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with Asymptotes. Some Multiplicity
and Existence Results
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Presented by P. Kenderov

In the present paper the existence of multiple solutions for a weakly nonlinear elliptic boundary value
problem is studied. The main result (Theorem 1) states that under certain restrictions for the growth of
the nonlinear part and its behaviour at infinity, which are related to the eigenfunctions of the linear
part, there are at least four solutions for an unbounded open set of functions in the right-hand side of
the equation.

O. Introduction

The purpose of the present paper is to study the existence and the multiplicity
of solutions of the semi-linear elliptic equation

0.1) Au+f(x,u)=y(x) in Q,
u=0 on Q

under some appropriate restrictions on the functions y(x).

Our basic assumptions on the nonlinear term are that it is “linear” at infinity
in the sense that we suppose the existence of the limits f(x, s)/s for s— + co. We do
not suppose them to be equal, however, so that the problem is not asymptotlcally
linear. The results are derived by studying the behaviour of an “asymptotic
operator”, and the existence, as well as the multiplicity results are then déduced
from the properties of this operator only, without makmg use of critical point
theory as usual in similar cases.

Semi-linear problems of this kind have been subject to numerous studies, see
for example [1]—[5] and the references they include.

Our multiplicity result (Theorem 1 below) treats the case when the function
f(x,s) ultimately increases and is a sharpening of the results of a previous paper
[6]. Making additional hypotheses on the limits of f(x,s)/s and their behaviour
with respect to the first two eigenvalues of the Laplace operator, we obtain that
for y(x) in some open unbounded set the equation (0.1) has at least four solutions.
In [5] some hints towards the possibility of obtaining similar result are given, but
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we believe our method to be different, being closer to the one employed in [7],
where a case of a resonance with just one eigenvalue is studied.

As regards the existence result, i. e. the solvability of (0.1) for any function
y(x) in the appropriate function space (Theorem 2), it is an easy consequence of
the preparatary work done for proving the multiplicity. Under the hypothesis that
f(x.s) ultimately decreases, it is related to some particular cases of the results of
[1], [2] and other works. .

It should be noted, that the results can be easily extended to more general
second order elliptic operators with regular coefficients. Also, more precise
information about the range of (0.1) can be obtained combining with the results
and methods used in some of the above cited papers, those of [5] for example.

1. Preliminaries and statement of the results

Let Q be a bounder region in R" with boundary dQ, and let H be the Hilbert
space H,(2) with the scalar product

{u, vy={ Vu.Vuvdx
Q

and corresponding norm [[u|7 =<u, u>. The norm and the scalar product in I? (Q)
will be denoted by |ull, and (u, v), respectively, while |- | will denote various finite
dimensional Euclidean norms.

It is well known that under the above assumptions the Laplace operator has
infinitely many eigenvalues 0<4, <A,<4; ... and a corresponding orthonormal
system of eigenfunctions v,, v,, v;, ... that are related by the following
variational characteristic

Ag=min {||u|§/||u|d:ueH, u#0, (u, v)=0, i=1, ... k—1}.

Moreover, it is known that v, (x) does not change sign in Q and in the sequel we
shall always assume that v, (x)>0 in Q.

For the function f(x, s) we shall always assume that

(i) f(x. s): @ x R—>R is measurable in x and Lipschitz continuous in s, i.e.

(1.1) If(x. $)—=f(x, DI=K|s—1|

for almost all xeQ, and f(x, 0)eI? (Q).
(ii)) The limits

(1.2) f+(x)=lim f (x, s)/s

S 4 ®

exist uniformly with respect to xeQ.
The condition (i) implies that there is a function k(x)eI?(Q) such that

(1.3) L 9ISk + K] s]

for all se R, that f*e L* (Q) and that there exists a constant M, such that the
function :

(1.4) ' f(x, s)—Ms
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is nonincreasing. (In fact the statement is true for every M > K but in the sequel
we shall make additional assumptions on the constant M.)

It is known that any function that is measurable in x and continuous in s and
satisfies growth restrictions similar to (1.3) defines a continuous and bounded
operator from I*(Q) into I*(Q), the so-called Niemitzkii operator, corresponding
to f (cf. [8]). This enables us to define in the usual manner an operator F:H—H
implicitly by

(1.5) . (F u,v)=[f(x, upvdx for every veH
Q

the resulting operator being bounded, continuous, even Lipschitz continuous
under the assumption (1.1) and compact. Now we can study the abstract equation
in H

(1.6) u—F (u)y=g
for ye H instead of the problem (0.1) for ye H ' (Q).

