INTERNATIONAL TOURNAMENT IN INFORMATICS

Shumen, 23 November 2013, Senior Group

TASK A2. XOR

The operation “bitwise exclusive or” (we denote it with \oplus) is **standardly** defined on each couple of non-negative integers (a, b) as follows:

Let $a = \overline{a_{n-1}a_{n-2}a_{n-3} \ldots a_0}$ and $b = \overline{b_{n-1}b_{n-2}b_{n-3} \ldots b_0}$ be the n-digit binary notations of the numbers a and b, i. e., a_i and b_i are zeroes or ones (if the binary digits of the smaller one are less than n, its notation is filled up with “leading zeroes”). Then the number $c = a \oplus b$ is defined in this way: its i^{th} binary digit c_i ($c = c_{n-1}c_{n-2}c_{n-3} \ldots c_0$) is obtained by applying the operation “exclusive or” on the i^{th} binary digits of a and b respectively, i. e., $c_i = a_i \oplus b_i$ for each i from 0 to $n-1$. The xor operation is defined on binary digits as follows: $0 \oplus 0 = 0$; $0 \oplus 1 = 1$; $1 \oplus 0 = 1$; $1 \oplus 1 = 0$.

The operation is easily extended for more operands. More specifically, for the consecutive positive integers in the interval $[a, b]$ we can denote $\oplus_{i=a}^{b} = a \oplus (a+1) \oplus (a+2) \ldots \oplus b$, assuming operation execution from left to right. Consider the positive integers a and b ($a < b$), defining the closed interval of integers $[a, b]$, as well as the positive integer n ($1 < n \leq b - a + 1$). Consider the operation “bitwise exclusive or” on every possible n-tuples of consecutive integers in the interval $[a, b]$.

Write a program **xor** to find out the largest value M which this process can produce.

Let’s, for clarity, take a closer look at the case $a=10$, $b=20$, $n=6$. I. e., we consider the interval $[10, 20]$ of integers, more precisely – all sextuples of consecutive integers in it. For each of them we apply the generalized operation “bitwise exclusive or”:

\[
\begin{align*}
10 \oplus 11 & \oplus 12 \oplus 13 \oplus 14 \oplus 15 = 1010_{2} \oplus 1011_{2} \oplus 1100_{2} \oplus 1101_{2} \oplus 1110_{2} \oplus 1111_{2} = 0001_{2} = 1; \\
11 \oplus 12 & \oplus 13 \oplus 14 \oplus 15 \oplus 16 = 0101_{2} \oplus 0110_{2} \oplus 0111_{2} \oplus 0111_{2} \oplus 1000_{2} \oplus 1000_{2} = 1101_{2} = 27; \\
12 \oplus 13 & \oplus 14 \oplus 15 \oplus 16 \oplus 17 = 0110_{2} \oplus 0111_{2} \oplus 0110_{2} \oplus 0111_{2} \oplus 1000_{2} \oplus 1001_{2} = 0000_{2} = 1; \\
13 \oplus 14 & \oplus 15 \oplus 16 \oplus 17 \oplus 18 = 0111_{2} \oplus 0110_{2} \oplus 0111_{2} \oplus 1000_{2} \oplus 1001_{2} \oplus 1001_{2} = 1111_{2} = 31; \\
14 \oplus 15 & \oplus 16 \oplus 17 \oplus 18 \oplus 19 = 0111_{2} \oplus 0111_{2} \oplus 1000_{2} \oplus 1001_{2} \oplus 1010_{2} \oplus 1011_{2} = 0000_{2} = 1; \\
15 \oplus 16 & \oplus 17 \oplus 18 \oplus 19 \oplus 20 = 1000_{2} \oplus 1000_{2} \oplus 1001_{2} \oplus 1010_{2} \oplus 1011_{2} \oplus 1100_{2} = 1101_{2} = 27.
\end{align*}
\]

Obviously, in this case the solution is 31, resulting in the sextuple which starts with 13.

Input

One line is read from the standard input, containing the space separated positive integers a, b and n.

Output

The program should write to the standard output one line, containing only one non-negative integer M which is the biggest possible number, obtained by applying the operation “bitwise exclusive or” on at least one of the n-tuples of consecutive integers in the interval $[a, b]$.

Constraints

a, b and n are positive integers with no more than 18 decimal digits; $a < b$; $1 < n \leq b - a + 1$.

- In 20% of the cases a, b and n do not exceed 10^7.
- In other 20% of the cases holds $n < 5 \cdot 10^7$.
- In other 20% of the cases n is odd for sure.
- In the last 40% of the cases holds $n < 10^8$.

Example

Input

```
10 20 6
```

Output

```
31
```