XV НационалнА ОЛИМПИАДА по информатика
Общински кръг

25.01.2009 г.

Група A (11.-12. клас)

Problem A2. Roads

There are N cities in a country X. Some of them are linked by a road, some of them are not. The whole road network is made in such way, that there is a route between every pair of cities (of course it doesn’t need to be a straight road). Some time ago the country X was accepted as a member in the European Union. Because the road network was not meeting the new requirements it has to be revised. The government decided that in order to meet the new requirements in the best possible way, the whole road network will be destroyed and a brand new will be build. The new road network was designed to include a road between every pair of cities that was not linked with a straight road in the old network. Some of the prime minister’s advisors mentioned that after such a fundamental reconstruction there may be some pairs of cities that would be unreachable from each other (there would not be any route from one to another). That was quite a problem and the government decided to assign this task to a group of skilled experts. The task is simple: what is the minimum count of old straight roads, which must be kept back in the new network in order to keep the option to travel between every pair of cities?

As a part of the group, you must write program roads that solves this task.
 Input

On the first row of the standard input there are two integers N and M, separated by space.

N – Count of the cities

М – Count of the straight roads in the old network

On the next M rows there are pairs of integers a and b. They assign a pair of cities that are connected by a straight road (cities are numbered form 1 to N).
Output
To the standard output you must write only one integer – the minimum count of old roads that must be kept back in the new road network.

Restrictions:

N <= 1000
М <= 500000

1 <= a,b <= N
EXAMPLE
	Input
	Output

	4 4
	1

	1 2
	

	2 3
	

	3 4
	

	4 1
	

Example’s explanation:
The old road network from the example looks like this:

When we remove the old roads and build new

between every pair of cities that were not connected before we get this:

In order to be able to reach every city starting from any

city we must keep at least one of the old roads. For example:
Solution:

Let undirected graph G=(V,E) represents the old road network. V is a set of vertices (cities) and E is a set of edges (old straight roads). Let GC=(V,EC) is a graph with the same set of vertices and a set of edges EC, where EC = {(u,v)
[image: image1.wmf]Î

VxV | (u,v)
[image: image2.wmf]Ï

E}; GC is called complementary graph.

Problem solution includes two steps:

1. Building a complementary graph GC.

2. Computing a count (CC) of connected components in GC. Minimum count of old straight roads, which must be kept back in the new network is equal to CC-1.

Graph G is represented as an adjacency matrix (matrix graph in the program) and complementary graph GC is represented as an array of adjacency lists (matrix comgraph in the program).

Rrealization:

#include <iostream>

using namespace std;

bool graph[1001][1001]; // Adjacency matrix for graph G
int comgraph[1001][1001]; // Array of adjacency lists for graph GC
bool label[1001]; // label[i]=false – vertex i is not yet visited in GC Depth-first // search
 // label[i]=true - vertex i is already visited in GC Depth-first // search
int lc=0; // Count of already visited vertices in GC
int cc=0; // Count of connected components in GC
int n,m;

void graphinput()

{

 int i,j,u,v;

 // Input count of cities and count of straight roads in the old network
 cin >> n >> m;
 for (i=1;i<=(n-1);i++)

 for (j=i+1;j<=n;j++)

 graph[i][j] = 0;
 // Input straight roads in the old network and fill

 // adjacency matrix for graph G (we need to
 // fill matrix only over the main diagonal because G is undirected graph)
 for (i=1;i<=m;i++)

 {

 cin >> u >> v;

 if (v<u)

 {

 j=v;

 v=u;

 u=j;

 }

 graph[u][v]=1;

 }

}

void buildcomgraph()

{ // Build complementary graph GC
 int i,j,k;

 // First adjacency list for every vertex i is empty
 for (i=1;i<=n;i++)

 comgraph[i][0] = 0;
 // Proceed the adjacency matrix for graph G over the main diagonal and fill
 // adjacency lists for all vertices in graph GC

 for (i=1;i<=(n-1);i++)

 for (j=i+1;j<=n;j++)

 if (graph[i][j] == 0)

 {

 k = ++comgraph[i][0];

 comgraph[i][k] = j;

 k = ++comgraph[j][0];

 comgraph[j][k] = i;

 }

}

void DFScomgraph(int v)
 // Search the connected component, which contains vertex v
 {

 int k,i,j;

 label[v] = 1;

 lc++;

 k = comgraph[v][0];

 if (k > 0)

 for (i=1;i<=k;i++)

 {

 j = comgraph[v][i];

 if (label[j] == 0)

 DFScomgraph(j);

 }

}

int main()

{

 int i,j;

 graphinput(); // Input old road network
 buildcomgraph(); // Build complementary graph
 // First all vertices in graph GC are not visited
 for (i=1;i<=n;i++)

 label[i] = 0;
 // While not visited vertices exist, find first of them and start DFS

 // in order to search the connected component, which contains this vertex;
 // after DFS finish add 1 to connected components count.
 for (i=1;((i<=n)&&(lc < n));i++)

 {

 if (label[i] == 0)

 {

 DFScomgraph(i);

 cc++;

 }

 }
 // Minimum count of old straight roads, which must be kept back in the new network is equal // to count of connected components in graph GC minus one.
 cout << cc-1 << endl;

 return 0;

}

Author: R. Shikov

1

2

2

1

3

4

2

1

3

4

4

3

_1293873501.unknown

_1293873502.unknown