Let now V, be the finite dimensional space spanned by the first k
eigenfunctions v,, . . . , v, and let O, be the I? (Q) orthogonal projection of H
on V and P, =Id, — Q, be the projection on W,, the I*(Q) orthogonal complement
of Vi in H. In the sequel we shall make frequent use of the following elementary
facts about P, and Q,.

u, v,y =4; (u, v ueH, i=1, 2, ...

(P u, wy)=<_u, wd ueH, weW,

k
Quu= X (u, v) v,
i=1
'"We are now in a position to state our main results.

Theorem 1. et us assume (i), (ii) and furthermore let i, < i, let the constant M in
(1.4) be such that M < Z,. f* (x)=1* =const, such that I~ <i,<i,<I* <A;. Then
Jor every g=pv,+§ with ge W, there exists a constant t (), such that for t>1(u),
the equation .

—u+F(u)=tv,+g
has at least four solutions. Moreover, the set of the functions of the form tv, +g, for

which the above statement holds has nonempty interior.

Theorem 2. et us assume (i), (ii) and let the functions f* and f~ (1.2) be such
that

(1.7) max {f*,f }<4 -—-=

Then the equation —u+F(u)=g has a solution for every geH.
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2. Some auxiliary results

In the present section some facts about a special type of operators that arise
as asymptotes and the necessary topological results are established.
For o (x), B (x)eL” (Q), let g(x,s) be the function
2.1 g (x,s)=a (x)s+ B (x) ||
and let G: H->H be the corresponding operator defined by
(2.2) {Gu, vy={ g(x,u)vdx veH.
Q

The following lemma treats the behaviour of the operator u—G(u) on the
subspaces W,.

Lemma 1. For a(x)+|B(x)|<4c+,—¢, the operator
(2.3) A, (v+w)=w—P,G(v+w)

is monotone and coercive for every ve V, fixed. In particular, for every veV, there
exists an unique solution w=w (v) of the equation A, (v+ w)=0, which is a Lipschitz

function of wv.
Proof For every w,, w,eW, we have

{CA(4+wy)— A (v+wy), wi—wrd=[w—w, “%—i“za(X) (Wl_Wz)zdx
—‘fl Bx)(lo+wi|—|v+w,]) (W —wy)dx.

We estimate the last integral from above to obtain
| [BE ot wil=lotwa 0wy —wadx | = [IBC01 00, —wa)dx.
Now, [[wl[?=5||wl|?+(1—=08) A+, w3 for we W, and for 6 small énough we
obtain | :
CA@+wW)— A (0+wy), wi—wy)> 28wy —w,[|I§

(2.4)
+‘{((1 —8) Ags1—a(X)—| B(X)]) (W —w,)?dx =6 || wy—w, 1.

For w,=0, (2.4) implies {A,(v+w)—A,(v), w)=d|wli.

The existence and the uniqueness of the solution are now standard from the
theory of monotone operators (cf. [9] or [10]). To prove the Lipschitz continuity,
let w,=w(v;), i=1, 2 be solutions of A,(v;+w)=0. Elementary computations,
similar to the above give

020 w;—w, Ilf—‘g(la(X)IHB(X)I) vy —va || W:—Wz'ldx,
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e |lwi—w,y||{;£C6 ' |vy,—v,]|lo for some constant C.

Next we make some topological considerations.

Let S"={xeR"*':|x|=1} and ¢:S"—S" be continuous. If U = §" is an
open set, then Tor every ye S" with y€ @ (0 U), the topological degree deg (¢, U, p)
is defined. In the particular case U =S", the degree does not depent on p and we
write simply deg ¢. For U #S", the definition of deg is similar to the one usually
given for bounded open sets in R". (cf. [11] IV. 5 for a more algebraic-topological
definition.) .

For O<a<f, let U,, be the open set in R"*' defined by

(2.5) U, p={yeR""l:y=1x, xeUcS" a<t<p}

(in the sequel we shall make use also of the obvious notation tV for the points of
the form y=tx, xeV) The function ®(y) defined by

(2.6) O(y)=t0p(x) for y=tx(a<t<pf)

is continuous from U,, in R"*'. Moreover, if deg(p, U, p) is defined, then
deg (P, U, 4 tp) is defined for « <7< f too and the two are equal. To prove this it
is enough to observe that p& ¢ (0 U) implies tp€® (0 U, ;) for « <7< f and that in
fact ®(y) is the Descartes product of the mapping ¢ with the identity of the
interval (o, f) (cf. |;9], 1.4.6).

