒] ≥ 𝑑𝑝[𝑣𝑒𝑟𝑡𝑒𝑥][𝑏𝑎𝑙𝑎𝑛𝑐𝑒 − 1]. Because of this, let 

𝑑𝑝[𝑣𝑒𝑟𝑡𝑒𝑥][𝑏𝑎𝑙𝑎𝑛𝑐𝑒] be the minimum cost if water of strength x enters the current vertex for                     

𝑥 ≤ 𝑏𝑎𝑙𝑎𝑛𝑐𝑒. For this purpose, we can consider 3 options: 

● To cover the necessary vertices with the next vertex: 𝑑𝑝[𝑣𝑒𝑟𝑡𝑒𝑥 + 1][𝑏𝑎𝑙𝑎𝑛𝑐𝑒 − 1]. 

● For 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 <  0, to cover the balance with the minimum cost for electricity:            

𝑑𝑝[𝑣𝑒𝑟𝑡𝑒𝑥 + 1][−𝑏𝑎𝑙𝑎𝑛𝑐𝑒]  +  𝑐[𝑏𝑎𝑙𝑎𝑛𝑐𝑒 + 1], if 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 + 1 ≤ 𝑡[𝑣𝑒𝑟𝑡𝑒𝑥]. 

● To cover the balance with more than the minimum possible cost: 𝑑𝑝[𝑣𝑒𝑟𝑡𝑒𝑥][𝑏𝑎𝑙𝑎𝑛𝑐𝑒 − 1]. 

In this way we will consider all cases with the power of the water being −𝑏𝑎𝑙𝑎𝑛𝑐𝑒 + 2, 

−𝑏𝑎𝑙𝑎𝑛𝑐𝑒 + 3, −𝑏𝑎𝑙𝑎𝑛𝑐𝑒 + 4, …, 𝑡[𝑣𝑒𝑟𝑡𝑒𝑥]. It’s never optimal to use power ≤ −𝑏𝑎𝑙𝑎𝑛𝑐𝑒. 

To prove this, look at the picture below: 

● Red – covered vertices to the moment. 

● Blue – covered from vertex 4.   

● Yellow – covered from a vertex from the right, in this case, 6. 

In this case, the current vertex is 4 and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = −2. The picture illustrates the case when we 

cover the vertices with power being equal to 2. As we don’t cover all the vertices left from 4, some vertex 

from the right must cover it (in this case, 6). In this way the water from 4 is meaningless. 

In this way, we get 36 points. If any contestant solves the current subtask with this idea, he will 

hardly remain with 36 points, he will probably reach a full solution. 

 Achieved complexity: 𝑂(𝑁2) 

 Implementation: garden_36p.cpp 
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Solution for a tree 

 Let’s jump right into the next subtasks, without a parachute. I hope you land smoothly ☺. 

 Solution for 𝑁 ≤ 75 

 We will use the DP with state dp[vertex][balance]. The state in a tree will mean that the 

parent of the current vertex has lent or borrowed water from it. Let’s look at how the recurrent 

dependency changes. We consider the same cases – whether the pump in the current vertex works or 

not. I will leave the easier cases for your exercise ☺. The case when 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 < 0 stands out. Then there 

are two cases – to cover the vertices the parent has borrowed from the current vertex, or hand over the 

water to some vertex in the subtree of the current vertex. The case when we hand over the borrowed 

water to the subtree is more interesting. It’s always optimal to hand over the water to only one child of 

the current vertex. To consider the case where we cover the water from ≥ 2 vertices, look at the 

illustration below: 

● Blue – the current vertex (in this case 2). 

● Red – The covered from the vertex, from which less water comes out (in this case 8). 

● Yellow – The covered from the vertex, from which more water comes out (in this case 4). 

As you may notice from the picture, the current vertex is 2 and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = −1. The child from 

which more water comes out will cover all the vertices outside of the subtree of 2 which will be covered 

by the child, from which less water comes out. Because of this, we won’t need to hand over the borrowed 

water to more than one vertex. Nothing prevents water coming out of the subtree of more than one child 

– sometimes it will be necessary to cover the subtree of the child itself. Because of this, we will choose 

the power of the water for the current vertex/its children. The details will be for your exercise ☺.    

The solution, probably for a very logical reason that I didn't take the time to think about, doesn't 

pass the tests for 𝑂(𝑁3) complexity, but it passes the tests provided for 𝑂(𝑁4) complexity. 
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Achieved complexity: 𝑂(𝑁4)? 

Implementation: garden_40p.cpp 

 Solution for 𝑁 ≤ 500 

 Many optimizations can be made to solve this subtask, but I don’t feel the need to describe 

them here. If you are curious, you may check the difference between the previous and the current 

implementations and see the optimization. 

Achieved complexity: 𝑂(𝑁3) 

Implementation: garden_65p.cpp 

 Solution for 𝑁 ≤ 2 000 

 To optimize the DP even further, we will use the same optimization we used for a chain. The 

cases we need to consider are identical to the solution for 𝑁 ≤ 75. 

Achieved complexity: 𝑂(𝑁2) 

Implementation: garden_100p.cpp 

P.P: For implementation reasons, in most of my solutions, I’ve split the DP into two functions: 

plus and minus, respectively for the cases when 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 > 0 and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ≤ 0. The parameter in the 

minus function is equal to −𝑏𝑎𝑙𝑎𝑛𝑐𝑒. 

 P.P №2: The task is old, relatively a year and a half old, having undergone numerous 

transformations in the statement, affecting the meaning and plot. If you are curious about what they are, 

you can text me and I can show you ☺. 

  Author: Boris Mihov 

 

 


