XV National Olympiad in informatics

Municipal Round
25.01.2009

Group A (grades 11.-12.)

	4
	6
	8

	1
	9
	7

	3
	5
	2

Problem A2. SANSU
All digits from 1 to 9 are written in some order on a square tile 3x3. We call it „sansu”, if all three-digit numbers in the rows, in the columns, and in the diagonals of the tile, are divisible by three. The tile shown here is not a sansu: the numbers 468 and 492 are divisible by 3, but none of the rest ones (197, 352, 413, 695, 872, 893) is.

We consider as adjacent every two digits, written in cells having common side (on the tile above 4 and 6, 9 and 5, etc., but not 4 and 9, much less 1 and 2!).

The only move allowed is swapping places between two adjacent digits. Find out as fewer moves as possible, which turn the given tile into sansu. Write a program sansu, which calculates the count of these moves, and shows the obtained result.
Input:

There are three lines on the standard input, containing the digits from 1 to 9 (in random order), three in each line and separated by space: the lines of the given tile.
Output:
Write in the first line of the standard output one integer – the least amount of moves found to convert the given tile into sansu. The next three lines should represent the lines of the sansu obtained, from top to bottom – three digits per line, separated by space.
EXAMPLE
	Input
	Output

	1 7 5
4 2 6

8 3 9
	5

1 5 3
4 2 6

7 8 9

Example explanation:

The result may be achieved using the following five moves:
	1
	7
	5
	
	1
	7
	5
	
	1
	3
	5
	
	1
	3
	5
	
	1
	5
	3
	
	1
	5
	3

	4
	2
	6
	(
	4
	3
	6
	(
	4
	7
	6
	(
	4
	2
	6
	(
	4
	2
	6
	(
	4
	2
	6

	8
	3
	9
	
	8
	2
	9
	
	8
	2
	9
	
	8
	7
	9
	
	8
	7
	9
	
	7
	8
	9

Using other five moves, one can achieve another sansu, for example:

6 5 7

1 3 2

8 4 9

But no sansu can be produced with less than 5 moves.
Evaluation:

A correct solution for a test gets from 0 to 10 points, according to its proximity to the optimal solution.
Solution:

The problem can be solved using a standard backtrack algorithm. Its recursive realization becomes as much more effective as lower the starting upper limit of moves. A very rough but sufficient upper limit can be 22. We come to it by noticing that the “standard” ordering of the numbers (by rows from 1 to 9 and from left to right), for example, is a sansu. If we aim exactly this situation and place the digits one after another, we need at most 4 moves to deal with the 1 (if it is on the low rightmost corner), for the 2 – at most 3 moves, for the 3 – 4 moves mostly, for the 4 – up to 3, for the 5 – up to 2, for the 6 – up to 3, for the 7 – up to 2, for the 8 – one move mostly, and 9 will be at its place in this moment. Even this rough estimation together with the simple idea not to repeat the same move twice one after another, because this is leading to the previous situation, are enough to write a full solution. One can easily figure out lots of different ad hoc iterative solutions which often give good, even optimal solutions.

Realization:

#include <iostream>

using namespace std;

int a[3][3],sol[3][3];

int minCnt=22;

void inp(void)

{for (int r=0;r<3;r++)

 for (int c=0;c<3;c++) cin>>a[r][c];

}

void show(int sol[3][3])

{for (int r=0,c;r<3;r++)

 {for (c=0;c<2;c++) cout<<sol[r][c]<<' ';

 cout<<sol[r][2]<<endl;

 }

}

bool check(void)

{int r,c,s;

 for (r=0;r<2;r++)

 {s=0;

 for (c=0;c<3;c++) s+=a[r][c];

 if (s%3) return false;

 }

 for (c=0;c<2;c++)

 {s=0;

 for (r=0;r<3;r++) s+=a[r][c];

 if (s%3) return false;

 }

 return true;

}

void go(int cnt,int prow,int pcol)

{if (cnt>=minCnt) return;

 if (check())

 {minCnt=cnt;

 memcpy(sol,a,sizeof(sol));

 return;

 }

 for (int r=0;r<3;r++)

 for (int c=0;c<2;c++) if ((r!=prow || c!=pcol) && (a[r][c]-a[r][c+1])%3)

 {swap(a[r][c],a[r][c+1]);

 go(cnt+1,r,c);

 swap(a[r][c],a[r][c+1]);

 }

 for (int c=0;c<3;c++)

 for (int r=0;r<2;r++) if ((r!=prow || c!=pcol) && (a[r][c]-a[r+1][c])%3)

 {swap(a[r][c],a[r+1][c]);

 go(cnt+1,r,c);

 swap(a[r][c],a[r+1][c]);

 }

}

int main(void)

{

 inp();

 go(0,-1,-1);

 cout<<minCnt<<endl;

 show(sol);

 return 0;

}

Optional extra:

Deeper considerations can speed up the process, even if not necessary in this particular case. We shall mention here some of them for the curious:

· If divisibility is assured for two lines of the tile, this guarantees the divisibility of the third, same for the columns;
· There is no point in swapping digits with the same remainder modulo 3;

· If divisibility of rows and columns is a fact, this holds for the diagonals, too (the above considerations are used in the realization);

· Using the divisibility rule for 3 we conclude that the permutation of the digits in a row, column, or diagonal does not affect the divisibility in this direction. Moreover, digits themselves are of interest as remainders modulo 3;

· A tile is analogical to the one, obtained adding one to each digit in it (and writing 1 except for 10). This fact makes it possible to assume remainder 0 modulo 3 in the upper left corner, for example, when examining all principally different tiles;

· Thus, there are only 5 mainly different sansu (without those achieved from them by rotations 90°):

	0
	0
	0
	
	0
	1
	2
	
	0
	2
	1
	
	0
	0
	0
	
	0
	1
	2

	1
	1
	1
	
	1
	2
	0
	
	2
	1
	0
	
	2
	2
	2
	
	2
	0
	1

	2
	2
	2
	
	2
	0
	1
	
	1
	0
	2
	
	1
	1
	1
	
	1
	2
	0

· Essentially different tiles (including the rotation 90° ones with 0 in the upper left corner) count 560, 8 of them being sansu (0 moves), 72 – one move away from sansu, 172 – two moves away, 208 – three moves, 96 – four moves, and 4 – 5 moves away. So the upper limit in the exhaustion can be drastically lowered down to 5, as well as a precalculation algorithm can be realized.