Let now ¢ :R"*1>R""! be homogeneous, i. e. ¥ (1x)= Ay (x) for A>0 and
Y (x)#0 for x#0. Then we can define a-mapping ¢ :S"—>S" by ¢ (x)=y (x)/ | (x)|
for x#0. Let U and V be open subsets of S” and let deg (¢, U, p)=const#0 for
peV. Then there exists t;>0 such that Y (R"*!) >tV for t=t,.

Indeed, let m=ming|y(x)|, M =maxg|y(x)|. Then for A>0 we have

(2.7) min, |y (x)|=4im, max,g|y (x)|=4iM.
Let now 4, be so big that i;m>M. For every peR"*! such that
(2.8) p/IpleV. M<|p|<iom

we have that deg(y, U, ;.. p)=deg(e, U, p/|p|)#0, i. e. the degree in the left

o

side is defined and equality holds. (U, , is defined in (2.5).) We first prove that for
p satisfying (2.8), pey (0U, ;). Indeed, p=y (tx) with 1=<t=<4, xedU gives

p/Ipl=y¥ @)/ 1§ (xx)|= ¢ (x)

that contradicts (2.8). The assumption p=y (y) with ye U or ye A,U contradicts
the second part of (2.8) because of (2.7) and the choice of 1,. As we noted above

deg (P, Uiz, p)=deg(p, U, p/|p|) where @ is defined by (2.6). It is now easy to
see, that under the homotopy

F(x, 0=ty (x)+(1 =0 ®(x), xeUy,, te[0, 1] ;
we have '

Vatagmn N FQU, 5, )= tefo, 1]
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since @ (x) and ¥ (x) lie on the same ray through the origin and the set Vy, ; . i. €.
the constant 4, in (2.8) was chosen in a manner to guarantee this fact. The Test of
the proof follows from the fact that ¢ is homogeneous and from Y (U, ; )2 Va2 e

The particular case U= V=S" is even more easy. It is enough to (():onsiderolll

and ® on big balls.
Now we are ready to treat the case we are really interested in.

Lemma 2. Let f: R"** - R"*! be such that the limits y (x)=1im,_, , f(tx)/t exist
uniformly for x in compact sets and let  (x)#0 for x#0. Let U, V= S" be such that

Jor @ (x)=y(x)/|1¥(x)|, peV, deg(p, U, p)=const#0.
Then there exists to>0, such that f(R""') 2 U, tV. If U=V=S", then f is

surjective.
Proof. It is obvious, that ¥ (x) is homogeneous, so we can use the argument

above. In fact we have that under appropriate choice of the constants m, M,
}-o#’(Ux,zo)D VM.Aom and there exists ¢>0, such that dist (lp(aUl_lo), VM'AO,,.)g&
Let 7 be such that for t>7t, |t7!'f(tx)— ¢ (x)| <e/2 for xeaUlJo. Then for
PE Vi igm t>T We have |t™!f(tx)—p|>¢/2 for xe U, and we can use the
usual homotopy to connect the mappings t~ ' f(tx) and ¥ (x). This implies that
f(tUl.lo)DtVM.lom and the proof is completed with to=1tM. )

3. Proof of Theorems 1 and 2

We proceed with the proof using global Lyapunov —Schmidt method. We
project the equation (1.6) by means of P, and Q,, where k is an integer such that
Ar+1>M, to obtain the equivalent system

(3.1)‘ —w+P, F(v+w)=Pg=y
3.2) — v+ Q0 F(v+w)=0Q,9.

The first equation is invertible for every ve ¥, and y e W,. In the followig lemma
we sum up the properties of the solutions.

Lemma 3. For every fixed ye W, and veV,, the equation (3.1) has a unique
solution w=w (v, y). The mapping w(v,y) is Lipschitz from H in W,. Moreover, the
inequality

(3.3) fwwylli=c(+[lyll,+ v
holds.

Proof. [6], lemma 1. The only thing not proved is the Lipschitz continuity,
but it is immediate if we suppose the function f(x, s) to be Lipschitz. The proof is
also similar to the one in [3], lemma 7.1, being only slightly more technical,
because we have to use the condition (1.4) only.

Our next step is to study the asymptotic behaviour of equation (3.2) for
w=w(v, y). To this end we prove the following lemma.

Lemma 4. For every v fixed, the limit w(v)=lim,_  t~'w(tv,y) exists, is
independent of y and satisfies an equation of the type (2.3)
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(3.4) w—P,G(v+w)=0,
where G is defined by (2.1), (2.2) with

1 v 1
ot(x)=§(f+ (x)+/7 (X)), /3()<)=5(f+ ()=~ (x)).

