XV National Olympiad in informatics

Municipal Round
25.01.2009

Group B (grades 9.-10.)

Problem B3. STONES

Two buddies are playing a game. There is a pile of stones on the table. It contains M stones in the beginning. Players make turns one after another. Every player on his turn can take some of the stones according to these rules:
1. If the quantity of the remaining stones is divisible by 3, then the player can take 1 or 2 stones;

2. If the remainder when dividing the quantity of the remaining stones by 3 is 1, the player can take 1 or 3 stones;

2. If the remainder when dividing the quantity of the remaining stones by 3 is 2, the player can take 1, 2 or 3 stones;

The player to take the last rock is winner.

Write program stones, which for given starting quantity of stones in the pile, decide which player (1st or 2nd) can win the game with the correct strategy.
 Input

Positive integer N is read from the first row of the standard input – this is the number of the games in the test;

On the second row there are N positive integers, divided by spaces. Every number describes the starting position (initial number of stones) of one game from the test.
Output

The program must print N characters on the standard output. For every game is printed either 1 (if the first player is in position to win the game) or 2 (if the second player has a winning strategy).
Restrictions:

2 <= N <= 100

1 <= М <= 1000000

EXAMPLE

	Input
	Output

	3
	121

	2 3 5
	

Example’s explanation:

In the first game, player 1 wins, because he can take 2 stones at once and the game is over.

In the second game, player 2 has wining strategy. Player 1 starts with 1 or 2 stones and then player 2 can take all the remaining stones.

In game number 3, player 1 wins again. He can take 2 stones and leave 3 on the table. Then player 2 must pick 1 or 2 stones and player 1 will finish the pile and win the game.
Solution
This problem is a standard game. Let’s name a situation when k stones are remaining on the table – game position K (or only position K). We will say that position K is wining position if the player who is on turn can win the game (with the correct strategy of course). Position K will be called losing position if the player who will make his turn will lose the game if his opponent plays correctly. It is obvious that position 0 is losing position. Position 1 is wining. Further position K is decided to be wining or losing based on these set of rules:
· Position K is losing if every possible move leads to wining position;
· Position K is wining if there is a move (at least 1) leading to losing position.
These rules allow us to define every position from 1 to 1000000 as wining or losing (there are maximum 1000000 stones on the table every single game). We can store these positions in an array. Then for every game from the test the program only needs to look up what kind of position is the starting position – if it is a wining position then the program prints “1”, if it is a losing one then our program will print out “2”
Realization
#include <iostream>

using namespace std;

bool positions[1000001];

char ans[101];

void fillpositions()

{

 int i,k;

 positions[0] = false;

 positions[1] = true;

 positions[2] = true;

 for (i=3;i<=10000;i++)

 {

 k = i%3;

 switch (k)

 {

 case 0:

 if (positions[i-1] && positions[i-2])

 positions[i] = false;

 else

 positions[i] = true;

 break;

 case 1:

 if (positions[i-1] && positions[i-3])

 positions[i] = false;

 else

 positions[i] = true;

 break;

 case 2:

 if (positions[i-1] && positions[i-2] && positions[i-3])

 positions[i] = false;

 else

 positions[i] = true;

 break;

 }

 }

}

int main()

{

 int n,m,k;

 fillpositions();

 cin >> n ;

 for (k=1;k<=n;k++)

 {

 cin >> m;

 if (positions[m])

 ans[k] = '1';

 else

 ans[k] = '2';

 }

 for (k=1;k<=n;k++)

 cout << ans[k];

 cout << endl;

 return 0;

}

Author: R. Shikov