Proof. Let us first note that (1.4) and M <A, ., imply f* (x)SM, [~ (x)< M.
Then a(x)+|f(x)|=max {f* (x), /™ (x)} =M and the hypotheses of lemma 1 are
verified on the subspace W,.

The definition of the functions w(tv, y) and (3.3) imply that the family of
functions ¢t~ 'w(tv, y) is bounded in H=H}(Q) for t—co. By the Sobolev
imbedding theorem we can choose a sequence w,(x)=t, 'w(t,v, y), such that

w,—w, weakly in H, w,—w, strongly in I?(Q), w,(X)—>wo(x) a. e. in Q.

We have too ||w, || =C for some constant. From (1.3) it follows now that the
functions =

(3.5) gn(X)=1t, " f(x, t, v(x)+1, w,(x))

have bounded norms in I7(Q), i. e. || g, ||o <. It is not difficult to see, as in [6] for
instance, that for almost all xeQ, -

gn(X)—>g (x)=/" (x) max {v+w,, 0}+f" (x) min {v+w,, 0}
or- otherwise written
(3.6) g(x)=a(x) (v+we)+ B (x)|v+wg |
with o(x) and f(x) as in the statement of the lemma. Obviously ge I*(Q) and
we can conclude that g,—g weakly in I?(Q) (cf. [10], lemma 1.3). Multiplying the
equation which defines w,, i. e. —w,+t, P, F(t, v+t,w,)=t, 'y with arbit-
rary ue H, we get
(3.7) — W, WLV F (Lo +t,w,), Poud=t; *{y, ud.
The definition (1.5) of F and (3.5) imply
| T F (0 1,w,), Pouy=<g, Poud—<g. Peud
and since {g,P,u)=<G@w+w,), P u), (cf. (3.6), (2.2))
—<Wo-“>+<RkG(v+Wo), uy=0

for every ue H, i. e. wo=w (v) is according to Lemma 1 the unique solution of the
equation

—wW+P, G(v+w)=0

Since every accumulation point of the family ¢t~ w(tv, y) has to satisfy the same
equation, the existence of the limit is thus proved. The Lipschitz. continuity
follows also from Lemma 1.
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Proof of Theorem 1. Under the hypotheses of Theorem 1 we have
M </ and |~ <l <M < 4,, so we can limit ourselves to the spaces V,, spanned
by v, and v, its orthogonal complement W,. Now we shall study the asymptotic
behaviour of the operator in (3.2). It follows that a=(I* +17)/2, f=(1"—17) >0
and we shall denote again by g(u) and G (u) the corresponding function and
operator. Let

(3.8) B(v+w)=—v+QF(+w) B@=B@+w(, y)).
We are interested in the limits of t~! B(tv). As previously we see that
tT f(x, to+tw(v) =g (v+w(v)

weakly in I*(Q) for t—oco. Since t~ ' w(tv, y)—>w(v) strongly I*(Q), the Lipschitz
continuity of the function f(x,s) implies that

w(tv,
t"f(x,tv+t(¥))—»g(v+w(v))
weakly. Since we consider B(v) on a finite-dimensional space, this weak
convergence allows to conclude that the limits exist, i. e.

B, (v)=1lim t 'B(tv)= —v+Q, G(v+w(v)).

t—+

Moreover, the Lipschitz continuity of all the functions ¢ ~! B(tv) with respect to v
implies that this convergence is uniform on compact sets. Writing in more detail
we have that

M

B, (v)=—v+

/«l | (v+w@)+Blo+w(@)|v;(x)dx v,
1 4 Q

Scalar multiplication with v, gives
1
<Bm(v),vl)=z~ [{(=4+0) 0+w@)+Blo+w(@)|}v,dx>0
1 Q

since f> |a— 4, | and hence it is easily checked that the expression in the integral
is always positive for v #0. The last inequality shows that B (v) #0 for v#0, but it
shows also that deg (B, S!')=0.

To continue the study of B, (v) we need know a little more about the
regularity of the functions w (v). We arrive at the higher regularity of these
functions by standard bootstrap argument. Indeed w=w(v) is a variational
solution in H} (Q) of the equation

Aw= —P,(x(v+w)+Blv+w]|),

where the right-hand side belongs to 2% (©Q) (1/2*=1/2—1/n) by the Sobolev
imbedding theorem. Now we H* %" (Q) and the right-hand side is again more



Semilinear Elliptic Equations with Asymptotes . . . 11

.regular. In a finite number of steps we arrive at we L* (Q2) and that is all we need.

Next we note that w(v,)=w(—v,)=0. This follows immediately from (3.4)
substituting O for w, and v, and —v, for v, using the fact that now « (x) and B (x)
are constants, that |v,|=|—v,|=v, and the uniqueness assertion of lemma 1.

Now we use a consequence of the maximum principle ([5], lemma 1), that in
the present situation states that there exists ¢>0, such that if we [* (Q), Awe [*
() and ||wl,<e [[Aw],<e, then v, (X)+w(x)>0 in Q. Of course, —v,(x)
+w(x)<0 in Q for such functions w. But the regularity considerations above,
together with the continuity of w(v) with respect to v, and w(v,)=w(—v,)=0
imply that we are in this situation, i.e. if we write

v(p)=v,cos @+v, sin @,

there are intervals (—¢, ¢) and (m—¢, m+¢), such that for ¢ in these intervals we
have v(p)+w(@)>0 and v(p)+w(@)<O0 in Q, respectively.

The constant sign of the above functions, together with «,8=const,
w() L v and (3.1) give

e P

l l .
B, (v)=(——1)v,cosp+(-——1)v,singp
A1 Az
and
" 1~ .
B, (v)=—(1—-—v,cos¢p—(1—-—)v,sing
4! Az
for ¢ in (—¢, ¢) and (t—¢, m+¢), respectively. f we put Ut =(—¢,¢), U =(n—¢, @
+¢), since A, <™ and |~ <4, it is easy to calculate :
(3.10)  deg(B,/|By|. U", v,)=deg(B,/|B,|. U™, v;)=1

and the same is true for v in some neighbourhood V of v,, such that the four
" endpoints of the above segments of S' do not belong to V. Then from simple
geometrical considerations on S', taking into account (B, (v), v,»>>0 for every
v#0 and the fact that the segments U = (¢, t—¢), U = (n+¢, —&) have the same
endpoints as U*, U~ we find that (

(3.11) deg(B,/|By|. U v)=deg(B,/|B,|. U", v)=~—1

for every ve V, the same set as before. Now we apply lemma 2 with respect to each
of thesets U*, U™, U’, U” and all the mappings (3.8). It is to be noted that the sets
we obtained above do not depend on ye W,, so we can affirm that there exists
>0, such that

B(v tu)yo> vtV

t>0 t>t

where u is any of the four sets above. The last is equivalent to the statement that
for any p with p/|pleV, |p|>t, the equation

(3.12) B(v+w(v,y)=p



12 . G. 1. Cobanov

has at least four solutions, each being in one of the “cones” generated by the sets
U above. The conclusions of the theorem are now just a restatement of this fact,
taking into account that finding solutions of (3.1), (3.2) is equivalent to finding
solutions of (3.12) only, the last part of the theorem being obvious from the
geometry of the set U, tV.

Remark. It is not difficult to see that one can treat likewise the case when
Ae<lt <M<, for some k, without further restrictions on the multiplicity of 4;
for i <k. In fact, the only point for which the two-dimensionality is essential is the
existence of two sets U, U”, such that (3.11) holds. The existence of sets U*, U™,
open neigbourhoods of v, and —wv, on S$*°! such that (3.10) holds and
deg(B,/|B, |, S*')=0 follow repeating verbatim the same argument, but

therefrom we can deduce only for U=S*"!1\(U* vU")
deg(B,/|By |, U, vy)=—-2

which ensures the existence of one more solution for p e V(some neighbourhood of
v,)," being intuitively clear, that there should be two solutions in U for “most”

peV.
Proofof Theorem 2. For a(x)z%(f*(x)+f'(x)) B(x)=%(f+(x)—f"(x)),

(1.7) implies that a(x)+ \B(x)|<i,—¢. From Lemma 1 it follows that the
operators '

A, (v+w)=w—P,G(v+w)
are monotone and coercive for any k, and in particular for P,=1Idy. Let now k be
such that 4, , , > M, the existence of M such that (1.4) holds being implied by (1.3).
We use again the splitting (3.1), (3.2) and now Lemmas 3 and 4 imply that

wie=w (v)=lim ¢~ " w(tv, y)

for veV,, yeW, satisfies the equation A, (v+w,)=0. Now
Slolisolivli+lwlhs<A4o(0+w), v+w)
for every tveV, and weW,, whence
3013 <Ag+w(v), 4w, (0)y =< Ao+ W (v), We(®)) +<{AoO+Wy (), v)
=Py Ao (0+wi (v)), Wi (0)) +<{Qx Ao (v+ Wy (v)), v)=(By (v), v}
since P, A, = A,. The last inequality shows that B (v)#0 for v#0 and moreover

deg(B, /| B, |, S*)=1. According to the last part of lemma 2 this is enough to
guarantee the surjectivity of the mapping B(v).
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